Automatic Target Detection in High-Resolution Remote Sensing Images Using a Contour-Based Spatial Model

In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the geospatial targets with complex structures, each image was partitioned into pieces as target candidate regions using multiple segmentations...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 9; no. 5; pp. 886 - 890
Main Authors Li, Yu, Sun, Xian, Wang, Hongqi, Sun, Hao, Li, Xiangjuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the geospatial targets with complex structures, each image was partitioned into pieces as target candidate regions using multiple segmentations at first. Then, the automatic identification of target seed regions is achieved by computing the similarity of the contour information with the target template using dynamic programming. Finally, the contour-based similarity was further updated and combined with spatial relationships to figure out the missing parts. In this way, a more accurate target detection result can be achieved. The precision, robustness, and effectiveness of the proposed method were demonstrated by the experimental results.
AbstractList In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the geospatial targets with complex structures, each image was partitioned into pieces as target candidate regions using multiple segmentations at first. Then, the automatic identification of target seed regions is achieved by computing the similarity of the contour information with the target template using dynamic programming. Finally, the contour-based similarity was further updated and combined with spatial relationships to figure out the missing parts. In this way, a more accurate target detection result can be achieved. The precision, robustness, and effectiveness of the proposed method were demonstrated by the experimental results.
Author Hao Sun
Yu Li
Xian Sun
Xiangjuan Li
Hongqi Wang
Author_xml – sequence: 1
  givenname: Yu
  surname: Li
  fullname: Li, Yu
– sequence: 2
  givenname: Xian
  surname: Sun
  fullname: Sun, Xian
– sequence: 3
  givenname: Hongqi
  surname: Wang
  fullname: Wang, Hongqi
– sequence: 4
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
– sequence: 5
  givenname: Xiangjuan
  surname: Li
  fullname: Li, Xiangjuan
BookMark eNqFkUtP3DAUhS1EJR7lB1TdWOqmmwx2_MwShqc0FdIMSN1Ft-YmNUrsaews-PckDGLBgq5sX33nXB2fI7IfYkBCvnG24JxVp6vr9WZRMl4uSm6FEGaPHHKlbMGU4fvzXapCVfb3ATlK6YmxUlprDkl7NubYQ_aO3sPQYqYXmNFlHwP1gd749m-xxhS78XW0xj5mpBsMyYeW3vbQYqIPrw-gyxhyHIfiHBI-0s12soWO_oqP2H0lXxroEp68ncfk4eryfnlTrO6ub5dnq8IJVeVCa2fAgkYLAiTXWv5Bg9AwKZlg1nFTSa5Kw6RpoHJNxblhAkzTSK2F1eKY_Nz5bof4b8SU694nh10HAeOYam4MKyuhGPs_qlSlpTFGTeiPD-jTlDNMQWrOuJVaCT0b8h3lhpjSgE29HXwPw_ME1XNL9dxSPbdUv7U0acwHjfMZ5r_OA_juU-X3ndIj4vsmzbUQ0ogXBk2fgg
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_JSTARS_2016_2620900
crossref_primary_10_1155_2013_917928
crossref_primary_10_6002_ect_2021_0480
crossref_primary_10_3390_rs11010047
crossref_primary_10_1109_ACCESS_2018_2868227
crossref_primary_10_1109_TGRS_2024_3396134
crossref_primary_10_1155_2022_5883324
crossref_primary_10_1016_j_knosys_2016_01_028
crossref_primary_10_1186_s13638_018_1022_8
crossref_primary_10_1109_LGRS_2017_2699329
crossref_primary_10_1109_TGRS_2016_2645610
crossref_primary_10_11648_j_ajaa_20241103_11
crossref_primary_10_1117_1_JRS_16_024516
crossref_primary_10_35940_ijitee_C9790_0311422
crossref_primary_10_1016_j_isprsjprs_2023_01_001
crossref_primary_10_1109_LGRS_2017_2673806
crossref_primary_10_1016_j_isprsjprs_2013_12_011
crossref_primary_10_1109_LGRS_2015_2432135
crossref_primary_10_1016_j_patcog_2017_06_036
crossref_primary_10_1016_j_patrec_2019_06_019
crossref_primary_10_1155_2017_1796728
crossref_primary_10_52547_jgit_9_3_109
crossref_primary_10_3390_rs13020281
crossref_primary_10_1109_ACCESS_2021_3057165
crossref_primary_10_1016_j_isprsjprs_2014_10_007
crossref_primary_10_1016_j_ijleo_2014_06_062
crossref_primary_10_1109_JSTARS_2020_3015049
crossref_primary_10_1109_TGRS_2019_2935177
crossref_primary_10_1109_TGRS_2021_3095186
crossref_primary_10_1007_s12046_020_1292_9
crossref_primary_10_1007_s11767_014_3117_7
crossref_primary_10_1007_s00138_020_01153_7
crossref_primary_10_3390_electronics12040946
crossref_primary_10_1109_ACCESS_2019_2943346
Cites_doi 10.1109/CVPR.2003.1211479
10.1109/TIT.1962.1057692
10.1109/LGRS.2009.2027139
10.1109/TPAMI.2007.70772
10.1109/34.993558
10.1109/TPAMI.2007.1144
10.1109/TGRS.2004.839547
10.1109/CVPR.2005.320
10.1109/TGRS.2008.916644
10.1109/TPAMI.2007.1062
10.1109/34.868688
10.1109/CVPR.2003.1211346
10.1109/TGRS.2009.2027895
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
F28
DOI 10.1109/LGRS.2012.2183337
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
Civil Engineering Abstracts

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 890
ExternalDocumentID 2677997491
10_1109_LGRS_2012_2183337
6163347
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c359t-66c7a8a6e8a3a41664be7eaf0440308c17941527047fa9cf911703a7ff4663863
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Fri Jul 11 13:19:27 EDT 2025
Sun Aug 24 03:26:25 EDT 2025
Mon Jun 30 08:26:40 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Jul 01 03:45:25 EDT 2025
Tue Aug 26 17:00:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-66c7a8a6e8a3a41664be7eaf0440308c17941527047fa9cf911703a7ff4663863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1018465360
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1770293500
crossref_primary_10_1109_LGRS_2012_2183337
proquest_miscellaneous_1559647775
ieee_primary_6163347
proquest_journals_1018465360
crossref_citationtrail_10_1109_LGRS_2012_2183337
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2012
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref20
santini (ref18) 2001
ref11
ref2
cormen (ref17) 2001
ref1
bai (ref12) 2009
ref16
ref19
ref8
ref7
yang (ref14) 2008
leibe (ref5) 2004
ref3
shotton (ref9) 2008; 30
ref6
opelt (ref10) 2006; 2
fergus (ref4) 2004; 3021
References_xml – ident: ref2
  doi: 10.1109/CVPR.2003.1211479
– ident: ref20
  doi: 10.1109/TIT.1962.1057692
– volume: 3021
  start-page: 242
  year: 2004
  ident: ref4
  article-title: A visual category filter for google images
  publication-title: Proc ECCV
– ident: ref7
  doi: 10.1109/LGRS.2009.2027139
– volume: 30
  start-page: 1270
  year: 2008
  ident: ref9
  article-title: Multiscale categorical object recognition using contour fragments
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70772
– ident: ref15
  doi: 10.1109/34.993558
– ident: ref8
  doi: 10.1109/TPAMI.2007.1144
– year: 2001
  ident: ref18
  publication-title: Exploratory Image Databases Content-Based Retrieval
– ident: ref19
  doi: 10.1109/TGRS.2004.839547
– ident: ref3
  doi: 10.1109/CVPR.2005.320
– start-page: 17
  year: 2004
  ident: ref5
  article-title: Combined object categorization and segmentation with an implicit shape model
  publication-title: Proc ECCV
– start-page: 43
  year: 2008
  ident: ref14
  article-title: A survey of shape feature extraction techniques
  publication-title: Pattern Recognit
– year: 2001
  ident: ref17
  publication-title: Introduction to Algorithms
– volume: 2
  start-page: 575
  year: 2006
  ident: ref10
  article-title: A boundary-fragment-model for object detection
  publication-title: Proc ECCV
– start-page: 1335
  year: 2009
  ident: ref12
  article-title: Shape band: A deformable object detection approach
  publication-title: Proc CVPR
– ident: ref6
  doi: 10.1109/TGRS.2008.916644
– ident: ref11
  doi: 10.1109/TPAMI.2007.1062
– ident: ref13
  doi: 10.1109/34.868688
– ident: ref16
  doi: 10.1109/CVPR.2003.1211346
– ident: ref1
  doi: 10.1109/TGRS.2009.2027895
SSID ssj0024887
Score 2.2369175
Snippet In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 886
SubjectTerms Aircraft
Context
Dynamic programming
Geometric information
Image detection
Image segmentation
Object detection
Remote sensing
Robustness
Seeds
Segmentation
Shape
Similarity
spatial relationship modeling
Target detection
Title Automatic Target Detection in High-Resolution Remote Sensing Images Using a Contour-Based Spatial Model
URI https://ieeexplore.ieee.org/document/6163347
https://www.proquest.com/docview/1018465360
https://www.proquest.com/docview/1559647775
https://www.proquest.com/docview/1770293500
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BEoILLS-xQCsj9YTw4k0cOznSBy9BDzykvUWOM16qQhZBcqC_vh4nuyBaIW6RMpEtfX58znyeD-CLpNxbUWpeDFBxWSjHTWw1N7RaepSdLemC8_lPdXwtT4fJcAb2pndhEDGIz7BPjyGXX45tQ7_K9pUnD7HUszDrD27tXa3nunppMMMjRsCTLB12GcyByPbPji4uScQV9YkPxGR5_mIPCqYq_6zEYXs5_ADnk461qpLf_aYu-vbPq5qN7-35R1jqeCY7aAfGMsxgtQILneX5zdMKzB8FT9-nVRgdNPU4VG5lV0EXzr5jHRRaFftVMVKCcPrL345RdoEeXWSXpHyvRuzkzq9IjyxID5hhVO3Kt82_-t2xZGR47Ac4I8e12zW4Pvxx9e2Yd_4L3MZJVnOlrDapUZia2HjipmSBGo0jl-pYpJbmMrniCqmdyazLyMUmNto56XlMquJ1mKvGFW4AS1IlnEYVZVHpKQsaFWHkhI2K0gwKKXsgJojktitOTh4Zt3k4pIgsJxBzAjHvQOzB7vST-7Yyx1vBqwTKNLDDowfbE9jzbu4-kugtpapzSvRgZ_razzpKpZgKx42P8QcxusKrkzditBaeTCVCbP6_9S1YpD62irVtmKsfGvzkKU5dfA5j-y9UnvYM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB31Q6hcoPRD3VLASJwQ3noTx06OhdJuYbeHdivtLXKccVtRsqhNDuXX43GyC6Ko4hYpjmzp2Z7nzPM8gHeScm9FqXkxQMVloRw3sdXc0G7pUXa2pAvO41M1vJBfpsl0CT4s7sIgYhCfYZ8eQy6_nNmGfpXtK08eYqmXYdXH_WTQ3tb6XVkvDXZ4xAl4kqXTLoc5ENn-6PjsnGRcUZ8YQUym539EoWCr8mAvDgHm6DmM50NrdSXf-k1d9O3Pv6o2_u_Y1-FZxzTZQTs1XsASVhuw1pmeX91vwJPj4Op7vwmXB009C7Vb2SQow9kh1kGjVbHripEWhNN__naWsjP0-CI7J-17dclOvvs96Y4F8QEzjOpd-b75Rx8fS0aWx36KM_Jcu9mCi6PPk09D3jkwcBsnWc2VstqkRmFqYuOpm5IFajSOfKpjkVpazeSLK6R2JrMuIx-b2GjnpGcyqYq3YaWaVbgDLEmVcBpVlEWlJy1oVISREzYqSjMopOyBmCOS2648Oblk3OThmCKynEDMCcS8A7EH7xef_GhrczzWeJNAWTTs8OjB3hz2vFu9dyR7S6nunBI9eLt47dcdJVNMhbPGt_FHMbrEq5NH2mgtPJ1KhNj9d-9vYG04GY_y0cnp15fwlMbb6tf2YKW-bfCVJzx18TrM819PL_lV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Target+Detection+in+High-Resolution+Remote+Sensing+Images+Using+a+Contour-Based+Spatial+Model&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Li%2C+Yu&rft.au=Sun%2C+Xian&rft.au=Wang%2C+Hongqi&rft.au=Sun%2C+Hao&rft.date=2012-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=9&rft.issue=5&rft.spage=886&rft_id=info:doi/10.1109%2FLGRS.2012.2183337&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2677997491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon