Independent component analysis for a low-channel SSVEP-BCI

Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Ther...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 22; no. 1; pp. 47 - 62
Main Authors Rejer, Izabela, Cieszyński, Łukasz
Format Journal Article
LanguageEnglish
Published London Springer London 05.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-018-0758-4

Cover

Abstract Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Therefore, the current trend in BCI design is to use the smallest number of channels possible. The problem is, however, that usually when we decrease the number of channels, the interface accuracy also drops significantly. In the paper, we examined whether it is possible to maintain the high accuracy of a BCI based on steady-state visual evoked potentials (SSVEP-BCI) in a low-channel setup using a preprocessing procedure successfully used in a multichannel setting: independent component analysis (ICA). The influence of ICA on the BCI performance was measured in an off-line (24 subjects) mode and online (eight subjects) mode. In the off-line mode, we compared the number of correctly recognized different stimulation frequencies, and in the online mode, we compared the classification accuracy. In both experiments, we noted the predominance of signals that underwent ICA preprocessing. In the off-line mode, we detected 50% more stimulation frequencies after ICA preprocessing than before (in the case of four EEG channels), and in the online mode, we noted a classification accuracy increase of 8%. The most important results, however, were the results obtained for a very low luminance (350 lx), where we noted 71% gain in the off-line mode and 11% gain in the online mode.
AbstractList Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Therefore, the current trend in BCI design is to use the smallest number of channels possible. The problem is, however, that usually when we decrease the number of channels, the interface accuracy also drops significantly. In the paper, we examined whether it is possible to maintain the high accuracy of a BCI based on steady-state visual evoked potentials (SSVEP-BCI) in a low-channel setup using a preprocessing procedure successfully used in a multichannel setting: independent component analysis (ICA). The influence of ICA on the BCI performance was measured in an off-line (24 subjects) mode and online (eight subjects) mode. In the off-line mode, we compared the number of correctly recognized different stimulation frequencies, and in the online mode, we compared the classification accuracy. In both experiments, we noted the predominance of signals that underwent ICA preprocessing. In the off-line mode, we detected 50% more stimulation frequencies after ICA preprocessing than before (in the case of four EEG channels), and in the online mode, we noted a classification accuracy increase of 8%. The most important results, however, were the results obtained for a very low luminance (350 lx), where we noted 71% gain in the off-line mode and 11% gain in the online mode.
Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Therefore, the current trend in BCI design is to use the smallest number of channels possible. The problem is, however, that usually when we decrease the number of channels, the interface accuracy also drops significantly. In the paper, we examined whether it is possible to maintain the high accuracy of a BCI based on steady-state visual evoked potentials (SSVEP-BCI) in a low-channel setup using a preprocessing procedure successfully used in a multichannel setting: independent component analysis (ICA). The influence of ICA on the BCI performance was measured in an off-line (24 subjects) mode and online (eight subjects) mode. In the off-line mode, we compared the number of correctly recognized different stimulation frequencies, and in the online mode, we compared the classification accuracy. In both experiments, we noted the predominance of signals that underwent ICA preprocessing. In the off-line mode, we detected 50% more stimulation frequencies after ICA preprocessing than before (in the case of four EEG channels), and in the online mode, we noted a classification accuracy increase of 8%. The most important results, however, were the results obtained for a very low luminance (350 lx), where we noted 71% gain in the off-line mode and 11% gain in the online mode.
Author Rejer, Izabela
Cieszyński, Łukasz
Author_xml – sequence: 1
  givenname: Izabela
  surname: Rejer
  fullname: Rejer, Izabela
  organization: Faculty of Computer Science and Information Technology, West Pomeranian University of Technology Szczecin
– sequence: 2
  givenname: Łukasz
  orcidid: 0000-0002-5397-8681
  surname: Cieszyński
  fullname: Cieszyński, Łukasz
  email: lcieszynski@wi.zut.edu.pl
  organization: Faculty of Computer Science and Information Technology, West Pomeranian University of Technology Szczecin
BookMark eNp9kE9LAzEUxINUsK1-AG8LnqN5-dNkvWmpWigoVMVbyO5mdcs2qckW6bc3ZUVB0Mu8d5jfMMwIDZx3FqFTIOdAiLyISTnHBBQmUijMD9AQOGNYCvEy-P45HKFRjCtCGGNUDdHl3FV2Y5O4Liv9epNi02ecaXexiVntQ2ay1n_g8s04Z9tsuXyePeDr6fwYHdamjfbk647R083scXqHF_e38-nVApdM5B2e1FSWBCQrVV4UAGCVkhUIqWprQSol8pzzfMJpBXlOrRVFJUpJDRMTQwtgY3TW526Cf9_a2OmV34ZUMGoKSgJwQUVyyd5VBh9jsLUum850jXddME2rgej9ULofSqeh9H4ozRMJv8hNaNYm7P5laM_E5HWvNvx0-hv6BP0IefI
CitedBy_id crossref_primary_10_3389_fnbot_2022_873239
crossref_primary_10_1371_journal_pone_0218177
crossref_primary_10_1080_2326263X_2022_2050513
crossref_primary_10_1016_j_bspc_2021_103162
crossref_primary_10_1007_s10044_019_00860_w
crossref_primary_10_1016_j_compbiomed_2019_103526
crossref_primary_10_1109_JSEN_2020_3017491
crossref_primary_10_3233_JIFS_201280
crossref_primary_10_1016_j_bspc_2020_102022
crossref_primary_10_1109_ACCESS_2021_3097797
crossref_primary_10_1016_j_ohx_2024_e00567
crossref_primary_10_3390_electronics13142767
crossref_primary_10_3390_mi14050976
Cites_doi 10.1523/JNEUROSCI.23-37-11621.2003
10.1109/TNSRE.2006.875576
10.1109/7333.948456
10.1088/1741-2560/7/6/066007
10.5405/jmbe.1522
10.1109/TBME.2006.889160
10.1088/1741-2560/12/3/031001
10.1007/s002210100682
10.1016/S1388-2457(02)00057-3
10.1109/ICICIC.2006.543
10.1109/TNSRE.2011.2121919
10.1016/j.neucom.2016.10.024
10.1109/TNSRE.2010.2076364
10.1097/00004691-199007000-00010
10.1016/j.neucom.2016.01.007
10.1073/pnas.1508080112
10.1111/1469-8986.3720163
10.1016/j.pneurobio.2009.11.005
10.1162/pres.19.1.35
10.1109/MCI.2009.934562
10.3389/fncir.2013.00027
10.1109/TBME.2002.803536
10.20982/tqmp.06.1.p031
10.1093/acprof:oso/9780195050387.001.0001
10.1109/TNN.2006.880980
10.1109/TBME.2014.2321007
10.1109/TNSRE.2003.814449
10.1109/TSP.2006.870561
10.9790/1676-0241116
10.1109/TCSI.2005.857555
10.1016/j.nlm.2008.07.011
10.1088/1741-2560/6/4/046002
10.1371/journal.pone.0030135
10.1109/MEMB.2008.923958
10.1016/0013-4694(66)90088-5
10.1109/JAS.2017.7510370
10.1109/MLSP.2011.6064563
10.1109/icsae.2016.7810188
10.1109/ner.2013.6695870
10.1007/978-3-319-48429-7_12
10.1109/AFRCON.2013.6757776
10.1109/ICCCAS.2006.285083
10.1007/978-3-319-59162-9_41
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Nature B.V. 2019
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-018-0758-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 62
ExternalDocumentID 10_1007_s10044_018_0758_4
GroupedDBID -59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
O9-
RIG
RNI
RZK
S1Z
ABRTQ
ID FETCH-LOGICAL-c359t-6f27c0173c89bb111e887d1578fee1788599449642d1992ee5bd5c72a356a2b13
IEDL.DBID AGYKE
ISSN 1433-7541
IngestDate Fri Jul 25 08:27:46 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 01:15:16 EDT 2025
Fri Feb 21 02:29:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SSVEP
Frequency detection
LED
Low-channel BCI
ICA
Low luminance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-6f27c0173c89bb111e887d1578fee1788599449642d1992ee5bd5c72a356a2b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5397-8681
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10044-018-0758-4
PQID 2187114525
PQPubID 2043691
PageCount 16
ParticipantIDs proquest_journals_2187114525
crossref_citationtrail_10_1007_s10044_018_0758_4
crossref_primary_10_1007_s10044_018_0758_4
springer_journals_10_1007_s10044_018_0758_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190205
PublicationDateYYYYMMDD 2019-02-05
PublicationDate_xml – month: 2
  year: 2019
  text: 20190205
  day: 5
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Tichavský, Koldovský, Oja (CR45) 2006; 54
Gao, Wang, Gao, Hong (CR17) 2014; 61
Volosyak (CR26) 2010; 7
CR39
Langlois, Chartier, Gosselin (CR43) 2010; 6
CR37
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (CR18) 2002; 113
CR30
Herrmann (CR16) 2001; 137
Fernandez-Vargas, Pfaff, Rodriguez, Varona (CR6) 2013; 7
Lin, Wu, Liang, Huang, Chao, Chen, Jung (CR33) 2005; 52
Jung, Makeig, Humphries, Lee, Mckeown, Iragui, Sejnowski (CR31) 2000; 37
Kim, Sun, Liu, Wang, Paek (CR32) 2017
Kalunga, Chevallier, Barthélemy, Djouani, Monacelli, Hamam (CR24) 2016; 191
Nunez, Srinivasan (CR52) 2006
CR8
Cheng, Gao, Gao, Xu (CR12) 2002; 49
Gao, Xu, Cheng, Gao (CR13) 2003; 11
CR47
CR46
CR42
Aljshamee (CR54) 2015; 5
Xue, Li, Li, Wan (CR36) 2006; 3
Rak, Kołodziej, Majkowski (CR49) 2012; XIX
Regan (CR9) 1966; 20
Jasper (CR40) 1958; 10
Ortner, Allison, Korisek, Gaggl, Pfurtscheller (CR14) 2011; 19
CR19
Uriguen, Garcia-Zapirain (CR35) 2015; 12
Thompson (CR50) 2009; 92
Srinivasulu, Sreenath Reddy (CR34) 2012; 2
CR11
Liu, Chen, Ai, Xie (CR2) 2013; 34
Picton (CR3) 1990; 7
CR51
Bin, Gao, Wang, Hong, Gao (CR5) 2009; 4
Volosyak, Valbuena, Luth, Malechka, Graser (CR15) 2011; 19
Wang, Wang, Gao, Hong, Gao (CR7) 2006; 14
Ramadan, Vasilakos (CR20) 2017; 223
Pastor, Artieda, Arbizu, Valencia, Masdeu (CR53) 2003; 23
CR29
Renard, Lotte, Gibert, Congedo, Maby, Delannoy, Bertrand, Lécuyer (CR41) 2010; 19
CR27
Delorme, Palmer, Onton, Oostenveld (CR38) 2012; 7
CR21
Regan (CR4) 1989
Chen (CR23) 2015; 112
Bin, Gao, Yan, Hong, Gao (CR22) 2009; 6
Obermaier, Neuper, Guger, Pfurtscheller (CR48) 2001; 9
Friman, Volosyak, Gräser (CR28) 2007; 54
Wang (CR25) 2008; 27
Paulus, Buchner, Noth (CR1) 2005
Vialatte, Maurice, Dauwels, Cichocki (CR10) 2010; 90
Oja, Yuan (CR44) 2006; 17
Q Liu (758_CR2) 2013; 34
758_CR21
D Regan (758_CR4) 1989
758_CR27
758_CR29
P Nunez (758_CR52) 2006
J Fernandez-Vargas (758_CR6) 2013; 7
D Langlois (758_CR43) 2010; 6
M Pastor (758_CR53) 2003; 23
Y Renard (758_CR41) 2010; 19
O Friman (758_CR28) 2007; 54
CT Lin (758_CR33) 2005; 52
JA Uriguen (758_CR35) 2015; 12
758_CR11
E Oja (758_CR44) 2006; 17
I Volosyak (758_CR26) 2010; 7
758_CR51
M Cheng (758_CR12) 2002; 49
D Regan (758_CR9) 1966; 20
758_CR19
758_CR8
RF Thompson (758_CR50) 2009; 92
J Wolpaw (758_CR18) 2002; 113
CS Herrmann (758_CR16) 2001; 137
W Paulus (758_CR1) 2005
A Srinivasulu (758_CR34) 2012; 2
Z Xue (758_CR36) 2006; 3
HH Jasper (758_CR40) 1958; 10
B Obermaier (758_CR48) 2001; 9
X Chen (758_CR23) 2015; 112
J Delorme (758_CR38) 2012; 7
758_CR46
758_CR47
758_CR42
XR Gao (758_CR13) 2003; 11
RJ Rak (758_CR49) 2012; XIX
Y Wang (758_CR25) 2008; 27
TP Jung (758_CR31) 2000; 37
M Aljshamee (758_CR54) 2015; 5
Y Wang (758_CR7) 2006; 14
I Volosyak (758_CR15) 2011; 19
T Picton (758_CR3) 1990; 7
GY Bin (758_CR5) 2009; 4
P Tichavský (758_CR45) 2006; 54
CS Kim (758_CR32) 2017
R Ortner (758_CR14) 2011; 19
758_CR30
758_CR37
758_CR39
SK Gao (758_CR17) 2014; 61
FB Vialatte (758_CR10) 2010; 90
GY Bin (758_CR22) 2009; 6
RA Ramadan (758_CR20) 2017; 223
EK Kalunga (758_CR24) 2016; 191
References_xml – volume: 23
  start-page: 11621
  issue: 37
  year: 2003
  end-page: 11627
  ident: CR53
  article-title: Human cerebral activation during steady-state visual-evoked responses
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-37-11621.2003
– volume: 14
  start-page: 234
  year: 2006
  end-page: 240
  ident: CR7
  article-title: A practical VEP-based brain–computer interface
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2006.875576
– volume: 10
  start-page: 371
  year: 1958
  end-page: 375
  ident: CR40
  article-title: The ten-twenty electrode system of the international federation
  publication-title: Electroencephalogr Clin Neurophysiol
– ident: CR39
– volume: 9
  start-page: 283
  year: 2001
  end-page: 288
  ident: CR48
  article-title: Information transfer rate in a five-classes brain–computer interface
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/7333.948456
– ident: CR51
– volume: 7
  start-page: 066007
  year: 2010
  ident: CR26
  article-title: Brain–computer interface using water-based electrodes
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/7/6/066007
– volume: 34
  start-page: 299
  year: 2013
  end-page: 309
  ident: CR2
  article-title: Review: recent development of signal processing algorithms for SSVEP-based brain computer interfaces
  publication-title: J Med Biol Eng
  doi: 10.5405/jmbe.1522
– ident: CR29
– ident: CR8
– volume: 54
  start-page: 742
  year: 2007
  end-page: 750
  ident: CR28
  article-title: Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.889160
– ident: CR42
– volume: 12
  start-page: 1
  year: 2015
  end-page: 23
  ident: CR35
  article-title: EEG artifact removal—state-of the-art and guidelines
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/3/031001
– volume: 137
  start-page: 346
  year: 2001
  end-page: 353
  ident: CR16
  article-title: Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100682
– ident: CR21
– ident: CR46
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: CR18
  article-title: Brain—computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: CR19
– volume: 3
  start-page: 107
  year: 2006
  end-page: 110
  ident: CR36
  article-title: Using ICA to remove eye blink and power line artifacts in EEG
  publication-title: Innov Comput Inf Control
  doi: 10.1109/ICICIC.2006.543
– volume: 19
  start-page: 232
  year: 2011
  end-page: 239
  ident: CR15
  article-title: BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2011.2121919
– volume: 223
  start-page: 26
  year: 2017
  end-page: 44
  ident: CR20
  article-title: Brain computer interface: control signals review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.024
– year: 1989
  ident: CR4
  publication-title: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine
– volume: 19
  start-page: 1
  year: 2011
  end-page: 5
  ident: CR14
  article-title: An SSVEP BCI to control a hand orthosis for persons with tetraplegia
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2010.2076364
– ident: CR11
– volume: 7
  start-page: 450
  year: 1990
  end-page: 451
  ident: CR3
  article-title: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199007000-00010
– volume: 191
  start-page: 55
  year: 2016
  end-page: 68
  ident: CR24
  article-title: Online SSVEP-based BCI using Riemannian geometry
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.007
– volume: 112
  start-page: E6058
  year: 2015
  end-page: E6067
  ident: CR23
  article-title: High-speed spelling with a noninvasive brain–computer interface
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1508080112
– year: 2017
  ident: CR32
  article-title: Removal of ocular artifacts using ICA and adaptive filter for motor imagery-based BCI
  publication-title: IEEE/CAA J Autom Sin
– volume: XIX
  start-page: 427
  year: 2012
  end-page: 444
  ident: CR49
  article-title: Brain–computer interface as measurement and control system the review paper
  publication-title: Metrol Meas Syst
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: CR31
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 90
  start-page: 418
  year: 2010
  end-page: 438
  ident: CR10
  article-title: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2009.11.005
– volume: 19
  start-page: 35
  year: 2010
  end-page: 53
  ident: CR41
  article-title: OpenViBE: an open-source software platform to design, test and use brain–computer interfaces in real and virtual environments
  publication-title: Presence Teleoper Virtual Environ
  doi: 10.1162/pres.19.1.35
– volume: 5
  start-page: 89
  issue: 2
  year: 2015
  end-page: 92
  ident: CR54
  article-title: Discriminate the brain responses of multiple colors based on regular/irregular SSVEP paradigms
  publication-title: J Med Bioeng
– ident: CR47
– volume: 4
  start-page: 22
  year: 2009
  end-page: 26
  ident: CR5
  article-title: VEP-based brain–computer interfaces: time, frequency, and code modulations
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2009.934562
– ident: CR37
– ident: CR30
– volume: 7
  start-page: 27
  year: 2013
  ident: CR6
  article-title: Assisted closed-loop optimization of SSVEP-BCI efficiency
  publication-title: Front Neural Circuits
  doi: 10.3389/fncir.2013.00027
– volume: 49
  start-page: 1181
  year: 2002
  end-page: 1186
  ident: CR12
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans BME
  doi: 10.1109/TBME.2002.803536
– volume: 6
  start-page: 31
  year: 2010
  end-page: 38
  ident: CR43
  article-title: An introduction to independent component analysis: InfoMax and FastICA algorithms
  publication-title: Tutor Quant Methods Psychol
  doi: 10.20982/tqmp.06.1.p031
– year: 2006
  ident: CR52
  publication-title: Electric fields of the brain: the neurophysics of EEG
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 17
  start-page: 1370
  issue: 6
  year: 2006
  end-page: 1381
  ident: CR44
  article-title: The FastICA algorithm revisited: convergence analysis
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880980
– volume: 61
  start-page: 1436
  year: 2014
  end-page: 1447
  ident: CR17
  article-title: Visual and auditory brain–computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2321007
– volume: 11
  start-page: 137
  year: 2003
  end-page: 140
  ident: CR13
  article-title: A BCI based environmental controller for the motion-disabled
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2003.814449
– volume: 54
  start-page: 1189
  issue: 4
  year: 2006
  end-page: 1203
  ident: CR45
  article-title: Performance analysis of the FastICA algorithm and Cramér–Rao bounds for linear independent component analysis
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.870561
– start-page: 57
  year: 2005
  end-page: 65
  ident: CR1
  article-title: Elektroretinographie (ERG) und visuell evozierte Potenziale (VEP)
  publication-title: Evozierte Potenziale, neurovegetative Diagnostik, Okulographie: Methodik und klinische Anwendungen
– ident: CR27
– volume: 2
  start-page: 11
  year: 2012
  end-page: 16
  ident: CR34
  article-title: Artifacts removing from EEG signals by ICA algorithms
  publication-title: IOSR J Electr Electron Eng
  doi: 10.9790/1676-0241116
– volume: 52
  start-page: 2726
  year: 2005
  end-page: 2738
  ident: CR33
  article-title: EEG-based drowsiness estimation for safety driving using independent component analysis
  publication-title: IEEE Trans Circuits Syst
  doi: 10.1109/TCSI.2005.857555
– volume: 92
  start-page: 127
  year: 2009
  end-page: 134
  ident: CR50
  article-title: Habituation: a history
  publication-title: Neurobiol Learn Mem
  doi: 10.1016/j.nlm.2008.07.011
– volume: 6
  start-page: 046002
  issue: 4
  year: 2009
  ident: CR22
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/6/4/046002
– volume: 7
  start-page: 1
  issue: 2
  year: 2012
  end-page: 14
  ident: CR38
  article-title: Independent EEG sources are dipolar
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030135
– volume: 27
  start-page: 64
  year: 2008
  end-page: 71
  ident: CR25
  article-title: Brain–computer interfaces based on visual evoked potentials: feasibility of practical system design
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2008.923958
– volume: 20
  start-page: 238
  year: 1966
  end-page: 248
  ident: CR9
  article-title: Some characteristics of average steady-state and transient responses evoked by modulated light
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(66)90088-5
– year: 2017
  ident: 758_CR32
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2017.7510370
– volume: 19
  start-page: 35
  year: 2010
  ident: 758_CR41
  publication-title: Presence Teleoper Virtual Environ
  doi: 10.1162/pres.19.1.35
– volume: 11
  start-page: 137
  year: 2003
  ident: 758_CR13
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2003.814449
– volume: 10
  start-page: 371
  year: 1958
  ident: 758_CR40
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: XIX
  start-page: 427
  year: 2012
  ident: 758_CR49
  publication-title: Metrol Meas Syst
– ident: 758_CR8
– volume: 49
  start-page: 1181
  year: 2002
  ident: 758_CR12
  publication-title: IEEE Trans BME
  doi: 10.1109/TBME.2002.803536
– volume: 2
  start-page: 11
  year: 2012
  ident: 758_CR34
  publication-title: IOSR J Electr Electron Eng
  doi: 10.9790/1676-0241116
– volume-title: Electric fields of the brain: the neurophysics of EEG
  year: 2006
  ident: 758_CR52
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 6
  start-page: 046002
  issue: 4
  year: 2009
  ident: 758_CR22
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/6/4/046002
– volume: 6
  start-page: 31
  year: 2010
  ident: 758_CR43
  publication-title: Tutor Quant Methods Psychol
  doi: 10.20982/tqmp.06.1.p031
– ident: 758_CR46
  doi: 10.1109/MLSP.2011.6064563
– volume: 112
  start-page: E6058
  year: 2015
  ident: 758_CR23
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1508080112
– volume: 20
  start-page: 238
  year: 1966
  ident: 758_CR9
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(66)90088-5
– volume: 19
  start-page: 232
  year: 2011
  ident: 758_CR15
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2011.2121919
– volume: 223
  start-page: 26
  year: 2017
  ident: 758_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.024
– volume: 191
  start-page: 55
  year: 2016
  ident: 758_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.007
– volume: 17
  start-page: 1370
  issue: 6
  year: 2006
  ident: 758_CR44
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880980
– volume: 54
  start-page: 742
  year: 2007
  ident: 758_CR28
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.889160
– volume: 7
  start-page: 1
  issue: 2
  year: 2012
  ident: 758_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030135
– volume: 54
  start-page: 1189
  issue: 4
  year: 2006
  ident: 758_CR45
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.870561
– volume: 34
  start-page: 299
  year: 2013
  ident: 758_CR2
  publication-title: J Med Biol Eng
  doi: 10.5405/jmbe.1522
– volume: 52
  start-page: 2726
  year: 2005
  ident: 758_CR33
  publication-title: IEEE Trans Circuits Syst
  doi: 10.1109/TCSI.2005.857555
– volume: 7
  start-page: 27
  year: 2013
  ident: 758_CR6
  publication-title: Front Neural Circuits
  doi: 10.3389/fncir.2013.00027
– volume: 27
  start-page: 64
  year: 2008
  ident: 758_CR25
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2008.923958
– ident: 758_CR30
– volume: 137
  start-page: 346
  year: 2001
  ident: 758_CR16
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100682
– ident: 758_CR37
– ident: 758_CR51
  doi: 10.1109/icsae.2016.7810188
– volume: 3
  start-page: 107
  year: 2006
  ident: 758_CR36
  publication-title: Innov Comput Inf Control
  doi: 10.1109/ICICIC.2006.543
– ident: 758_CR47
– volume: 4
  start-page: 22
  year: 2009
  ident: 758_CR5
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2009.934562
– volume: 90
  start-page: 418
  year: 2010
  ident: 758_CR10
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2009.11.005
– volume: 5
  start-page: 89
  issue: 2
  year: 2015
  ident: 758_CR54
  publication-title: J Med Bioeng
– volume: 23
  start-page: 11621
  issue: 37
  year: 2003
  ident: 758_CR53
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-37-11621.2003
– volume: 7
  start-page: 450
  year: 1990
  ident: 758_CR3
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199007000-00010
– volume: 14
  start-page: 234
  year: 2006
  ident: 758_CR7
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2006.875576
– volume: 12
  start-page: 1
  year: 2015
  ident: 758_CR35
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/3/031001
– ident: 758_CR27
  doi: 10.1109/ner.2013.6695870
– volume: 92
  start-page: 127
  year: 2009
  ident: 758_CR50
  publication-title: Neurobiol Learn Mem
  doi: 10.1016/j.nlm.2008.07.011
– ident: 758_CR19
  doi: 10.1007/978-3-319-48429-7_12
– volume: 19
  start-page: 1
  year: 2011
  ident: 758_CR14
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2010.2076364
– volume: 113
  start-page: 767
  year: 2002
  ident: 758_CR18
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume-title: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine
  year: 1989
  ident: 758_CR4
– volume: 37
  start-page: 163
  year: 2000
  ident: 758_CR31
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– ident: 758_CR21
– ident: 758_CR29
  doi: 10.1109/AFRCON.2013.6757776
– ident: 758_CR42
  doi: 10.1109/ICCCAS.2006.285083
– start-page: 57
  volume-title: Evozierte Potenziale, neurovegetative Diagnostik, Okulographie: Methodik und klinische Anwendungen
  year: 2005
  ident: 758_CR1
– ident: 758_CR11
– volume: 61
  start-page: 1436
  year: 2014
  ident: 758_CR17
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2321007
– volume: 7
  start-page: 066007
  year: 2010
  ident: 758_CR26
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/7/6/066007
– ident: 758_CR39
  doi: 10.1007/978-3-319-59162-9_41
– volume: 9
  start-page: 283
  year: 2001
  ident: 758_CR48
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/7333.948456
SSID ssj0033328
Score 2.2808833
Snippet Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Accuracy
Channels
Classification
Computer Science
Electroencephalography
Human-computer interface
Independent component analysis
Original Article
Pattern Recognition
Preprocessing
Stimulation
Title Independent component analysis for a low-channel SSVEP-BCI
URI https://link.springer.com/article/10.1007/s10044-018-0758-4
https://www.proquest.com/docview/2187114525
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovHhxfuL8GD14UiJrk7SNtzmmU1GEOZmn0qTpxdGJqwj-9b50yaZDBS-lpGlIXvJefo_3BXDk86wSeyT3hSIsbTEiuGiRIFBCyyylQVW-7fYu7A3Y9ZAPbRz3xHm7O5NkJam_BLu1mPGYiAleczFhy7DC_VjENVhpXz7ddJ0AppRWJVURCVASceY7Y-ZPg3y_juYYc8EsWt02F3V4cPOcOpk8n76V8lR9LKRw_OdC1mHNok-vPT0uG7Cki02oWyTqWT6fYJMr9uDatuDsalYwt_SMI_q4MG-pTWriIfj1Um80ficmlrjQI6_ff-zek_PO1TYMLroPnR6xhReIolyUJMyDSCGrUhULKVEaahRFmY_MnWvto9LMhWBMoOqSGe9VrbnMuIqClPIwDaRPd6BW4Cx2wRNxypXO8tBgNRnRlCoZSsojKnOT674BLUf_RNms5KY4xiiZ51M25EqQXIkhV8IacDz75WWakuOvzgduUxPLnZMEYU2EeiAPeANO3B7NP_862N6_eu_DKqIrUbl48wOola9v-hARTCmb9sQ2YbkTdvA5CNqfteTj7Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3rx24ii7uBJ02Rb2231hgQCCsQEMNyWtutOZBiZ8d_3dbSgRk28LV3XLK997_2a9_FD6DpgWWX2cB5whanwKeaM-zgMFdcyEySs6NsGw6g7oQ9TNrV13AuX7e5CkpWl_lTs5lOTMZFgcHMJpptoC7BAYmgLJmHTmV9CSEWoCjiA4JjRwIUyf1riqzNaI8xvQdHK13T20a4FiV5zuasHaEMXh2jPAkbPquMChhwngxs7Qne9Fa9t6Zl88XlhnoTtPeIBRvWEN5u_Y1PyW-iZNxo9t5_wfat3jCad9rjVxZYfASvCeImjPIwVaBRRCZcSjJYGi5EFoIO51gHcbRnnlHK4YWQmyVRrJjOm4lAQFolQBuQE1Qr4i1Pk8UQwpbM8MpBKxkQQJSNJWExkblrS15HvBJUq2zzccFjM0nXbYyPbFGSbGtmmtI5uVp-8LDtn_DW54aSfWiVapIA-YriusZDV0a3bkfXrXxc7-9fsK7TdHQ_6ab83fDxHOwCIeJWVzRqoVr6-6QsAHaW8rA7ZB5DayEM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Qbz4LU6n5uBJCWubpG286XRsfozBnOwWkjQ9jW64iv--SZdsKip4K2kaykvee7_wPn4AnIc0q8weykOmEBEBQYyyAEWRYlpmAkcVfdtTL-4Myf2IjhzP6cxnu_uQ5LymwXZpKsrmNMubnwrfAmKzJ1JkXF6KyCpYI9bz2Wht3PKmGGNckasaTIBRQknow5o_LfHVMS3R5rcAaeV32ttg0wFGeD3f4R2wootdsOXAI3SqOTNDnp_Bj-2Bq-6C47aENnd8Utgn4fqQQINXoYDjyTuy5b-FHsPB4OWuj25a3X0wbN89tzrIcSUghSkrUZxHiTLahVXKpDQGTBvrkYVGH3OtQ3PPpYwRwsxtI7MJp1pTmVGVRALTWEQyxAegVpi_OASQpYIqneWxhVcywQIrGUtMEyxz256-DgIvKK5cI3HLZzHmyxbIVrbcyJZb2XJSBxeLT6bzLhp_TW546XOnUDNukEhirm40onVw6Xdk-frXxY7-NfsMrPdv2_yx23s4BhsGG7EqQZs2QK18fdMnBn-U8rQ6Yx-BRcxp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+component+analysis+for+a+low-channel+SSVEP-BCI&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Rejer%2C+Izabela&rft.au=Cieszy%C5%84ski%2C+%C5%81ukasz&rft.date=2019-02-05&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=22&rft.issue=1&rft.spage=47&rft.epage=62&rft_id=info:doi/10.1007%2Fs10044-018-0758-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon