Independent component analysis for a low-channel SSVEP-BCI
Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Ther...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 22; no. 1; pp. 47 - 62 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
05.02.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-018-0758-4 |
Cover
Abstract | Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Therefore, the current trend in BCI design is to use the smallest number of channels possible. The problem is, however, that usually when we decrease the number of channels, the interface accuracy also drops significantly. In the paper, we examined whether it is possible to maintain the high accuracy of a BCI based on steady-state visual evoked potentials (SSVEP-BCI) in a low-channel setup using a preprocessing procedure successfully used in a multichannel setting: independent component analysis (ICA). The influence of ICA on the BCI performance was measured in an off-line (24 subjects) mode and online (eight subjects) mode. In the off-line mode, we compared the number of correctly recognized different stimulation frequencies, and in the online mode, we compared the classification accuracy. In both experiments, we noted the predominance of signals that underwent ICA preprocessing. In the off-line mode, we detected 50% more stimulation frequencies after ICA preprocessing than before (in the case of four EEG channels), and in the online mode, we noted a classification accuracy increase of 8%. The most important results, however, were the results obtained for a very low luminance (350 lx), where we noted 71% gain in the off-line mode and 11% gain in the online mode. |
---|---|
AbstractList | Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Therefore, the current trend in BCI design is to use the smallest number of channels possible. The problem is, however, that usually when we decrease the number of channels, the interface accuracy also drops significantly. In the paper, we examined whether it is possible to maintain the high accuracy of a BCI based on steady-state visual evoked potentials (SSVEP-BCI) in a low-channel setup using a preprocessing procedure successfully used in a multichannel setting: independent component analysis (ICA). The influence of ICA on the BCI performance was measured in an off-line (24 subjects) mode and online (eight subjects) mode. In the off-line mode, we compared the number of correctly recognized different stimulation frequencies, and in the online mode, we compared the classification accuracy. In both experiments, we noted the predominance of signals that underwent ICA preprocessing. In the off-line mode, we detected 50% more stimulation frequencies after ICA preprocessing than before (in the case of four EEG channels), and in the online mode, we noted a classification accuracy increase of 8%. The most important results, however, were the results obtained for a very low luminance (350 lx), where we noted 71% gain in the off-line mode and 11% gain in the online mode. Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because of the lower comfort and extended application time. Therefore, the current trend in BCI design is to use the smallest number of channels possible. The problem is, however, that usually when we decrease the number of channels, the interface accuracy also drops significantly. In the paper, we examined whether it is possible to maintain the high accuracy of a BCI based on steady-state visual evoked potentials (SSVEP-BCI) in a low-channel setup using a preprocessing procedure successfully used in a multichannel setting: independent component analysis (ICA). The influence of ICA on the BCI performance was measured in an off-line (24 subjects) mode and online (eight subjects) mode. In the off-line mode, we compared the number of correctly recognized different stimulation frequencies, and in the online mode, we compared the classification accuracy. In both experiments, we noted the predominance of signals that underwent ICA preprocessing. In the off-line mode, we detected 50% more stimulation frequencies after ICA preprocessing than before (in the case of four EEG channels), and in the online mode, we noted a classification accuracy increase of 8%. The most important results, however, were the results obtained for a very low luminance (350 lx), where we noted 71% gain in the off-line mode and 11% gain in the online mode. |
Author | Rejer, Izabela Cieszyński, Łukasz |
Author_xml | – sequence: 1 givenname: Izabela surname: Rejer fullname: Rejer, Izabela organization: Faculty of Computer Science and Information Technology, West Pomeranian University of Technology Szczecin – sequence: 2 givenname: Łukasz orcidid: 0000-0002-5397-8681 surname: Cieszyński fullname: Cieszyński, Łukasz email: lcieszynski@wi.zut.edu.pl organization: Faculty of Computer Science and Information Technology, West Pomeranian University of Technology Szczecin |
BookMark | eNp9kE9LAzEUxINUsK1-AG8LnqN5-dNkvWmpWigoVMVbyO5mdcs2qckW6bc3ZUVB0Mu8d5jfMMwIDZx3FqFTIOdAiLyISTnHBBQmUijMD9AQOGNYCvEy-P45HKFRjCtCGGNUDdHl3FV2Y5O4Liv9epNi02ecaXexiVntQ2ay1n_g8s04Z9tsuXyePeDr6fwYHdamjfbk647R083scXqHF_e38-nVApdM5B2e1FSWBCQrVV4UAGCVkhUIqWprQSol8pzzfMJpBXlOrRVFJUpJDRMTQwtgY3TW526Cf9_a2OmV34ZUMGoKSgJwQUVyyd5VBh9jsLUum850jXddME2rgej9ULofSqeh9H4ozRMJv8hNaNYm7P5laM_E5HWvNvx0-hv6BP0IefI |
CitedBy_id | crossref_primary_10_3389_fnbot_2022_873239 crossref_primary_10_1371_journal_pone_0218177 crossref_primary_10_1080_2326263X_2022_2050513 crossref_primary_10_1016_j_bspc_2021_103162 crossref_primary_10_1007_s10044_019_00860_w crossref_primary_10_1016_j_compbiomed_2019_103526 crossref_primary_10_1109_JSEN_2020_3017491 crossref_primary_10_3233_JIFS_201280 crossref_primary_10_1016_j_bspc_2020_102022 crossref_primary_10_1109_ACCESS_2021_3097797 crossref_primary_10_1016_j_ohx_2024_e00567 crossref_primary_10_3390_electronics13142767 crossref_primary_10_3390_mi14050976 |
Cites_doi | 10.1523/JNEUROSCI.23-37-11621.2003 10.1109/TNSRE.2006.875576 10.1109/7333.948456 10.1088/1741-2560/7/6/066007 10.5405/jmbe.1522 10.1109/TBME.2006.889160 10.1088/1741-2560/12/3/031001 10.1007/s002210100682 10.1016/S1388-2457(02)00057-3 10.1109/ICICIC.2006.543 10.1109/TNSRE.2011.2121919 10.1016/j.neucom.2016.10.024 10.1109/TNSRE.2010.2076364 10.1097/00004691-199007000-00010 10.1016/j.neucom.2016.01.007 10.1073/pnas.1508080112 10.1111/1469-8986.3720163 10.1016/j.pneurobio.2009.11.005 10.1162/pres.19.1.35 10.1109/MCI.2009.934562 10.3389/fncir.2013.00027 10.1109/TBME.2002.803536 10.20982/tqmp.06.1.p031 10.1093/acprof:oso/9780195050387.001.0001 10.1109/TNN.2006.880980 10.1109/TBME.2014.2321007 10.1109/TNSRE.2003.814449 10.1109/TSP.2006.870561 10.9790/1676-0241116 10.1109/TCSI.2005.857555 10.1016/j.nlm.2008.07.011 10.1088/1741-2560/6/4/046002 10.1371/journal.pone.0030135 10.1109/MEMB.2008.923958 10.1016/0013-4694(66)90088-5 10.1109/JAS.2017.7510370 10.1109/MLSP.2011.6064563 10.1109/icsae.2016.7810188 10.1109/ner.2013.6695870 10.1007/978-3-319-48429-7_12 10.1109/AFRCON.2013.6757776 10.1109/ICCCAS.2006.285083 10.1007/978-3-319-59162-9_41 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Nature B.V. 2019 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-018-0758-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 62 |
ExternalDocumentID | 10_1007_s10044_018_0758_4 |
GroupedDBID | -59 -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CAG CITATION COF H13 N2Q O9- RIG RNI RZK S1Z ABRTQ |
ID | FETCH-LOGICAL-c359t-6f27c0173c89bb111e887d1578fee1788599449642d1992ee5bd5c72a356a2b13 |
IEDL.DBID | AGYKE |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 08:27:46 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Tue Jul 01 01:15:16 EDT 2025 Fri Feb 21 02:29:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SSVEP Frequency detection LED Low-channel BCI ICA Low luminance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-6f27c0173c89bb111e887d1578fee1788599449642d1992ee5bd5c72a356a2b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5397-8681 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10044-018-0758-4 |
PQID | 2187114525 |
PQPubID | 2043691 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2187114525 crossref_citationtrail_10_1007_s10044_018_0758_4 crossref_primary_10_1007_s10044_018_0758_4 springer_journals_10_1007_s10044_018_0758_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190205 |
PublicationDateYYYYMMDD | 2019-02-05 |
PublicationDate_xml | – month: 2 year: 2019 text: 20190205 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2019 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Tichavský, Koldovský, Oja (CR45) 2006; 54 Gao, Wang, Gao, Hong (CR17) 2014; 61 Volosyak (CR26) 2010; 7 CR39 Langlois, Chartier, Gosselin (CR43) 2010; 6 CR37 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (CR18) 2002; 113 CR30 Herrmann (CR16) 2001; 137 Fernandez-Vargas, Pfaff, Rodriguez, Varona (CR6) 2013; 7 Lin, Wu, Liang, Huang, Chao, Chen, Jung (CR33) 2005; 52 Jung, Makeig, Humphries, Lee, Mckeown, Iragui, Sejnowski (CR31) 2000; 37 Kim, Sun, Liu, Wang, Paek (CR32) 2017 Kalunga, Chevallier, Barthélemy, Djouani, Monacelli, Hamam (CR24) 2016; 191 Nunez, Srinivasan (CR52) 2006 CR8 Cheng, Gao, Gao, Xu (CR12) 2002; 49 Gao, Xu, Cheng, Gao (CR13) 2003; 11 CR47 CR46 CR42 Aljshamee (CR54) 2015; 5 Xue, Li, Li, Wan (CR36) 2006; 3 Rak, Kołodziej, Majkowski (CR49) 2012; XIX Regan (CR9) 1966; 20 Jasper (CR40) 1958; 10 Ortner, Allison, Korisek, Gaggl, Pfurtscheller (CR14) 2011; 19 CR19 Uriguen, Garcia-Zapirain (CR35) 2015; 12 Thompson (CR50) 2009; 92 Srinivasulu, Sreenath Reddy (CR34) 2012; 2 CR11 Liu, Chen, Ai, Xie (CR2) 2013; 34 Picton (CR3) 1990; 7 CR51 Bin, Gao, Wang, Hong, Gao (CR5) 2009; 4 Volosyak, Valbuena, Luth, Malechka, Graser (CR15) 2011; 19 Wang, Wang, Gao, Hong, Gao (CR7) 2006; 14 Ramadan, Vasilakos (CR20) 2017; 223 Pastor, Artieda, Arbizu, Valencia, Masdeu (CR53) 2003; 23 CR29 Renard, Lotte, Gibert, Congedo, Maby, Delannoy, Bertrand, Lécuyer (CR41) 2010; 19 CR27 Delorme, Palmer, Onton, Oostenveld (CR38) 2012; 7 CR21 Regan (CR4) 1989 Chen (CR23) 2015; 112 Bin, Gao, Yan, Hong, Gao (CR22) 2009; 6 Obermaier, Neuper, Guger, Pfurtscheller (CR48) 2001; 9 Friman, Volosyak, Gräser (CR28) 2007; 54 Wang (CR25) 2008; 27 Paulus, Buchner, Noth (CR1) 2005 Vialatte, Maurice, Dauwels, Cichocki (CR10) 2010; 90 Oja, Yuan (CR44) 2006; 17 Q Liu (758_CR2) 2013; 34 758_CR21 D Regan (758_CR4) 1989 758_CR27 758_CR29 P Nunez (758_CR52) 2006 J Fernandez-Vargas (758_CR6) 2013; 7 D Langlois (758_CR43) 2010; 6 M Pastor (758_CR53) 2003; 23 Y Renard (758_CR41) 2010; 19 O Friman (758_CR28) 2007; 54 CT Lin (758_CR33) 2005; 52 JA Uriguen (758_CR35) 2015; 12 758_CR11 E Oja (758_CR44) 2006; 17 I Volosyak (758_CR26) 2010; 7 758_CR51 M Cheng (758_CR12) 2002; 49 D Regan (758_CR9) 1966; 20 758_CR19 758_CR8 RF Thompson (758_CR50) 2009; 92 J Wolpaw (758_CR18) 2002; 113 CS Herrmann (758_CR16) 2001; 137 W Paulus (758_CR1) 2005 A Srinivasulu (758_CR34) 2012; 2 Z Xue (758_CR36) 2006; 3 HH Jasper (758_CR40) 1958; 10 B Obermaier (758_CR48) 2001; 9 X Chen (758_CR23) 2015; 112 J Delorme (758_CR38) 2012; 7 758_CR46 758_CR47 758_CR42 XR Gao (758_CR13) 2003; 11 RJ Rak (758_CR49) 2012; XIX Y Wang (758_CR25) 2008; 27 TP Jung (758_CR31) 2000; 37 M Aljshamee (758_CR54) 2015; 5 Y Wang (758_CR7) 2006; 14 I Volosyak (758_CR15) 2011; 19 T Picton (758_CR3) 1990; 7 GY Bin (758_CR5) 2009; 4 P Tichavský (758_CR45) 2006; 54 CS Kim (758_CR32) 2017 R Ortner (758_CR14) 2011; 19 758_CR30 758_CR37 758_CR39 SK Gao (758_CR17) 2014; 61 FB Vialatte (758_CR10) 2010; 90 GY Bin (758_CR22) 2009; 6 RA Ramadan (758_CR20) 2017; 223 EK Kalunga (758_CR24) 2016; 191 |
References_xml | – volume: 23 start-page: 11621 issue: 37 year: 2003 end-page: 11627 ident: CR53 article-title: Human cerebral activation during steady-state visual-evoked responses publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-37-11621.2003 – volume: 14 start-page: 234 year: 2006 end-page: 240 ident: CR7 article-title: A practical VEP-based brain–computer interface publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2006.875576 – volume: 10 start-page: 371 year: 1958 end-page: 375 ident: CR40 article-title: The ten-twenty electrode system of the international federation publication-title: Electroencephalogr Clin Neurophysiol – ident: CR39 – volume: 9 start-page: 283 year: 2001 end-page: 288 ident: CR48 article-title: Information transfer rate in a five-classes brain–computer interface publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/7333.948456 – ident: CR51 – volume: 7 start-page: 066007 year: 2010 ident: CR26 article-title: Brain–computer interface using water-based electrodes publication-title: J Neural Eng doi: 10.1088/1741-2560/7/6/066007 – volume: 34 start-page: 299 year: 2013 end-page: 309 ident: CR2 article-title: Review: recent development of signal processing algorithms for SSVEP-based brain computer interfaces publication-title: J Med Biol Eng doi: 10.5405/jmbe.1522 – ident: CR29 – ident: CR8 – volume: 54 start-page: 742 year: 2007 end-page: 750 ident: CR28 article-title: Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.889160 – ident: CR42 – volume: 12 start-page: 1 year: 2015 end-page: 23 ident: CR35 article-title: EEG artifact removal—state-of the-art and guidelines publication-title: J Neural Eng doi: 10.1088/1741-2560/12/3/031001 – volume: 137 start-page: 346 year: 2001 end-page: 353 ident: CR16 article-title: Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena publication-title: Exp Brain Res doi: 10.1007/s002210100682 – ident: CR21 – ident: CR46 – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: CR18 article-title: Brain—computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: CR19 – volume: 3 start-page: 107 year: 2006 end-page: 110 ident: CR36 article-title: Using ICA to remove eye blink and power line artifacts in EEG publication-title: Innov Comput Inf Control doi: 10.1109/ICICIC.2006.543 – volume: 19 start-page: 232 year: 2011 end-page: 239 ident: CR15 article-title: BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2011.2121919 – volume: 223 start-page: 26 year: 2017 end-page: 44 ident: CR20 article-title: Brain computer interface: control signals review publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.024 – year: 1989 ident: CR4 publication-title: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine – volume: 19 start-page: 1 year: 2011 end-page: 5 ident: CR14 article-title: An SSVEP BCI to control a hand orthosis for persons with tetraplegia publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2010.2076364 – ident: CR11 – volume: 7 start-page: 450 year: 1990 end-page: 451 ident: CR3 article-title: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199007000-00010 – volume: 191 start-page: 55 year: 2016 end-page: 68 ident: CR24 article-title: Online SSVEP-based BCI using Riemannian geometry publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.007 – volume: 112 start-page: E6058 year: 2015 end-page: E6067 ident: CR23 article-title: High-speed spelling with a noninvasive brain–computer interface publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1508080112 – year: 2017 ident: CR32 article-title: Removal of ocular artifacts using ICA and adaptive filter for motor imagery-based BCI publication-title: IEEE/CAA J Autom Sin – volume: XIX start-page: 427 year: 2012 end-page: 444 ident: CR49 article-title: Brain–computer interface as measurement and control system the review paper publication-title: Metrol Meas Syst – volume: 37 start-page: 163 year: 2000 end-page: 178 ident: CR31 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – volume: 90 start-page: 418 year: 2010 end-page: 438 ident: CR10 article-title: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2009.11.005 – volume: 19 start-page: 35 year: 2010 end-page: 53 ident: CR41 article-title: OpenViBE: an open-source software platform to design, test and use brain–computer interfaces in real and virtual environments publication-title: Presence Teleoper Virtual Environ doi: 10.1162/pres.19.1.35 – volume: 5 start-page: 89 issue: 2 year: 2015 end-page: 92 ident: CR54 article-title: Discriminate the brain responses of multiple colors based on regular/irregular SSVEP paradigms publication-title: J Med Bioeng – ident: CR47 – volume: 4 start-page: 22 year: 2009 end-page: 26 ident: CR5 article-title: VEP-based brain–computer interfaces: time, frequency, and code modulations publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2009.934562 – ident: CR37 – ident: CR30 – volume: 7 start-page: 27 year: 2013 ident: CR6 article-title: Assisted closed-loop optimization of SSVEP-BCI efficiency publication-title: Front Neural Circuits doi: 10.3389/fncir.2013.00027 – volume: 49 start-page: 1181 year: 2002 end-page: 1186 ident: CR12 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans BME doi: 10.1109/TBME.2002.803536 – volume: 6 start-page: 31 year: 2010 end-page: 38 ident: CR43 article-title: An introduction to independent component analysis: InfoMax and FastICA algorithms publication-title: Tutor Quant Methods Psychol doi: 10.20982/tqmp.06.1.p031 – year: 2006 ident: CR52 publication-title: Electric fields of the brain: the neurophysics of EEG doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 17 start-page: 1370 issue: 6 year: 2006 end-page: 1381 ident: CR44 article-title: The FastICA algorithm revisited: convergence analysis publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880980 – volume: 61 start-page: 1436 year: 2014 end-page: 1447 ident: CR17 article-title: Visual and auditory brain–computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2321007 – volume: 11 start-page: 137 year: 2003 end-page: 140 ident: CR13 article-title: A BCI based environmental controller for the motion-disabled publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2003.814449 – volume: 54 start-page: 1189 issue: 4 year: 2006 end-page: 1203 ident: CR45 article-title: Performance analysis of the FastICA algorithm and Cramér–Rao bounds for linear independent component analysis publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.870561 – start-page: 57 year: 2005 end-page: 65 ident: CR1 article-title: Elektroretinographie (ERG) und visuell evozierte Potenziale (VEP) publication-title: Evozierte Potenziale, neurovegetative Diagnostik, Okulographie: Methodik und klinische Anwendungen – ident: CR27 – volume: 2 start-page: 11 year: 2012 end-page: 16 ident: CR34 article-title: Artifacts removing from EEG signals by ICA algorithms publication-title: IOSR J Electr Electron Eng doi: 10.9790/1676-0241116 – volume: 52 start-page: 2726 year: 2005 end-page: 2738 ident: CR33 article-title: EEG-based drowsiness estimation for safety driving using independent component analysis publication-title: IEEE Trans Circuits Syst doi: 10.1109/TCSI.2005.857555 – volume: 92 start-page: 127 year: 2009 end-page: 134 ident: CR50 article-title: Habituation: a history publication-title: Neurobiol Learn Mem doi: 10.1016/j.nlm.2008.07.011 – volume: 6 start-page: 046002 issue: 4 year: 2009 ident: CR22 article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method publication-title: J Neural Eng doi: 10.1088/1741-2560/6/4/046002 – volume: 7 start-page: 1 issue: 2 year: 2012 end-page: 14 ident: CR38 article-title: Independent EEG sources are dipolar publication-title: PLoS ONE doi: 10.1371/journal.pone.0030135 – volume: 27 start-page: 64 year: 2008 end-page: 71 ident: CR25 article-title: Brain–computer interfaces based on visual evoked potentials: feasibility of practical system design publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2008.923958 – volume: 20 start-page: 238 year: 1966 end-page: 248 ident: CR9 article-title: Some characteristics of average steady-state and transient responses evoked by modulated light publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(66)90088-5 – year: 2017 ident: 758_CR32 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2017.7510370 – volume: 19 start-page: 35 year: 2010 ident: 758_CR41 publication-title: Presence Teleoper Virtual Environ doi: 10.1162/pres.19.1.35 – volume: 11 start-page: 137 year: 2003 ident: 758_CR13 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2003.814449 – volume: 10 start-page: 371 year: 1958 ident: 758_CR40 publication-title: Electroencephalogr Clin Neurophysiol – volume: XIX start-page: 427 year: 2012 ident: 758_CR49 publication-title: Metrol Meas Syst – ident: 758_CR8 – volume: 49 start-page: 1181 year: 2002 ident: 758_CR12 publication-title: IEEE Trans BME doi: 10.1109/TBME.2002.803536 – volume: 2 start-page: 11 year: 2012 ident: 758_CR34 publication-title: IOSR J Electr Electron Eng doi: 10.9790/1676-0241116 – volume-title: Electric fields of the brain: the neurophysics of EEG year: 2006 ident: 758_CR52 doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 6 start-page: 046002 issue: 4 year: 2009 ident: 758_CR22 publication-title: J Neural Eng doi: 10.1088/1741-2560/6/4/046002 – volume: 6 start-page: 31 year: 2010 ident: 758_CR43 publication-title: Tutor Quant Methods Psychol doi: 10.20982/tqmp.06.1.p031 – ident: 758_CR46 doi: 10.1109/MLSP.2011.6064563 – volume: 112 start-page: E6058 year: 2015 ident: 758_CR23 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1508080112 – volume: 20 start-page: 238 year: 1966 ident: 758_CR9 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(66)90088-5 – volume: 19 start-page: 232 year: 2011 ident: 758_CR15 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2011.2121919 – volume: 223 start-page: 26 year: 2017 ident: 758_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.024 – volume: 191 start-page: 55 year: 2016 ident: 758_CR24 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.007 – volume: 17 start-page: 1370 issue: 6 year: 2006 ident: 758_CR44 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880980 – volume: 54 start-page: 742 year: 2007 ident: 758_CR28 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.889160 – volume: 7 start-page: 1 issue: 2 year: 2012 ident: 758_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030135 – volume: 54 start-page: 1189 issue: 4 year: 2006 ident: 758_CR45 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.870561 – volume: 34 start-page: 299 year: 2013 ident: 758_CR2 publication-title: J Med Biol Eng doi: 10.5405/jmbe.1522 – volume: 52 start-page: 2726 year: 2005 ident: 758_CR33 publication-title: IEEE Trans Circuits Syst doi: 10.1109/TCSI.2005.857555 – volume: 7 start-page: 27 year: 2013 ident: 758_CR6 publication-title: Front Neural Circuits doi: 10.3389/fncir.2013.00027 – volume: 27 start-page: 64 year: 2008 ident: 758_CR25 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2008.923958 – ident: 758_CR30 – volume: 137 start-page: 346 year: 2001 ident: 758_CR16 publication-title: Exp Brain Res doi: 10.1007/s002210100682 – ident: 758_CR37 – ident: 758_CR51 doi: 10.1109/icsae.2016.7810188 – volume: 3 start-page: 107 year: 2006 ident: 758_CR36 publication-title: Innov Comput Inf Control doi: 10.1109/ICICIC.2006.543 – ident: 758_CR47 – volume: 4 start-page: 22 year: 2009 ident: 758_CR5 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2009.934562 – volume: 90 start-page: 418 year: 2010 ident: 758_CR10 publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2009.11.005 – volume: 5 start-page: 89 issue: 2 year: 2015 ident: 758_CR54 publication-title: J Med Bioeng – volume: 23 start-page: 11621 issue: 37 year: 2003 ident: 758_CR53 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-37-11621.2003 – volume: 7 start-page: 450 year: 1990 ident: 758_CR3 publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199007000-00010 – volume: 14 start-page: 234 year: 2006 ident: 758_CR7 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2006.875576 – volume: 12 start-page: 1 year: 2015 ident: 758_CR35 publication-title: J Neural Eng doi: 10.1088/1741-2560/12/3/031001 – ident: 758_CR27 doi: 10.1109/ner.2013.6695870 – volume: 92 start-page: 127 year: 2009 ident: 758_CR50 publication-title: Neurobiol Learn Mem doi: 10.1016/j.nlm.2008.07.011 – ident: 758_CR19 doi: 10.1007/978-3-319-48429-7_12 – volume: 19 start-page: 1 year: 2011 ident: 758_CR14 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2010.2076364 – volume: 113 start-page: 767 year: 2002 ident: 758_CR18 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – volume-title: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine year: 1989 ident: 758_CR4 – volume: 37 start-page: 163 year: 2000 ident: 758_CR31 publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – ident: 758_CR21 – ident: 758_CR29 doi: 10.1109/AFRCON.2013.6757776 – ident: 758_CR42 doi: 10.1109/ICCCAS.2006.285083 – start-page: 57 volume-title: Evozierte Potenziale, neurovegetative Diagnostik, Okulographie: Methodik und klinische Anwendungen year: 2005 ident: 758_CR1 – ident: 758_CR11 – volume: 61 start-page: 1436 year: 2014 ident: 758_CR17 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2321007 – volume: 7 start-page: 066007 year: 2010 ident: 758_CR26 publication-title: J Neural Eng doi: 10.1088/1741-2560/7/6/066007 – ident: 758_CR39 doi: 10.1007/978-3-319-59162-9_41 – volume: 9 start-page: 283 year: 2001 ident: 758_CR48 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/7333.948456 |
SSID | ssj0033328 |
Score | 2.2808833 |
Snippet | Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface (BCI). However, from the user’s point... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 47 |
SubjectTerms | Accuracy Channels Classification Computer Science Electroencephalography Human-computer interface Independent component analysis Original Article Pattern Recognition Preprocessing Stimulation |
Title | Independent component analysis for a low-channel SSVEP-BCI |
URI | https://link.springer.com/article/10.1007/s10044-018-0758-4 https://www.proquest.com/docview/2187114525 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovHhxfuL8GD14UiJrk7SNtzmmU1GEOZmn0qTpxdGJqwj-9b50yaZDBS-lpGlIXvJefo_3BXDk86wSeyT3hSIsbTEiuGiRIFBCyyylQVW-7fYu7A3Y9ZAPbRz3xHm7O5NkJam_BLu1mPGYiAleczFhy7DC_VjENVhpXz7ddJ0AppRWJVURCVASceY7Y-ZPg3y_juYYc8EsWt02F3V4cPOcOpk8n76V8lR9LKRw_OdC1mHNok-vPT0uG7Cki02oWyTqWT6fYJMr9uDatuDsalYwt_SMI_q4MG-pTWriIfj1Um80ficmlrjQI6_ff-zek_PO1TYMLroPnR6xhReIolyUJMyDSCGrUhULKVEaahRFmY_MnWvto9LMhWBMoOqSGe9VrbnMuIqClPIwDaRPd6BW4Cx2wRNxypXO8tBgNRnRlCoZSsojKnOT674BLUf_RNms5KY4xiiZ51M25EqQXIkhV8IacDz75WWakuOvzgduUxPLnZMEYU2EeiAPeANO3B7NP_862N6_eu_DKqIrUbl48wOola9v-hARTCmb9sQ2YbkTdvA5CNqfteTj7Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3rx24ii7uBJ02Rb2231hgQCCsQEMNyWtutOZBiZ8d_3dbSgRk28LV3XLK997_2a9_FD6DpgWWX2cB5whanwKeaM-zgMFdcyEySs6NsGw6g7oQ9TNrV13AuX7e5CkpWl_lTs5lOTMZFgcHMJpptoC7BAYmgLJmHTmV9CSEWoCjiA4JjRwIUyf1riqzNaI8xvQdHK13T20a4FiV5zuasHaEMXh2jPAkbPquMChhwngxs7Qne9Fa9t6Zl88XlhnoTtPeIBRvWEN5u_Y1PyW-iZNxo9t5_wfat3jCad9rjVxZYfASvCeImjPIwVaBRRCZcSjJYGi5EFoIO51gHcbRnnlHK4YWQmyVRrJjOm4lAQFolQBuQE1Qr4i1Pk8UQwpbM8MpBKxkQQJSNJWExkblrS15HvBJUq2zzccFjM0nXbYyPbFGSbGtmmtI5uVp-8LDtn_DW54aSfWiVapIA-YriusZDV0a3bkfXrXxc7-9fsK7TdHQ_6ab83fDxHOwCIeJWVzRqoVr6-6QsAHaW8rA7ZB5DayEM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Qbz4LU6n5uBJCWubpG286XRsfozBnOwWkjQ9jW64iv--SZdsKip4K2kaykvee7_wPn4AnIc0q8weykOmEBEBQYyyAEWRYlpmAkcVfdtTL-4Myf2IjhzP6cxnu_uQ5LymwXZpKsrmNMubnwrfAmKzJ1JkXF6KyCpYI9bz2Wht3PKmGGNckasaTIBRQknow5o_LfHVMS3R5rcAaeV32ttg0wFGeD3f4R2wootdsOXAI3SqOTNDnp_Bj-2Bq-6C47aENnd8Utgn4fqQQINXoYDjyTuy5b-FHsPB4OWuj25a3X0wbN89tzrIcSUghSkrUZxHiTLahVXKpDQGTBvrkYVGH3OtQ3PPpYwRwsxtI7MJp1pTmVGVRALTWEQyxAegVpi_OASQpYIqneWxhVcywQIrGUtMEyxz256-DgIvKK5cI3HLZzHmyxbIVrbcyJZb2XJSBxeLT6bzLhp_TW546XOnUDNukEhirm40onVw6Xdk-frXxY7-NfsMrPdv2_yx23s4BhsGG7EqQZs2QK18fdMnBn-U8rQ6Yx-BRcxp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+component+analysis+for+a+low-channel+SSVEP-BCI&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Rejer%2C+Izabela&rft.au=Cieszy%C5%84ski%2C+%C5%81ukasz&rft.date=2019-02-05&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=22&rft.issue=1&rft.spage=47&rft.epage=62&rft_id=info:doi/10.1007%2Fs10044-018-0758-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |