Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries
Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Cou...
Saved in:
Published in | Nano research Vol. 15; no. 1; pp. 352 - 360 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm
−2
. Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion. |
---|---|
AbstractList | Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm
−2
. Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion. Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm−2. Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion. |
Author | Wu, Hong-Hui He, Xin Świętosławski, Michał Gao, Biao Feng, Xiaoyu Zhang, Qiaobao |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Feng fullname: Feng, Xiaoyu organization: Department of Materials Science and Engineering, College of Materials, Xiamen University, The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology – sequence: 2 givenname: Hong-Hui surname: Wu fullname: Wu, Hong-Hui organization: School of Materials Science and Engineering, University of Science and Technology Beijing – sequence: 3 givenname: Biao surname: Gao fullname: Gao, Biao organization: The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology – sequence: 4 givenname: Michał surname: Świętosławski fullname: Świętosławski, Michał organization: Faculty of Chemistry, Jagiellonian University – sequence: 5 givenname: Xin surname: He fullname: He, Xin email: xinhe@scu.edu.cn organization: School of Chemical Engineering, Sichuan University – sequence: 6 givenname: Qiaobao surname: Zhang fullname: Zhang, Qiaobao email: zhangqiaobao@xmu.edu.cn organization: Department of Materials Science and Engineering, College of Materials, Xiamen University |
BookMark | eNp9kE9r3DAQxUVIIJs0HyA3Qc5OJfmP7GMJbVJY0kt7FiNpnNXilRxJbsm3j8w2FArJXDRo3u-N9C7IqQ8eCbnm7JYzJj8nLoRsKiZ4VTe9qNgJ2fBh6CtW6vSt56I5Jxcp7RnrBG_6DVm2Lu9cmHducoY-VjbMaKmBqIOnOvyZEnXeLqZcbh21OIfksisz5-kELxjL4CnCvEOPdHTTgY4hUrC_wa_MtLovB3rADBPVkDNGh-kTORthSnj197wkv759_Xn3UG1_3H-_-7KtTN0OuZKCQ896Do3RNbONxlHDAAiSG9lbZHUHVtcWbdO2IHHoNDMSeddhqzvR15fk5ug7x_C8YMpqH5boy0ol2qHpByEZLyp5VJkYUoo4KuMyrL_MEdykOFNrxuqYsSoZqzVjxQrJ_yPn6A4QXz5kxJFJReufMP570_vQK3f7knU |
CitedBy_id | crossref_primary_10_1002_ece2_38 crossref_primary_10_1016_j_cclet_2022_107947 crossref_primary_10_1007_s12598_022_02229_1 crossref_primary_10_1016_j_ensm_2022_07_017 crossref_primary_10_1016_j_jpowsour_2022_232474 crossref_primary_10_1016_j_nanoen_2022_107904 crossref_primary_10_1007_s12274_022_4981_3 crossref_primary_10_1088_2631_7990_aca40b crossref_primary_10_1002_batt_202200411 crossref_primary_10_1002_smll_202106718 crossref_primary_10_1016_j_partic_2023_03_008 crossref_primary_10_1007_s12274_022_4581_2 crossref_primary_10_1016_j_jelechem_2022_116847 crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1088_1361_6528_ac73a5 crossref_primary_10_1016_j_jechem_2022_01_026 crossref_primary_10_1002_smtd_202400831 crossref_primary_10_1007_s12274_022_5066_z crossref_primary_10_2139_ssrn_4137059 crossref_primary_10_1021_acsami_1c22604 crossref_primary_10_1021_acsami_2c13325 crossref_primary_10_1016_j_jpowsour_2021_230226 crossref_primary_10_1016_j_jechem_2024_09_063 crossref_primary_10_1016_j_jpcs_2024_111871 crossref_primary_10_1021_acsami_2c09791 crossref_primary_10_3390_nano13233007 crossref_primary_10_1002_chem_202302773 crossref_primary_10_1002_batt_202200549 crossref_primary_10_1021_acsami_3c16173 crossref_primary_10_1021_acs_energyfuels_2c02660 crossref_primary_10_1016_j_ceramint_2022_10_026 crossref_primary_10_1007_s11581_023_05031_w crossref_primary_10_1002_anie_202217476 crossref_primary_10_1021_acs_jpcc_2c05333 crossref_primary_10_1021_acsami_1c10913 crossref_primary_10_3390_batteries9010030 crossref_primary_10_3390_en16052271 crossref_primary_10_1016_j_est_2024_113837 crossref_primary_10_1016_S1872_5805_23_60743_7 crossref_primary_10_1007_s12274_024_6907_z crossref_primary_10_1007_s12274_022_4475_3 crossref_primary_10_1039_D1NJ05199G crossref_primary_10_1016_j_electacta_2024_145102 crossref_primary_10_1007_s12274_022_5018_7 crossref_primary_10_1016_j_compositesb_2022_110423 crossref_primary_10_1016_j_jpcs_2024_112078 crossref_primary_10_1021_acs_energyfuels_2c02242 crossref_primary_10_1016_j_jechem_2021_12_046 crossref_primary_10_1016_j_cclet_2023_108288 crossref_primary_10_1149_1945_7111_ac60ee crossref_primary_10_1149_1945_7111_ac93ba crossref_primary_10_1007_s12274_022_4889_0 crossref_primary_10_3389_fchem_2021_828119 crossref_primary_10_1021_acsami_1c21841 crossref_primary_10_1021_acsaem_2c02548 crossref_primary_10_1007_s12274_022_4275_9 crossref_primary_10_1002_aenm_202303165 crossref_primary_10_1002_eem2_12534 crossref_primary_10_1016_j_cej_2023_146793 crossref_primary_10_1016_j_carbon_2022_01_043 crossref_primary_10_1002_advs_202203178 crossref_primary_10_1016_j_cclet_2022_05_059 crossref_primary_10_1002_adfm_202212100 crossref_primary_10_1016_j_carbon_2022_07_048 crossref_primary_10_1016_j_mtnano_2022_100194 crossref_primary_10_1007_s12274_022_5090_z crossref_primary_10_1016_j_jelechem_2022_117063 crossref_primary_10_1002_ange_202217476 crossref_primary_10_1007_s12598_021_01827_9 crossref_primary_10_1039_D2DT01917E crossref_primary_10_1016_j_ensm_2024_103191 crossref_primary_10_1016_j_ensm_2022_09_006 crossref_primary_10_1016_j_ensm_2023_02_019 crossref_primary_10_1021_acsami_2c02836 crossref_primary_10_1016_j_ceramint_2022_10_229 crossref_primary_10_1007_s12598_023_02472_0 crossref_primary_10_1016_j_jallcom_2022_168542 crossref_primary_10_1007_s12274_022_5209_2 crossref_primary_10_1021_acsami_2c04734 crossref_primary_10_1039_D4CP04183F crossref_primary_10_1016_j_jcis_2022_09_127 crossref_primary_10_1016_j_jpowsour_2022_231768 crossref_primary_10_2139_ssrn_4112767 crossref_primary_10_1016_j_carbon_2024_119870 crossref_primary_10_20517_energymater_2023_93 crossref_primary_10_1021_acsaem_2c03259 crossref_primary_10_1021_acs_iecr_2c02032 crossref_primary_10_1016_j_cclet_2022_06_017 crossref_primary_10_1016_j_jechem_2022_10_023 crossref_primary_10_1016_j_jechem_2022_04_037 crossref_primary_10_1007_s12598_022_02066_2 crossref_primary_10_1016_j_jallcom_2023_169302 crossref_primary_10_1002_chem_202301774 crossref_primary_10_1002_smm2_1185 crossref_primary_10_1007_s12274_022_4242_5 crossref_primary_10_1016_j_cej_2022_138209 crossref_primary_10_20517_energymater_2023_83 crossref_primary_10_1039_D4CC06494A crossref_primary_10_1007_s11431_022_2117_9 crossref_primary_10_1016_j_ceramint_2022_05_301 crossref_primary_10_1016_j_apsusc_2022_154819 crossref_primary_10_1016_j_jallcom_2024_176087 |
Cites_doi | 10.1021/acsnano.8b07319 10.1021/acs.nanolett.6b01581 10.1016/j.mattod.2020.09.003 10.1039/C3EE40795K 10.1021/acsami.7b08198 10.1002/adma.201801328 10.1016/j.nanoen.2020.104889 10.1002/smll.201903520 10.1002/inf2.12000 10.1016/j.jpowsour.2019.227632 10.1021/acsnano.9b08575 10.1038/s41560-019-0464-5 10.1002/aenm.202000717 10.1016/j.ensm.2018.09.021 10.1007/s12598-020-01456-8 10.1016/j.joule.2017.11.004 10.1021/nn302906r 10.1021/acs.chemrev.8b00422 10.1021/acs.chemrev.7b00115 10.1021/acsami.9b08438 10.1021/jacs.6b13314 10.1002/aenm.201800266 10.1016/j.chempr.2018.06.017 10.1002/adma.201601409 10.1002/smm2.1015 10.1149/06132.0001ecst 10.1038/nnano.2014.152 10.1038/s41598-016-0028-x 10.1002/aenm.201702322 10.1016/j.ensm.2019.03.029 10.1021/ja312241y 10.1038/s41598-020-63935-3 10.1002/aenm.201600811 10.1002/advs.201500213 10.1002/adma.202004128 10.1002/anie.202000375 10.1016/j.nanoen.2019.104172 10.1016/j.mattod.2020.09.035 10.1103/PhysRevB.54.11169 10.1021/cr500003w 10.1039/C2EE02911A 10.1002/adfm.201700348 10.1002/adma.201501490 10.1002/adma.201807131 10.1002/adfm.201705838 10.1039/C9TA04240G 10.1007/s12598-020-01432-2 10.1039/C8EE00239H 10.1016/j.chempr.2016.07.009 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s12274-021-3482-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medicine (ProQuest) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database (NC LIVE) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 360 |
ExternalDocumentID | 10_1007_s12274_021_3482_0 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PUEGO |
ID | FETCH-LOGICAL-c359t-721a8081a4cb30d4befba9aea71c78de036adb3ded455a7e96b0c7e166e5b6283 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Sat Aug 23 14:54:06 EDT 2025 Tue Jul 01 01:46:59 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Fri Feb 21 02:47:56 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | bowl-like carbon/reduced graphene nanosheets hybrids lithium metal battery Li metal host dendrite inhibition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-721a8081a4cb30d4befba9aea71c78de036adb3ded455a7e96b0c7e166e5b6283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://ruj.uj.edu.pl/xmlui/handle/item/283834 |
PQID | 2594892701 |
PQPubID | 326270 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2594892701 crossref_citationtrail_10_1007_s12274_021_3482_0 crossref_primary_10_1007_s12274_021_3482_0 springer_journals_10_1007_s12274_021_3482_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2022 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Xu, Zhang, Cheng, Peng, Zhao, Yan, Huang (CR13) 2018; 28 Rabchinskii, Ryzhkov, Kirilenko, Ulin, Baidakova, Shnitov, Pavlov, Chumakov, Stolyarova, Besedina (CR43) 2020; 10 Zhang, Lee, Park, Li, Kang (CR8) 2016; 6 Shi, Li, Zhang, Shen, Cheng, Xu, Huang, Chen, Liu, Zhang (CR35) 2019; 31 Lu, Ge, Yang, Chen, Yao, Zhou, Yu (CR38) 2016; 16 Cheng, Zhang, Zhang, Li, Tang, Delmas, Zhu, Winter, Wang, Huang (CR46) 2020; 42 Wang, Zhang, Yang, Huang, Liu, Luo (CR2) 2018; 4 Yun, He, Lv, Zhao, Li, Kang, Yang (CR37) 2016; 28 Cheng, Zhang, Zhao, Zhang (CR7) 2017; 117 Liu, Wang, Li, Wu, Chiou, Huang, Luo (CR48) 2018; 2 Liu, Holoubek, Zhou, Chen, Chang, Wu, Yu, Yan, Xing, Li (CR19) 2020; 42 Gao, Yan, Gray, He, Wang, Chen, Huang, Li, Wang, Kim (CR21) 2019; 18 Pu, Zhang, Qu, Hu, Li, Gao, Pan, Liu (CR4) 2020; 39 Ding, Xu, Graff, Zhang, Sushko, Chen, Shao, Engelhard, Nie, Xiao (CR17) 2013; 135 Chen, Zhao, Yan, Zhang (CR10) 2021; 33 Zhang, Liu, Liang, Chen, Qi, Harris, Lu, Chen (CR40) 2014; 61 Zhang, Shen, Cheng, Zhang (CR34) 2019; 23 Sharifi, Hu, Jia, Wagberg (CR42) 2012; 6 Chen, Yao, Yan, Zhang, Cheng, Zhang (CR11) 2020; 59 Liang, Zhao, Yuan, Chen, Zhang, Huang, Yu, Liu, Titirici, Chueh (CR1) 2019; 1 Zheng, Wu, Liu, Zhang, He, Yu, Petrova, Feng, Kostecki, Liu (CR33) 2020; 14 Cao, Ren, Zou, Engelhard, Huang, Wang, Matthews, Lee, Niu, Arey (CR16) 2019; 4 Zhang, Li, Peng, Liu, Zhang, Liu, Li (CR44) 2017; 7 Zhang, Chen, Luo, Zhao, Luo, Han, Wang, Wang, Yang, Zhu, Liu (CR45) 2018; 11 Zhao, Hao, Su, Ma, Hu, Liu, Kang, He (CR32) 2019; 7 Chi, Liu, Song, Fan, Zhang (CR14) 2017; 27 Huang, Feng, Zhang, Zhang, Zhang, Gao, Chu, Huo (CR27) 2019; 11 Zhou, Yu, Liu, Liu (CR23) 2020; 450 Li, Zhang, Yuan, Liu, Yang, Lin, Lu (CR47) 2020; 10 Zheng, Lee, Liang, Lee, Yan, Yao, Wang, Li, Chu, Cui (CR30) 2014; 9 Liu, Pei, Lee, Kong, Liu, Lin, Liu, Liu, Hsu, Bao (CR28) 2017; 139 Wang, Liu, Li, Xia, Holoubek, Deng, Yu, Tian, Shan, Ong (CR18) 2020; 75 Li, Ji, Liang (CR25) 2020; 39 Shi, Li, Lu, Wu (CR26) 2021; 37 He, Yang, Cristian, Wang, Hou, Yan, Li, Zhang, Paillard, Swietoslawski (CR50) 2020; 67 Xu, Wang, Ding, Chen, Nasybulin, Zhang, Zhang (CR6) 2014; 7 Cheng, Zhang, Zhao, Wei, Zhang, Zhang (CR12) 2016; 3 Winter, Barnett, Xu (CR5) 2018; 118 Liu, Zhou, Lee, Xing, Gonzalez, Liu (CR20) 2017; 9 Liu, Xia, Zhong, Deng, Yao, Zhang, Cheng, Wang, Zhang, Tu (CR31) 2018; 8 Wu, Li, Liu, Yang, Ma, Dou (CR3) 2020; 2 Sun, Zheng, Seh, Liu, Wang, Sun, Lee, Cui (CR29) 2016; 1 Nan, Li, Shi, Yang, Li (CR41) 2019; 15 Liu, Yue, Xing, Yan, Huang, Petrova, Zhou, Liu (CR24) 2019; 16 Kresse, Furthmüller (CR39) 1996; 54 Xu (CR15) 2014; 114 Zhang, Liu, Li, Zhang, Liu, Luo (CR49) 2018; 30 Liu, Xu, Yuan, Chang, Xu, Yin, Li, Zhong, Jiang, Yan (CR22) 2015; 27 Zhamu, Chen, Liu, Neff, Fang, Yu, Xiong, Wang, Wang, Jang (CR9) 2012; 5 Zhao, Lei, He, Yuan, Yun, Ni, Lv, Li, Yang, Kang (CR36) 2018; 8 Zhao, Wu, Yang, Zhang, Zhong, Zheng, Chen, Wang, He, Wang (CR51) 2018; 12 W Xu (3482_CR6) 2014; 7 M Wu (3482_CR3) 2020; 2 Z M Zheng (3482_CR33) 2020; 14 X R Chen (3482_CR10) 2021; 33 X Huang (3482_CR27) 2019; 11 R Xu (3482_CR13) 2018; 28 J Zhang (3482_CR44) 2017; 7 K Xu (3482_CR15) 2014; 114 Q Zhang (3482_CR45) 2018; 11 H D Liu (3482_CR24) 2019; 16 S Liu (3482_CR48) 2018; 2 H P Li (3482_CR25) 2020; 39 P Shi (3482_CR35) 2019; 31 H Zhao (3482_CR36) 2018; 8 D D Wang (3482_CR18) 2020; 75 Y Li (3482_CR47) 2020; 10 H D Shi (3482_CR26) 2021; 37 H D Liu (3482_CR19) 2020; 42 Q C Liu (3482_CR22) 2015; 27 Y Nan (3482_CR41) 2019; 15 T Sharifi (3482_CR42) 2012; 6 Q Zhao (3482_CR32) 2019; 7 Y M Sun (3482_CR29) 2016; 1 Y Liang (3482_CR1) 2019; 1 X B Cheng (3482_CR7) 2017; 117 Y Gao (3482_CR21) 2019; 18 K C Pu (3482_CR4) 2020; 39 H Y Zhou (3482_CR23) 2020; 450 M K Rabchinskii (3482_CR43) 2020; 10 C Zhang (3482_CR49) 2018; 30 R Zhang (3482_CR34) 2019; 23 X He (3482_CR50) 2020; 67 K Liu (3482_CR28) 2017; 139 S S Chi (3482_CR14) 2017; 27 Y Cheng (3482_CR46) 2020; 42 H D Liu (3482_CR20) 2017; 9 A X Wang (3482_CR2) 2018; 4 X R Chen (3482_CR11) 2020; 59 Q B Yun (3482_CR37) 2016; 28 M Winter (3482_CR5) 2018; 118 K Zhang (3482_CR8) 2016; 6 F Ding (3482_CR17) 2013; 135 L L Lu (3482_CR38) 2016; 16 X Cao (3482_CR16) 2019; 4 X B Cheng (3482_CR12) 2016; 3 G Kresse (3482_CR39) 1996; 54 S F Liu (3482_CR31) 2018; 8 H Zhang (3482_CR40) 2014; 61 L Zhao (3482_CR51) 2018; 12 A Zhamu (3482_CR9) 2012; 5 G Y Zheng (3482_CR30) 2014; 9 |
References_xml | – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: CR44 article-title: 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage publication-title: Sci. Rep. – volume: 2 start-page: 184 year: 2018 end-page: 193 ident: CR48 article-title: Crumpled graphene balls stabilized dendrite-free lithium metal anodes publication-title: Joule – volume: 7 start-page: 15871 year: 2019 end-page: 15879 ident: CR32 article-title: Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries publication-title: J. Mater. Chem. A – volume: 11 start-page: 669 year: 2018 end-page: 681 ident: CR45 article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries publication-title: Energy Environ. Sci. – volume: 39 start-page: 616 year: 2020 end-page: 635 ident: CR4 article-title: Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries publication-title: Rare Met. – volume: 75 start-page: 104889 year: 2020 ident: CR18 article-title: A long-lasting dual-function electrolyte additive for stable lithium metal batteries publication-title: Nano Energy – volume: 9 start-page: 618 year: 2014 end-page: 623 ident: CR30 article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes publication-title: Nat. Nanotechnol. – volume: 139 start-page: 4815 year: 2017 end-page: 4820 ident: CR28 article-title: Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 ident: CR7 article-title: Toward safe lithium metal anode in rechargeable batteries: A review publication-title: Chem. Rev. – volume: 3 start-page: 1500213 year: 2016 ident: CR12 article-title: A review of solid electrolyte interphases on lithium metal anode publication-title: Adv. Sci. – volume: 450 start-page: 227632 year: 2020 ident: CR23 article-title: Protective coatings for lithium metal anodes: Recent progress and future perspectives publication-title: J. Power Sources – volume: 23 start-page: 556 year: 2019 end-page: 565 ident: CR34 article-title: The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation? publication-title: Energy Storage Mater. – volume: 4 start-page: 2192 year: 2018 end-page: 2200 ident: CR2 article-title: Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes publication-title: Chem – volume: 16 start-page: 4431 year: 2016 end-page: 4437 ident: CR38 article-title: Free-standing copper nanowire network current collector for improving lithium anode performance publication-title: Nano Lett. – volume: 6 start-page: 8904 year: 2012 end-page: 8912 ident: CR42 article-title: Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes publication-title: ACS Nano – volume: 30 start-page: 1801328 year: 2018 ident: CR49 article-title: Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes publication-title: Adv. Mater. – volume: 2 start-page: 5 year: 2020 end-page: 11 ident: CR3 article-title: Perspective on solid-electrolyte interphase regulation for lithium metal batteries publication-title: SmartMat. – volume: 15 start-page: 1903520 year: 2019 ident: CR41 article-title: Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode publication-title: Small – volume: 39 start-page: 861 year: 2020 end-page: 862 ident: CR25 article-title: Dual-functional ion redistributor for dendrite-free lithium metal anodes publication-title: Rare Met. – volume: 135 start-page: 4450 year: 2013 end-page: 4456 ident: CR17 article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 30635 year: 2017 end-page: 30642 ident: CR20 article-title: Suppressing lithium dendrite growth with a single-component coating publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 11169 year: 1996 ident: CR39 article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 33 start-page: 2004128 year: 2021 ident: CR10 article-title: Review on Li deposition in working batteries: From nucleation to early growth publication-title: Adv. Mater. – volume: 114 start-page: 11503 year: 2014 end-page: 11618 ident: CR15 article-title: Electrolytes and interphases in Li-ion batteries and beyond publication-title: Chem. Rev. – volume: 1 start-page: 6 year: 2019 end-page: 32 ident: CR1 article-title: A review of rechargeable batteries for portable electronic devices publication-title: InfoMat. – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: CR43 article-title: From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties publication-title: Sci. Rep. – volume: 61 start-page: 1 year: 2014 ident: CR40 article-title: Understanding and predicting the lithium dendrite formation in Li-ion batteries: Phase field model publication-title: ECS Transactions – volume: 118 start-page: 11433 year: 2018 end-page: 11456 ident: CR5 article-title: Before Li ion batteries publication-title: Chem. Rev. – volume: 7 start-page: 513 year: 2014 end-page: 537 ident: CR6 article-title: Lithium metal anodes for rechargeable batteries publication-title: Energy Environ. Sci. – volume: 37 start-page: 2008033 year: 2021 ident: CR26 article-title: Single-atom cobalt coordinated to oxygen sites on graphene for stable lithium metal anodes publication-title: Acta Phys.-Chim. Sin. – volume: 16 start-page: 505 year: 2019 end-page: 511 ident: CR24 article-title: A scalable 3D lithium metal anode publication-title: Energy Storage Mater. – volume: 12 start-page: 12597 year: 2018 end-page: 12611 ident: CR51 article-title: Mechanistic origin of the high performance of yolk@shell Bi S @N-doped carbon nanowire electrodes publication-title: ACS Nano – volume: 8 start-page: 1702322 year: 2018 ident: CR31 article-title: 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode publication-title: Adv. Energy Mater. – volume: 11 start-page: 31824 year: 2019 end-page: 31831 ident: CR27 article-title: Lithiated NiCo O nanorods anchored on 3D nickel foam enable homogeneous Li plating/stripping for high-power dendrite-free lithium metal anode publication-title: ACS Appl. Mater. Interfaces – volume: 67 start-page: 104172 year: 2020 ident: CR50 article-title: Uniform lithium electrodeposition for stable lithium-metal batteries publication-title: Nano Energy – volume: 59 start-page: 7743 year: 2020 end-page: 7747 ident: CR11 article-title: A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 1600811 year: 2016 ident: CR8 article-title: Recent developments of the lithium metal anode for rechargeable non-aqueous batteries publication-title: Adv. Energy Mater. – volume: 42 start-page: 17 year: 2020 end-page: 28 ident: CR19 article-title: Ultrahigh coulombic efficiency electrolyte enables Li∥span batteries with superior cycling performance publication-title: Mater. Today – volume: 14 start-page: 9545 year: 2020 end-page: 9561 ident: CR33 article-title: Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets publication-title: ACS Nano – volume: 27 start-page: 1700348 year: 2017 ident: CR14 article-title: Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode publication-title: Adv. Funct. Mater. – volume: 28 start-page: 6932 year: 2016 end-page: 6939 ident: CR37 article-title: Chemical dealloying derived 3D porous current collector for Li metal anodes publication-title: Adv. Mater. – volume: 4 start-page: 796 year: 2019 end-page: 805 ident: CR16 article-title: Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization publication-title: Nat. Energy – volume: 5 start-page: 5701 year: 2012 end-page: 5707 ident: CR9 article-title: Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells publication-title: Energy Environ. Sci. – volume: 8 start-page: 1800266 year: 2018 ident: CR36 article-title: Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector publication-title: Adv. Energy Mater. – volume: 18 start-page: 384 year: 2019 end-page: 389 ident: CR21 article-title: Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions publication-title: Nat. Energy – volume: 31 start-page: 1807131 year: 2019 ident: CR35 article-title: Lithiophilic LiC layers on carbon hosts enabling stable Li metal anode in working batteries publication-title: Adv. Mater. – volume: 10 start-page: 2000717 year: 2020 ident: CR47 article-title: Surface amorphization of vanadium dioxide (B) for K-ion battery publication-title: Adv. Energy Mater. – volume: 28 start-page: 1705838 year: 2018 ident: CR13 article-title: Artificial soft-rigid protective layer for dendrite-free lithium metal anode publication-title: Adv. Funct. Mater. – volume: 1 start-page: 287 year: 2016 end-page: 297 ident: CR29 article-title: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries publication-title: Chem – volume: 27 start-page: 5241 year: 2015 end-page: 5247 ident: CR22 article-title: Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries publication-title: Adv. Mater. – volume: 42 start-page: 137 year: 2020 end-page: 161 ident: CR46 article-title: Understanding all solid-state lithium batteries through in situ transmission electron microscopy publication-title: Mater. Today – volume: 12 start-page: 12597 year: 2018 ident: 3482_CR51 publication-title: ACS Nano doi: 10.1021/acsnano.8b07319 – volume: 16 start-page: 4431 year: 2016 ident: 3482_CR38 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01581 – volume: 42 start-page: 137 year: 2020 ident: 3482_CR46 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.09.003 – volume: 7 start-page: 513 year: 2014 ident: 3482_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – volume: 9 start-page: 30635 year: 2017 ident: 3482_CR20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08198 – volume: 30 start-page: 1801328 year: 2018 ident: 3482_CR49 publication-title: Adv. Mater. doi: 10.1002/adma.201801328 – volume: 75 start-page: 104889 year: 2020 ident: 3482_CR18 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104889 – volume: 15 start-page: 1903520 year: 2019 ident: 3482_CR41 publication-title: Small doi: 10.1002/smll.201903520 – volume: 1 start-page: 6 year: 2019 ident: 3482_CR1 publication-title: InfoMat. doi: 10.1002/inf2.12000 – volume: 37 start-page: 2008033 year: 2021 ident: 3482_CR26 publication-title: Acta Phys.-Chim. Sin. – volume: 450 start-page: 227632 year: 2020 ident: 3482_CR23 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227632 – volume: 14 start-page: 9545 year: 2020 ident: 3482_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.9b08575 – volume: 4 start-page: 796 year: 2019 ident: 3482_CR16 publication-title: Nat. Energy doi: 10.1038/s41560-019-0464-5 – volume: 10 start-page: 2000717 year: 2020 ident: 3482_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000717 – volume: 16 start-page: 505 year: 2019 ident: 3482_CR24 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.021 – volume: 39 start-page: 861 year: 2020 ident: 3482_CR25 publication-title: Rare Met. doi: 10.1007/s12598-020-01456-8 – volume: 2 start-page: 184 year: 2018 ident: 3482_CR48 publication-title: Joule doi: 10.1016/j.joule.2017.11.004 – volume: 6 start-page: 8904 year: 2012 ident: 3482_CR42 publication-title: ACS Nano doi: 10.1021/nn302906r – volume: 118 start-page: 11433 year: 2018 ident: 3482_CR5 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00422 – volume: 117 start-page: 10403 year: 2017 ident: 3482_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 11 start-page: 31824 year: 2019 ident: 3482_CR27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08438 – volume: 139 start-page: 4815 year: 2017 ident: 3482_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13314 – volume: 8 start-page: 1800266 year: 2018 ident: 3482_CR36 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800266 – volume: 4 start-page: 2192 year: 2018 ident: 3482_CR2 publication-title: Chem doi: 10.1016/j.chempr.2018.06.017 – volume: 28 start-page: 6932 year: 2016 ident: 3482_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201601409 – volume: 2 start-page: 5 year: 2020 ident: 3482_CR3 publication-title: SmartMat. doi: 10.1002/smm2.1015 – volume: 61 start-page: 1 year: 2014 ident: 3482_CR40 publication-title: ECS Transactions doi: 10.1149/06132.0001ecst – volume: 9 start-page: 618 year: 2014 ident: 3482_CR30 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.152 – volume: 7 start-page: 1 year: 2017 ident: 3482_CR44 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0028-x – volume: 8 start-page: 1702322 year: 2018 ident: 3482_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702322 – volume: 23 start-page: 556 year: 2019 ident: 3482_CR34 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.03.029 – volume: 135 start-page: 4450 year: 2013 ident: 3482_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312241y – volume: 10 start-page: 1 year: 2020 ident: 3482_CR43 publication-title: Sci. Rep. doi: 10.1038/s41598-020-63935-3 – volume: 6 start-page: 1600811 year: 2016 ident: 3482_CR8 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600811 – volume: 3 start-page: 1500213 year: 2016 ident: 3482_CR12 publication-title: Adv. Sci. doi: 10.1002/advs.201500213 – volume: 33 start-page: 2004128 year: 2021 ident: 3482_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202004128 – volume: 59 start-page: 7743 year: 2020 ident: 3482_CR11 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000375 – volume: 67 start-page: 104172 year: 2020 ident: 3482_CR50 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104172 – volume: 42 start-page: 17 year: 2020 ident: 3482_CR19 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.09.035 – volume: 54 start-page: 11169 year: 1996 ident: 3482_CR39 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 114 start-page: 11503 year: 2014 ident: 3482_CR15 publication-title: Chem. Rev. doi: 10.1021/cr500003w – volume: 5 start-page: 5701 year: 2012 ident: 3482_CR9 publication-title: Energy Environ. Sci. doi: 10.1039/C2EE02911A – volume: 27 start-page: 1700348 year: 2017 ident: 3482_CR14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700348 – volume: 27 start-page: 5241 year: 2015 ident: 3482_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201501490 – volume: 31 start-page: 1807131 year: 2019 ident: 3482_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201807131 – volume: 18 start-page: 384 year: 2019 ident: 3482_CR21 publication-title: Nat. Energy – volume: 28 start-page: 1705838 year: 2018 ident: 3482_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705838 – volume: 7 start-page: 15871 year: 2019 ident: 3482_CR32 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04240G – volume: 39 start-page: 616 year: 2020 ident: 3482_CR4 publication-title: Rare Met. doi: 10.1007/s12598-020-01432-2 – volume: 11 start-page: 669 year: 2018 ident: 3482_CR45 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00239H – volume: 1 start-page: 287 year: 2016 ident: 3482_CR29 publication-title: Chem doi: 10.1016/j.chempr.2016.07.009 |
SSID | ssj0062148 |
Score | 2.6021402 |
Snippet | Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 352 |
SubjectTerms | Anodes Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon Chemistry and Materials Science Condensed Matter Physics Current density Cycles Dendritic structure Electrochemical potential Electrochemistry Electrodes Graphene Hybrids Life span Lithium Lithium batteries Local current Long range order Materials Science Metals Nanotechnology Nucleation Research Article |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kXvQgPrFaZQ-elIVkk900xyKWIrUnC72FfWIgTUofiP_e2TRrVFTwmmzmMLOZmW935huEbrhO-yamltA0sCTWPCYSogyxsZApt0ox5bqRnyZ8NI0fZ2zW9HGvfLW7v5KsPXXb7EYBQRFXUuAIWQjg9F0G0N3VcU3pwLtfTsN6ZNa2dwyil7_K_EnE12DUZpjfLkXrWDM8RAdNkogHW6seoR1THqP9T9SBJ2gzztcvebVw5yEKT4iuFkZjJZayKrGsXosVBrQNdtN4nGNtfHEWPMWFeHMTOnFNVg2-Dtu8mGPIXrGvCMCFk76Z47mB5BzLmoQTMPUpmg4fnu9HpBmhQFTE0jUBfCfcbA0RKxkFOpbGSsfHLZJQJX1tIH4JLSNtdMyYSEzKZaASE3JumOSQepyhTlmV5hxhJW3fRKl1Y0YB5RjJGaARK6lU1qYq6aLA6zJTDb-4G3NRZC0zslN_BurPnPqzoItuPz5ZbMk1_lrc8wbKmv9slVHHNpPSJAi76M4brX39q7CLf62-RHvUdT3UJy891FkvN-YKcpG1vK733jvDmddy priority: 102 providerName: Springer Nature |
Title | Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries |
URI | https://link.springer.com/article/10.1007/s12274-021-3482-0 https://www.proquest.com/docview/2594892701 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lj14UhbTbbJpTlKlD7QWEQv1FLIvLKRN7QPx3zuTJq0K9pLAJtnDzGbnsTPfR8il0EHduNwyHjiWuVq4TIKVYdaNZCCsUp7CbuSnnuj03YeBN8gSbrOsrDLfE9ONWicKc-Q3HHFFAu471dvJB0PWKDxdzSg0tkkRoctwVfuDVcAleDVlz1q2kYEhy08109Y5DvEYwwIFhHdhzm-7tHY2_5yPpmantU_2Mn-RNpYKPiBbZnxIdn-gCB6RRXc4fx8mE0yNKNpjOpkYTVU0lcmYyuQznlEIvEGFmnaHVJu8TgtGaRx9IVknTXGrYdujdhiPKDiyNC8OoDHOvhjRkQE_ncoUjxPC62PSbzVf7zssY1NgquYFcwahXoQ0G5GrZM3RrjRWIjR35FeVX9cGTFmkZU0b7Xpe5JtASEf5piqE8aQAL-SEFMbJ2JwSqqStm1pgkXEUAh4jhQeBiZVcKmsD5ZeIk8syVBnUODJexOEaJBnFH4L4QxR_6JTI1eqTyRJnY9PL5VxBYfbLzcL1AimR61xp68f_Tna2ebJzssOx4yHNupRJYT5dmAvwQ-ayki42uNZb7QopNtpvj0243zV7zy8w2ueNb6Ra4AY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VcgAOVfkSoS3MAS6gFc56vY4PCFWFkNI0p1bqzXi_1EhOHJpEVf8Uv5EZJ0sAid56dZw5zI5n9u3OvAfwRrui55UMQhZJEMppJQxVGRFUZQodrM0sTyOfjvTgXH27yC624GecheG2ypgT20TtGstn5B8k84oUMk-6n2Y_BKtG8e1qlNBYhcWJv7kmyDb_ePyZ1vetlP0vZ0cDsVYVEDbNioUgyFOx3ESlrEkTp4wPhimqq7xr857zlNIrZ1LnncqyKveFNonNfVdrnxlN1Zjs3oP7KqVKzpPp_a8x82vZbdW6VmNrVDjjLWo7qicJ_wluiGA6GZH8XQc3m9t_7mPbMtffhZ31_hQPVwH1GLb89Ak8-oO18Cksh-PF5biZ8VGMxZFwzcw7tNWVaaZomut6jgT0KWQcDsfofOwLo6dYVzcsDootTzalWQzjeoK0ccbYjIA1W19OcOIJF6Bp-T8Jzj-D8zvx83PYnjZT_wLQmtDzaRFY4ZQAljc6IyAUjDQ2hMLmHUiiL0u7pjZnhY263JAys_tLcn_J7i-TDrz7_ZfZitfjtpf34wKV6098Xm4CsgPv46Jtfv6vsZe3G3sNDwZnp8NyeDw62YOHkqct2hOffdheXC39Ae2BFuZVG3gI3-860n8BsU4ZkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJwQKWACG1hDvRStKqzsdfxASGgjfqRRhWiUm_G-yUiOXHaJKr61_h1zDheAkjtrVfHmcPseGbf7sx7AO-VzXoull7ILPIitioWmqqM8HGhM-WNSQxPI58N1dFFfHKZXK7BrzALw22VISfWidpWhs_I9yXzimQyjTr7vmmLOD_of5peCVaQ4pvWIKexDJFTd3tD8G328fiA1npXyv7h969HolEYEKabZHNB8Kdg6YkiNrob2Vg7r5muukg7Ju1ZR-m9sLprnY2TpEhdpnRkUtdRyiVaUWUmu49gPWVU1IL1L4fD82-hDijZqbW7lkNsVEbDnWo9uCcJDQpuj2ByGRH9WxVXW93_bmfrotffgGfNbhU_L8PrOay5ySY8_YvD8AUsBqP5z1E15YMZg0Nhq6mzaIprXU1QVzflDAn2UwBZHIzQutAlRk-xLG5ZKhRr1mxKuuhH5RhpG42hNQFLtr4Y49gRSkBds4ESuH8JFw_i6VfQmlQT9xrQaN9z3cyz3inBLadVQrDIa6mN95lJ2xAFX-amITpnvY0yX1E0s_tzcn_O7s-jNuz9-ct0yfJx38vbYYHy5oOf5avwbMOHsGirn-809uZ-Y-_gMUV5Pjgenm7BE8mjF_Xxzza05tcLt0Mborl-20Qewo-HDvbfYl4fIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+N-doped+carbon+bowls+induced+Li+deposition+in+layered+graphene+film+for+advanced+lithium+metal+batteries&rft.jtitle=Nano+research&rft.au=Feng%2C+Xiaoyu&rft.au=Wu%2C+Hong-Hui&rft.au=Gao%2C+Biao&rft.au=%C5%9Awi%C4%99tos%C5%82awski%2C+Micha%C5%82&rft.date=2022-01-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=1&rft.spage=352&rft.epage=360&rft_id=info:doi/10.1007%2Fs12274-021-3482-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_021_3482_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |