Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries

Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Cou...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 15; no. 1; pp. 352 - 360
Main Authors Feng, Xiaoyu, Wu, Hong-Hui, Gao, Biao, Świętosławski, Michał, He, Xin, Zhang, Qiaobao
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm −2 . Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion.
AbstractList Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm −2 . Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion.
Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm−2. Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion.
Author Wu, Hong-Hui
He, Xin
Świętosławski, Michał
Gao, Biao
Feng, Xiaoyu
Zhang, Qiaobao
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Feng
  fullname: Feng, Xiaoyu
  organization: Department of Materials Science and Engineering, College of Materials, Xiamen University, The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology
– sequence: 2
  givenname: Hong-Hui
  surname: Wu
  fullname: Wu, Hong-Hui
  organization: School of Materials Science and Engineering, University of Science and Technology Beijing
– sequence: 3
  givenname: Biao
  surname: Gao
  fullname: Gao, Biao
  organization: The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology
– sequence: 4
  givenname: Michał
  surname: Świętosławski
  fullname: Świętosławski, Michał
  organization: Faculty of Chemistry, Jagiellonian University
– sequence: 5
  givenname: Xin
  surname: He
  fullname: He, Xin
  email: xinhe@scu.edu.cn
  organization: School of Chemical Engineering, Sichuan University
– sequence: 6
  givenname: Qiaobao
  surname: Zhang
  fullname: Zhang, Qiaobao
  email: zhangqiaobao@xmu.edu.cn
  organization: Department of Materials Science and Engineering, College of Materials, Xiamen University
BookMark eNp9kE9r3DAQxUVIIJs0HyA3Qc5OJfmP7GMJbVJY0kt7FiNpnNXilRxJbsm3j8w2FArJXDRo3u-N9C7IqQ8eCbnm7JYzJj8nLoRsKiZ4VTe9qNgJ2fBh6CtW6vSt56I5Jxcp7RnrBG_6DVm2Lu9cmHducoY-VjbMaKmBqIOnOvyZEnXeLqZcbh21OIfksisz5-kELxjL4CnCvEOPdHTTgY4hUrC_wa_MtLovB3rADBPVkDNGh-kTORthSnj197wkv759_Xn3UG1_3H-_-7KtTN0OuZKCQ896Do3RNbONxlHDAAiSG9lbZHUHVtcWbdO2IHHoNDMSeddhqzvR15fk5ug7x_C8YMpqH5boy0ol2qHpByEZLyp5VJkYUoo4KuMyrL_MEdykOFNrxuqYsSoZqzVjxQrJ_yPn6A4QXz5kxJFJReufMP570_vQK3f7knU
CitedBy_id crossref_primary_10_1002_ece2_38
crossref_primary_10_1016_j_cclet_2022_107947
crossref_primary_10_1007_s12598_022_02229_1
crossref_primary_10_1016_j_ensm_2022_07_017
crossref_primary_10_1016_j_jpowsour_2022_232474
crossref_primary_10_1016_j_nanoen_2022_107904
crossref_primary_10_1007_s12274_022_4981_3
crossref_primary_10_1088_2631_7990_aca40b
crossref_primary_10_1002_batt_202200411
crossref_primary_10_1002_smll_202106718
crossref_primary_10_1016_j_partic_2023_03_008
crossref_primary_10_1007_s12274_022_4581_2
crossref_primary_10_1016_j_jelechem_2022_116847
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1088_1361_6528_ac73a5
crossref_primary_10_1016_j_jechem_2022_01_026
crossref_primary_10_1002_smtd_202400831
crossref_primary_10_1007_s12274_022_5066_z
crossref_primary_10_2139_ssrn_4137059
crossref_primary_10_1021_acsami_1c22604
crossref_primary_10_1021_acsami_2c13325
crossref_primary_10_1016_j_jpowsour_2021_230226
crossref_primary_10_1016_j_jechem_2024_09_063
crossref_primary_10_1016_j_jpcs_2024_111871
crossref_primary_10_1021_acsami_2c09791
crossref_primary_10_3390_nano13233007
crossref_primary_10_1002_chem_202302773
crossref_primary_10_1002_batt_202200549
crossref_primary_10_1021_acsami_3c16173
crossref_primary_10_1021_acs_energyfuels_2c02660
crossref_primary_10_1016_j_ceramint_2022_10_026
crossref_primary_10_1007_s11581_023_05031_w
crossref_primary_10_1002_anie_202217476
crossref_primary_10_1021_acs_jpcc_2c05333
crossref_primary_10_1021_acsami_1c10913
crossref_primary_10_3390_batteries9010030
crossref_primary_10_3390_en16052271
crossref_primary_10_1016_j_est_2024_113837
crossref_primary_10_1016_S1872_5805_23_60743_7
crossref_primary_10_1007_s12274_024_6907_z
crossref_primary_10_1007_s12274_022_4475_3
crossref_primary_10_1039_D1NJ05199G
crossref_primary_10_1016_j_electacta_2024_145102
crossref_primary_10_1007_s12274_022_5018_7
crossref_primary_10_1016_j_compositesb_2022_110423
crossref_primary_10_1016_j_jpcs_2024_112078
crossref_primary_10_1021_acs_energyfuels_2c02242
crossref_primary_10_1016_j_jechem_2021_12_046
crossref_primary_10_1016_j_cclet_2023_108288
crossref_primary_10_1149_1945_7111_ac60ee
crossref_primary_10_1149_1945_7111_ac93ba
crossref_primary_10_1007_s12274_022_4889_0
crossref_primary_10_3389_fchem_2021_828119
crossref_primary_10_1021_acsami_1c21841
crossref_primary_10_1021_acsaem_2c02548
crossref_primary_10_1007_s12274_022_4275_9
crossref_primary_10_1002_aenm_202303165
crossref_primary_10_1002_eem2_12534
crossref_primary_10_1016_j_cej_2023_146793
crossref_primary_10_1016_j_carbon_2022_01_043
crossref_primary_10_1002_advs_202203178
crossref_primary_10_1016_j_cclet_2022_05_059
crossref_primary_10_1002_adfm_202212100
crossref_primary_10_1016_j_carbon_2022_07_048
crossref_primary_10_1016_j_mtnano_2022_100194
crossref_primary_10_1007_s12274_022_5090_z
crossref_primary_10_1016_j_jelechem_2022_117063
crossref_primary_10_1002_ange_202217476
crossref_primary_10_1007_s12598_021_01827_9
crossref_primary_10_1039_D2DT01917E
crossref_primary_10_1016_j_ensm_2024_103191
crossref_primary_10_1016_j_ensm_2022_09_006
crossref_primary_10_1016_j_ensm_2023_02_019
crossref_primary_10_1021_acsami_2c02836
crossref_primary_10_1016_j_ceramint_2022_10_229
crossref_primary_10_1007_s12598_023_02472_0
crossref_primary_10_1016_j_jallcom_2022_168542
crossref_primary_10_1007_s12274_022_5209_2
crossref_primary_10_1021_acsami_2c04734
crossref_primary_10_1039_D4CP04183F
crossref_primary_10_1016_j_jcis_2022_09_127
crossref_primary_10_1016_j_jpowsour_2022_231768
crossref_primary_10_2139_ssrn_4112767
crossref_primary_10_1016_j_carbon_2024_119870
crossref_primary_10_20517_energymater_2023_93
crossref_primary_10_1021_acsaem_2c03259
crossref_primary_10_1021_acs_iecr_2c02032
crossref_primary_10_1016_j_cclet_2022_06_017
crossref_primary_10_1016_j_jechem_2022_10_023
crossref_primary_10_1016_j_jechem_2022_04_037
crossref_primary_10_1007_s12598_022_02066_2
crossref_primary_10_1016_j_jallcom_2023_169302
crossref_primary_10_1002_chem_202301774
crossref_primary_10_1002_smm2_1185
crossref_primary_10_1007_s12274_022_4242_5
crossref_primary_10_1016_j_cej_2022_138209
crossref_primary_10_20517_energymater_2023_83
crossref_primary_10_1039_D4CC06494A
crossref_primary_10_1007_s11431_022_2117_9
crossref_primary_10_1016_j_ceramint_2022_05_301
crossref_primary_10_1016_j_apsusc_2022_154819
crossref_primary_10_1016_j_jallcom_2024_176087
Cites_doi 10.1021/acsnano.8b07319
10.1021/acs.nanolett.6b01581
10.1016/j.mattod.2020.09.003
10.1039/C3EE40795K
10.1021/acsami.7b08198
10.1002/adma.201801328
10.1016/j.nanoen.2020.104889
10.1002/smll.201903520
10.1002/inf2.12000
10.1016/j.jpowsour.2019.227632
10.1021/acsnano.9b08575
10.1038/s41560-019-0464-5
10.1002/aenm.202000717
10.1016/j.ensm.2018.09.021
10.1007/s12598-020-01456-8
10.1016/j.joule.2017.11.004
10.1021/nn302906r
10.1021/acs.chemrev.8b00422
10.1021/acs.chemrev.7b00115
10.1021/acsami.9b08438
10.1021/jacs.6b13314
10.1002/aenm.201800266
10.1016/j.chempr.2018.06.017
10.1002/adma.201601409
10.1002/smm2.1015
10.1149/06132.0001ecst
10.1038/nnano.2014.152
10.1038/s41598-016-0028-x
10.1002/aenm.201702322
10.1016/j.ensm.2019.03.029
10.1021/ja312241y
10.1038/s41598-020-63935-3
10.1002/aenm.201600811
10.1002/advs.201500213
10.1002/adma.202004128
10.1002/anie.202000375
10.1016/j.nanoen.2019.104172
10.1016/j.mattod.2020.09.035
10.1103/PhysRevB.54.11169
10.1021/cr500003w
10.1039/C2EE02911A
10.1002/adfm.201700348
10.1002/adma.201501490
10.1002/adma.201807131
10.1002/adfm.201705838
10.1039/C9TA04240G
10.1007/s12598-020-01432-2
10.1039/C8EE00239H
10.1016/j.chempr.2016.07.009
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12274-021-3482-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medicine (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 360
ExternalDocumentID 10_1007_s12274_021_3482_0
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c359t-721a8081a4cb30d4befba9aea71c78de036adb3ded455a7e96b0c7e166e5b6283
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Sat Aug 23 14:54:06 EDT 2025
Tue Jul 01 01:46:59 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Fri Feb 21 02:47:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords bowl-like carbon/reduced graphene nanosheets hybrids
lithium metal battery
Li metal host
dendrite inhibition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-721a8081a4cb30d4befba9aea71c78de036adb3ded455a7e96b0c7e166e5b6283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://ruj.uj.edu.pl/xmlui/handle/item/283834
PQID 2594892701
PQPubID 326270
PageCount 9
ParticipantIDs proquest_journals_2594892701
crossref_citationtrail_10_1007_s12274_021_3482_0
crossref_primary_10_1007_s12274_021_3482_0
springer_journals_10_1007_s12274_021_3482_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Xu, Zhang, Cheng, Peng, Zhao, Yan, Huang (CR13) 2018; 28
Rabchinskii, Ryzhkov, Kirilenko, Ulin, Baidakova, Shnitov, Pavlov, Chumakov, Stolyarova, Besedina (CR43) 2020; 10
Zhang, Lee, Park, Li, Kang (CR8) 2016; 6
Shi, Li, Zhang, Shen, Cheng, Xu, Huang, Chen, Liu, Zhang (CR35) 2019; 31
Lu, Ge, Yang, Chen, Yao, Zhou, Yu (CR38) 2016; 16
Cheng, Zhang, Zhang, Li, Tang, Delmas, Zhu, Winter, Wang, Huang (CR46) 2020; 42
Wang, Zhang, Yang, Huang, Liu, Luo (CR2) 2018; 4
Yun, He, Lv, Zhao, Li, Kang, Yang (CR37) 2016; 28
Cheng, Zhang, Zhao, Zhang (CR7) 2017; 117
Liu, Wang, Li, Wu, Chiou, Huang, Luo (CR48) 2018; 2
Liu, Holoubek, Zhou, Chen, Chang, Wu, Yu, Yan, Xing, Li (CR19) 2020; 42
Gao, Yan, Gray, He, Wang, Chen, Huang, Li, Wang, Kim (CR21) 2019; 18
Pu, Zhang, Qu, Hu, Li, Gao, Pan, Liu (CR4) 2020; 39
Ding, Xu, Graff, Zhang, Sushko, Chen, Shao, Engelhard, Nie, Xiao (CR17) 2013; 135
Chen, Zhao, Yan, Zhang (CR10) 2021; 33
Zhang, Liu, Liang, Chen, Qi, Harris, Lu, Chen (CR40) 2014; 61
Zhang, Shen, Cheng, Zhang (CR34) 2019; 23
Sharifi, Hu, Jia, Wagberg (CR42) 2012; 6
Chen, Yao, Yan, Zhang, Cheng, Zhang (CR11) 2020; 59
Liang, Zhao, Yuan, Chen, Zhang, Huang, Yu, Liu, Titirici, Chueh (CR1) 2019; 1
Zheng, Wu, Liu, Zhang, He, Yu, Petrova, Feng, Kostecki, Liu (CR33) 2020; 14
Cao, Ren, Zou, Engelhard, Huang, Wang, Matthews, Lee, Niu, Arey (CR16) 2019; 4
Zhang, Li, Peng, Liu, Zhang, Liu, Li (CR44) 2017; 7
Zhang, Chen, Luo, Zhao, Luo, Han, Wang, Wang, Yang, Zhu, Liu (CR45) 2018; 11
Zhao, Hao, Su, Ma, Hu, Liu, Kang, He (CR32) 2019; 7
Chi, Liu, Song, Fan, Zhang (CR14) 2017; 27
Huang, Feng, Zhang, Zhang, Zhang, Gao, Chu, Huo (CR27) 2019; 11
Zhou, Yu, Liu, Liu (CR23) 2020; 450
Li, Zhang, Yuan, Liu, Yang, Lin, Lu (CR47) 2020; 10
Zheng, Lee, Liang, Lee, Yan, Yao, Wang, Li, Chu, Cui (CR30) 2014; 9
Liu, Pei, Lee, Kong, Liu, Lin, Liu, Liu, Hsu, Bao (CR28) 2017; 139
Wang, Liu, Li, Xia, Holoubek, Deng, Yu, Tian, Shan, Ong (CR18) 2020; 75
Li, Ji, Liang (CR25) 2020; 39
Shi, Li, Lu, Wu (CR26) 2021; 37
He, Yang, Cristian, Wang, Hou, Yan, Li, Zhang, Paillard, Swietoslawski (CR50) 2020; 67
Xu, Wang, Ding, Chen, Nasybulin, Zhang, Zhang (CR6) 2014; 7
Cheng, Zhang, Zhao, Wei, Zhang, Zhang (CR12) 2016; 3
Winter, Barnett, Xu (CR5) 2018; 118
Liu, Zhou, Lee, Xing, Gonzalez, Liu (CR20) 2017; 9
Liu, Xia, Zhong, Deng, Yao, Zhang, Cheng, Wang, Zhang, Tu (CR31) 2018; 8
Wu, Li, Liu, Yang, Ma, Dou (CR3) 2020; 2
Sun, Zheng, Seh, Liu, Wang, Sun, Lee, Cui (CR29) 2016; 1
Nan, Li, Shi, Yang, Li (CR41) 2019; 15
Liu, Yue, Xing, Yan, Huang, Petrova, Zhou, Liu (CR24) 2019; 16
Kresse, Furthmüller (CR39) 1996; 54
Xu (CR15) 2014; 114
Zhang, Liu, Li, Zhang, Liu, Luo (CR49) 2018; 30
Liu, Xu, Yuan, Chang, Xu, Yin, Li, Zhong, Jiang, Yan (CR22) 2015; 27
Zhamu, Chen, Liu, Neff, Fang, Yu, Xiong, Wang, Wang, Jang (CR9) 2012; 5
Zhao, Lei, He, Yuan, Yun, Ni, Lv, Li, Yang, Kang (CR36) 2018; 8
Zhao, Wu, Yang, Zhang, Zhong, Zheng, Chen, Wang, He, Wang (CR51) 2018; 12
W Xu (3482_CR6) 2014; 7
M Wu (3482_CR3) 2020; 2
Z M Zheng (3482_CR33) 2020; 14
X R Chen (3482_CR10) 2021; 33
X Huang (3482_CR27) 2019; 11
R Xu (3482_CR13) 2018; 28
J Zhang (3482_CR44) 2017; 7
K Xu (3482_CR15) 2014; 114
Q Zhang (3482_CR45) 2018; 11
H D Liu (3482_CR24) 2019; 16
S Liu (3482_CR48) 2018; 2
H P Li (3482_CR25) 2020; 39
P Shi (3482_CR35) 2019; 31
H Zhao (3482_CR36) 2018; 8
D D Wang (3482_CR18) 2020; 75
Y Li (3482_CR47) 2020; 10
H D Shi (3482_CR26) 2021; 37
H D Liu (3482_CR19) 2020; 42
Q C Liu (3482_CR22) 2015; 27
Y Nan (3482_CR41) 2019; 15
T Sharifi (3482_CR42) 2012; 6
Q Zhao (3482_CR32) 2019; 7
Y M Sun (3482_CR29) 2016; 1
Y Liang (3482_CR1) 2019; 1
X B Cheng (3482_CR7) 2017; 117
Y Gao (3482_CR21) 2019; 18
K C Pu (3482_CR4) 2020; 39
H Y Zhou (3482_CR23) 2020; 450
M K Rabchinskii (3482_CR43) 2020; 10
C Zhang (3482_CR49) 2018; 30
R Zhang (3482_CR34) 2019; 23
X He (3482_CR50) 2020; 67
K Liu (3482_CR28) 2017; 139
S S Chi (3482_CR14) 2017; 27
Y Cheng (3482_CR46) 2020; 42
H D Liu (3482_CR20) 2017; 9
A X Wang (3482_CR2) 2018; 4
X R Chen (3482_CR11) 2020; 59
Q B Yun (3482_CR37) 2016; 28
M Winter (3482_CR5) 2018; 118
K Zhang (3482_CR8) 2016; 6
F Ding (3482_CR17) 2013; 135
L L Lu (3482_CR38) 2016; 16
X Cao (3482_CR16) 2019; 4
X B Cheng (3482_CR12) 2016; 3
G Kresse (3482_CR39) 1996; 54
S F Liu (3482_CR31) 2018; 8
H Zhang (3482_CR40) 2014; 61
L Zhao (3482_CR51) 2018; 12
A Zhamu (3482_CR9) 2012; 5
G Y Zheng (3482_CR30) 2014; 9
References_xml – volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR44
  article-title: 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage
  publication-title: Sci. Rep.
– volume: 2
  start-page: 184
  year: 2018
  end-page: 193
  ident: CR48
  article-title: Crumpled graphene balls stabilized dendrite-free lithium metal anodes
  publication-title: Joule
– volume: 7
  start-page: 15871
  year: 2019
  end-page: 15879
  ident: CR32
  article-title: Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 669
  year: 2018
  end-page: 681
  ident: CR45
  article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 39
  start-page: 616
  year: 2020
  end-page: 635
  ident: CR4
  article-title: Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries
  publication-title: Rare Met.
– volume: 75
  start-page: 104889
  year: 2020
  ident: CR18
  article-title: A long-lasting dual-function electrolyte additive for stable lithium metal batteries
  publication-title: Nano Energy
– volume: 9
  start-page: 618
  year: 2014
  end-page: 623
  ident: CR30
  article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes
  publication-title: Nat. Nanotechnol.
– volume: 139
  start-page: 4815
  year: 2017
  end-page: 4820
  ident: CR28
  article-title: Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  ident: CR7
  article-title: Toward safe lithium metal anode in rechargeable batteries: A review
  publication-title: Chem. Rev.
– volume: 3
  start-page: 1500213
  year: 2016
  ident: CR12
  article-title: A review of solid electrolyte interphases on lithium metal anode
  publication-title: Adv. Sci.
– volume: 450
  start-page: 227632
  year: 2020
  ident: CR23
  article-title: Protective coatings for lithium metal anodes: Recent progress and future perspectives
  publication-title: J. Power Sources
– volume: 23
  start-page: 556
  year: 2019
  end-page: 565
  ident: CR34
  article-title: The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 2192
  year: 2018
  end-page: 2200
  ident: CR2
  article-title: Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes
  publication-title: Chem
– volume: 16
  start-page: 4431
  year: 2016
  end-page: 4437
  ident: CR38
  article-title: Free-standing copper nanowire network current collector for improving lithium anode performance
  publication-title: Nano Lett.
– volume: 6
  start-page: 8904
  year: 2012
  end-page: 8912
  ident: CR42
  article-title: Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes
  publication-title: ACS Nano
– volume: 30
  start-page: 1801328
  year: 2018
  ident: CR49
  article-title: Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes
  publication-title: Adv. Mater.
– volume: 2
  start-page: 5
  year: 2020
  end-page: 11
  ident: CR3
  article-title: Perspective on solid-electrolyte interphase regulation for lithium metal batteries
  publication-title: SmartMat.
– volume: 15
  start-page: 1903520
  year: 2019
  ident: CR41
  article-title: Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode
  publication-title: Small
– volume: 39
  start-page: 861
  year: 2020
  end-page: 862
  ident: CR25
  article-title: Dual-functional ion redistributor for dendrite-free lithium metal anodes
  publication-title: Rare Met.
– volume: 135
  start-page: 4450
  year: 2013
  end-page: 4456
  ident: CR17
  article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 30635
  year: 2017
  end-page: 30642
  ident: CR20
  article-title: Suppressing lithium dendrite growth with a single-component coating
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR39
  article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 33
  start-page: 2004128
  year: 2021
  ident: CR10
  article-title: Review on Li deposition in working batteries: From nucleation to early growth
  publication-title: Adv. Mater.
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  ident: CR15
  article-title: Electrolytes and interphases in Li-ion batteries and beyond
  publication-title: Chem. Rev.
– volume: 1
  start-page: 6
  year: 2019
  end-page: 32
  ident: CR1
  article-title: A review of rechargeable batteries for portable electronic devices
  publication-title: InfoMat.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR43
  article-title: From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties
  publication-title: Sci. Rep.
– volume: 61
  start-page: 1
  year: 2014
  ident: CR40
  article-title: Understanding and predicting the lithium dendrite formation in Li-ion batteries: Phase field model
  publication-title: ECS Transactions
– volume: 118
  start-page: 11433
  year: 2018
  end-page: 11456
  ident: CR5
  article-title: Before Li ion batteries
  publication-title: Chem. Rev.
– volume: 7
  start-page: 513
  year: 2014
  end-page: 537
  ident: CR6
  article-title: Lithium metal anodes for rechargeable batteries
  publication-title: Energy Environ. Sci.
– volume: 37
  start-page: 2008033
  year: 2021
  ident: CR26
  article-title: Single-atom cobalt coordinated to oxygen sites on graphene for stable lithium metal anodes
  publication-title: Acta Phys.-Chim. Sin.
– volume: 16
  start-page: 505
  year: 2019
  end-page: 511
  ident: CR24
  article-title: A scalable 3D lithium metal anode
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 12597
  year: 2018
  end-page: 12611
  ident: CR51
  article-title: Mechanistic origin of the high performance of yolk@shell Bi S @N-doped carbon nanowire electrodes
  publication-title: ACS Nano
– volume: 8
  start-page: 1702322
  year: 2018
  ident: CR31
  article-title: 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 31824
  year: 2019
  end-page: 31831
  ident: CR27
  article-title: Lithiated NiCo O nanorods anchored on 3D nickel foam enable homogeneous Li plating/stripping for high-power dendrite-free lithium metal anode
  publication-title: ACS Appl. Mater. Interfaces
– volume: 67
  start-page: 104172
  year: 2020
  ident: CR50
  article-title: Uniform lithium electrodeposition for stable lithium-metal batteries
  publication-title: Nano Energy
– volume: 59
  start-page: 7743
  year: 2020
  end-page: 7747
  ident: CR11
  article-title: A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 1600811
  year: 2016
  ident: CR8
  article-title: Recent developments of the lithium metal anode for rechargeable non-aqueous batteries
  publication-title: Adv. Energy Mater.
– volume: 42
  start-page: 17
  year: 2020
  end-page: 28
  ident: CR19
  article-title: Ultrahigh coulombic efficiency electrolyte enables Li∥span batteries with superior cycling performance
  publication-title: Mater. Today
– volume: 14
  start-page: 9545
  year: 2020
  end-page: 9561
  ident: CR33
  article-title: Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets
  publication-title: ACS Nano
– volume: 27
  start-page: 1700348
  year: 2017
  ident: CR14
  article-title: Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 6932
  year: 2016
  end-page: 6939
  ident: CR37
  article-title: Chemical dealloying derived 3D porous current collector for Li metal anodes
  publication-title: Adv. Mater.
– volume: 4
  start-page: 796
  year: 2019
  end-page: 805
  ident: CR16
  article-title: Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization
  publication-title: Nat. Energy
– volume: 5
  start-page: 5701
  year: 2012
  end-page: 5707
  ident: CR9
  article-title: Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1800266
  year: 2018
  ident: CR36
  article-title: Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 384
  year: 2019
  end-page: 389
  ident: CR21
  article-title: Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
  publication-title: Nat. Energy
– volume: 31
  start-page: 1807131
  year: 2019
  ident: CR35
  article-title: Lithiophilic LiC layers on carbon hosts enabling stable Li metal anode in working batteries
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2000717
  year: 2020
  ident: CR47
  article-title: Surface amorphization of vanadium dioxide (B) for K-ion battery
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 1705838
  year: 2018
  ident: CR13
  article-title: Artificial soft-rigid protective layer for dendrite-free lithium metal anode
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 287
  year: 2016
  end-page: 297
  ident: CR29
  article-title: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries
  publication-title: Chem
– volume: 27
  start-page: 5241
  year: 2015
  end-page: 5247
  ident: CR22
  article-title: Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries
  publication-title: Adv. Mater.
– volume: 42
  start-page: 137
  year: 2020
  end-page: 161
  ident: CR46
  article-title: Understanding all solid-state lithium batteries through in situ transmission electron microscopy
  publication-title: Mater. Today
– volume: 12
  start-page: 12597
  year: 2018
  ident: 3482_CR51
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07319
– volume: 16
  start-page: 4431
  year: 2016
  ident: 3482_CR38
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01581
– volume: 42
  start-page: 137
  year: 2020
  ident: 3482_CR46
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.09.003
– volume: 7
  start-page: 513
  year: 2014
  ident: 3482_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE40795K
– volume: 9
  start-page: 30635
  year: 2017
  ident: 3482_CR20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08198
– volume: 30
  start-page: 1801328
  year: 2018
  ident: 3482_CR49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801328
– volume: 75
  start-page: 104889
  year: 2020
  ident: 3482_CR18
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104889
– volume: 15
  start-page: 1903520
  year: 2019
  ident: 3482_CR41
  publication-title: Small
  doi: 10.1002/smll.201903520
– volume: 1
  start-page: 6
  year: 2019
  ident: 3482_CR1
  publication-title: InfoMat.
  doi: 10.1002/inf2.12000
– volume: 37
  start-page: 2008033
  year: 2021
  ident: 3482_CR26
  publication-title: Acta Phys.-Chim. Sin.
– volume: 450
  start-page: 227632
  year: 2020
  ident: 3482_CR23
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227632
– volume: 14
  start-page: 9545
  year: 2020
  ident: 3482_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08575
– volume: 4
  start-page: 796
  year: 2019
  ident: 3482_CR16
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0464-5
– volume: 10
  start-page: 2000717
  year: 2020
  ident: 3482_CR47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000717
– volume: 16
  start-page: 505
  year: 2019
  ident: 3482_CR24
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.021
– volume: 39
  start-page: 861
  year: 2020
  ident: 3482_CR25
  publication-title: Rare Met.
  doi: 10.1007/s12598-020-01456-8
– volume: 2
  start-page: 184
  year: 2018
  ident: 3482_CR48
  publication-title: Joule
  doi: 10.1016/j.joule.2017.11.004
– volume: 6
  start-page: 8904
  year: 2012
  ident: 3482_CR42
  publication-title: ACS Nano
  doi: 10.1021/nn302906r
– volume: 118
  start-page: 11433
  year: 2018
  ident: 3482_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00422
– volume: 117
  start-page: 10403
  year: 2017
  ident: 3482_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 11
  start-page: 31824
  year: 2019
  ident: 3482_CR27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08438
– volume: 139
  start-page: 4815
  year: 2017
  ident: 3482_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13314
– volume: 8
  start-page: 1800266
  year: 2018
  ident: 3482_CR36
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800266
– volume: 4
  start-page: 2192
  year: 2018
  ident: 3482_CR2
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.06.017
– volume: 28
  start-page: 6932
  year: 2016
  ident: 3482_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601409
– volume: 2
  start-page: 5
  year: 2020
  ident: 3482_CR3
  publication-title: SmartMat.
  doi: 10.1002/smm2.1015
– volume: 61
  start-page: 1
  year: 2014
  ident: 3482_CR40
  publication-title: ECS Transactions
  doi: 10.1149/06132.0001ecst
– volume: 9
  start-page: 618
  year: 2014
  ident: 3482_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.152
– volume: 7
  start-page: 1
  year: 2017
  ident: 3482_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0028-x
– volume: 8
  start-page: 1702322
  year: 2018
  ident: 3482_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702322
– volume: 23
  start-page: 556
  year: 2019
  ident: 3482_CR34
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.03.029
– volume: 135
  start-page: 4450
  year: 2013
  ident: 3482_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312241y
– volume: 10
  start-page: 1
  year: 2020
  ident: 3482_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-63935-3
– volume: 6
  start-page: 1600811
  year: 2016
  ident: 3482_CR8
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600811
– volume: 3
  start-page: 1500213
  year: 2016
  ident: 3482_CR12
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500213
– volume: 33
  start-page: 2004128
  year: 2021
  ident: 3482_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004128
– volume: 59
  start-page: 7743
  year: 2020
  ident: 3482_CR11
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000375
– volume: 67
  start-page: 104172
  year: 2020
  ident: 3482_CR50
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104172
– volume: 42
  start-page: 17
  year: 2020
  ident: 3482_CR19
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.09.035
– volume: 54
  start-page: 11169
  year: 1996
  ident: 3482_CR39
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 114
  start-page: 11503
  year: 2014
  ident: 3482_CR15
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
– volume: 5
  start-page: 5701
  year: 2012
  ident: 3482_CR9
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE02911A
– volume: 27
  start-page: 1700348
  year: 2017
  ident: 3482_CR14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700348
– volume: 27
  start-page: 5241
  year: 2015
  ident: 3482_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501490
– volume: 31
  start-page: 1807131
  year: 2019
  ident: 3482_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807131
– volume: 18
  start-page: 384
  year: 2019
  ident: 3482_CR21
  publication-title: Nat. Energy
– volume: 28
  start-page: 1705838
  year: 2018
  ident: 3482_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705838
– volume: 7
  start-page: 15871
  year: 2019
  ident: 3482_CR32
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04240G
– volume: 39
  start-page: 616
  year: 2020
  ident: 3482_CR4
  publication-title: Rare Met.
  doi: 10.1007/s12598-020-01432-2
– volume: 11
  start-page: 669
  year: 2018
  ident: 3482_CR45
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00239H
– volume: 1
  start-page: 287
  year: 2016
  ident: 3482_CR29
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.07.009
SSID ssj0062148
Score 2.6021402
Snippet Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 352
SubjectTerms Anodes
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon
Chemistry and Materials Science
Condensed Matter Physics
Current density
Cycles
Dendritic structure
Electrochemical potential
Electrochemistry
Electrodes
Graphene
Hybrids
Life span
Lithium
Lithium batteries
Local current
Long range order
Materials Science
Metals
Nanotechnology
Nucleation
Research Article
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kXvQgPrFaZQ-elIVkk900xyKWIrUnC72FfWIgTUofiP_e2TRrVFTwmmzmMLOZmW935huEbrhO-yamltA0sCTWPCYSogyxsZApt0ox5bqRnyZ8NI0fZ2zW9HGvfLW7v5KsPXXb7EYBQRFXUuAIWQjg9F0G0N3VcU3pwLtfTsN6ZNa2dwyil7_K_EnE12DUZpjfLkXrWDM8RAdNkogHW6seoR1THqP9T9SBJ2gzztcvebVw5yEKT4iuFkZjJZayKrGsXosVBrQNdtN4nGNtfHEWPMWFeHMTOnFNVg2-Dtu8mGPIXrGvCMCFk76Z47mB5BzLmoQTMPUpmg4fnu9HpBmhQFTE0jUBfCfcbA0RKxkFOpbGSsfHLZJQJX1tIH4JLSNtdMyYSEzKZaASE3JumOSQepyhTlmV5hxhJW3fRKl1Y0YB5RjJGaARK6lU1qYq6aLA6zJTDb-4G3NRZC0zslN_BurPnPqzoItuPz5ZbMk1_lrc8wbKmv9slVHHNpPSJAi76M4brX39q7CLf62-RHvUdT3UJy891FkvN-YKcpG1vK733jvDmddy
  priority: 102
  providerName: Springer Nature
Title Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries
URI https://link.springer.com/article/10.1007/s12274-021-3482-0
https://www.proquest.com/docview/2594892701
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lj14UhbTbbJpTlKlD7QWEQv1FLIvLKRN7QPx3zuTJq0K9pLAJtnDzGbnsTPfR8il0EHduNwyHjiWuVq4TIKVYdaNZCCsUp7CbuSnnuj03YeBN8gSbrOsrDLfE9ONWicKc-Q3HHFFAu471dvJB0PWKDxdzSg0tkkRoctwVfuDVcAleDVlz1q2kYEhy08109Y5DvEYwwIFhHdhzm-7tHY2_5yPpmantU_2Mn-RNpYKPiBbZnxIdn-gCB6RRXc4fx8mE0yNKNpjOpkYTVU0lcmYyuQznlEIvEGFmnaHVJu8TgtGaRx9IVknTXGrYdujdhiPKDiyNC8OoDHOvhjRkQE_ncoUjxPC62PSbzVf7zssY1NgquYFcwahXoQ0G5GrZM3RrjRWIjR35FeVX9cGTFmkZU0b7Xpe5JtASEf5piqE8aQAL-SEFMbJ2JwSqqStm1pgkXEUAh4jhQeBiZVcKmsD5ZeIk8syVBnUODJexOEaJBnFH4L4QxR_6JTI1eqTyRJnY9PL5VxBYfbLzcL1AimR61xp68f_Tna2ebJzssOx4yHNupRJYT5dmAvwQ-ayki42uNZb7QopNtpvj0243zV7zy8w2ueNb6Ra4AY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VcgAOVfkSoS3MAS6gFc56vY4PCFWFkNI0p1bqzXi_1EhOHJpEVf8Uv5EZJ0sAid56dZw5zI5n9u3OvAfwRrui55UMQhZJEMppJQxVGRFUZQodrM0sTyOfjvTgXH27yC624GecheG2ypgT20TtGstn5B8k84oUMk-6n2Y_BKtG8e1qlNBYhcWJv7kmyDb_ePyZ1vetlP0vZ0cDsVYVEDbNioUgyFOx3ESlrEkTp4wPhimqq7xr857zlNIrZ1LnncqyKveFNonNfVdrnxlN1Zjs3oP7KqVKzpPp_a8x82vZbdW6VmNrVDjjLWo7qicJ_wluiGA6GZH8XQc3m9t_7mPbMtffhZ31_hQPVwH1GLb89Ak8-oO18Cksh-PF5biZ8VGMxZFwzcw7tNWVaaZomut6jgT0KWQcDsfofOwLo6dYVzcsDootTzalWQzjeoK0ccbYjIA1W19OcOIJF6Bp-T8Jzj-D8zvx83PYnjZT_wLQmtDzaRFY4ZQAljc6IyAUjDQ2hMLmHUiiL0u7pjZnhY263JAys_tLcn_J7i-TDrz7_ZfZitfjtpf34wKV6098Xm4CsgPv46Jtfv6vsZe3G3sNDwZnp8NyeDw62YOHkqct2hOffdheXC39Ae2BFuZVG3gI3-860n8BsU4ZkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJwQKWACG1hDvRStKqzsdfxASGgjfqRRhWiUm_G-yUiOXHaJKr61_h1zDheAkjtrVfHmcPseGbf7sx7AO-VzXoull7ILPIitioWmqqM8HGhM-WNSQxPI58N1dFFfHKZXK7BrzALw22VISfWidpWhs_I9yXzimQyjTr7vmmLOD_of5peCVaQ4pvWIKexDJFTd3tD8G328fiA1npXyv7h969HolEYEKabZHNB8Kdg6YkiNrob2Vg7r5muukg7Ju1ZR-m9sLprnY2TpEhdpnRkUtdRyiVaUWUmu49gPWVU1IL1L4fD82-hDijZqbW7lkNsVEbDnWo9uCcJDQpuj2ByGRH9WxVXW93_bmfrotffgGfNbhU_L8PrOay5ySY8_YvD8AUsBqP5z1E15YMZg0Nhq6mzaIprXU1QVzflDAn2UwBZHIzQutAlRk-xLG5ZKhRr1mxKuuhH5RhpG42hNQFLtr4Y49gRSkBds4ESuH8JFw_i6VfQmlQT9xrQaN9z3cyz3inBLadVQrDIa6mN95lJ2xAFX-amITpnvY0yX1E0s_tzcn_O7s-jNuz9-ct0yfJx38vbYYHy5oOf5avwbMOHsGirn-809uZ-Y-_gMUV5Pjgenm7BE8mjF_Xxzza05tcLt0Mborl-20Qewo-HDvbfYl4fIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+N-doped+carbon+bowls+induced+Li+deposition+in+layered+graphene+film+for+advanced+lithium+metal+batteries&rft.jtitle=Nano+research&rft.au=Feng%2C+Xiaoyu&rft.au=Wu%2C+Hong-Hui&rft.au=Gao%2C+Biao&rft.au=%C5%9Awi%C4%99tos%C5%82awski%2C+Micha%C5%82&rft.date=2022-01-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=1&rft.spage=352&rft.epage=360&rft_id=info:doi/10.1007%2Fs12274-021-3482-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_021_3482_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon