Automatic Target Detection in High-Resolution Remote Sensing Images Using a Contour-Based Spatial Model
In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the geospatial targets with complex structures, each image was partitioned into pieces as target candidate regions using multiple segmentations...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 9; no. 5; pp. 886 - 890 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the geospatial targets with complex structures, each image was partitioned into pieces as target candidate regions using multiple segmentations at first. Then, the automatic identification of target seed regions is achieved by computing the similarity of the contour information with the target template using dynamic programming. Finally, the contour-based similarity was further updated and combined with spatial relationships to figure out the missing parts. In this way, a more accurate target detection result can be achieved. The precision, robustness, and effectiveness of the proposed method were demonstrated by the experimental results. |
---|---|
AbstractList | In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the geospatial targets with complex structures, each image was partitioned into pieces as target candidate regions using multiple segmentations at first. Then, the automatic identification of target seed regions is achieved by computing the similarity of the contour information with the target template using dynamic programming. Finally, the contour-based similarity was further updated and combined with spatial relationships to figure out the missing parts. In this way, a more accurate target detection result can be achieved. The precision, robustness, and effectiveness of the proposed method were demonstrated by the experimental results. |
Author | Hao Sun Yu Li Xian Sun Xiangjuan Li Hongqi Wang |
Author_xml | – sequence: 1 givenname: Yu surname: Li fullname: Li, Yu – sequence: 2 givenname: Xian surname: Sun fullname: Sun, Xian – sequence: 3 givenname: Hongqi surname: Wang fullname: Wang, Hongqi – sequence: 4 givenname: Hao surname: Sun fullname: Sun, Hao – sequence: 5 givenname: Xiangjuan surname: Li fullname: Li, Xiangjuan |
BookMark | eNqFkUtP3DAUhS1EJR7lB1TdWOqmmwx2_MwShqc0FdIMSN1Ft-YmNUrsaews-PckDGLBgq5sX33nXB2fI7IfYkBCvnG24JxVp6vr9WZRMl4uSm6FEGaPHHKlbMGU4fvzXapCVfb3ATlK6YmxUlprDkl7NubYQ_aO3sPQYqYXmNFlHwP1gd749m-xxhS78XW0xj5mpBsMyYeW3vbQYqIPrw-gyxhyHIfiHBI-0s12soWO_oqP2H0lXxroEp68ncfk4eryfnlTrO6ub5dnq8IJVeVCa2fAgkYLAiTXWv5Bg9AwKZlg1nFTSa5Kw6RpoHJNxblhAkzTSK2F1eKY_Nz5bof4b8SU694nh10HAeOYam4MKyuhGPs_qlSlpTFGTeiPD-jTlDNMQWrOuJVaCT0b8h3lhpjSgE29HXwPw_ME1XNL9dxSPbdUv7U0acwHjfMZ5r_OA_juU-X3ndIj4vsmzbUQ0ogXBk2fgg |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_JSTARS_2016_2620900 crossref_primary_10_1155_2013_917928 crossref_primary_10_6002_ect_2021_0480 crossref_primary_10_3390_rs11010047 crossref_primary_10_1109_ACCESS_2018_2868227 crossref_primary_10_1109_TGRS_2024_3396134 crossref_primary_10_1155_2022_5883324 crossref_primary_10_1016_j_knosys_2016_01_028 crossref_primary_10_1186_s13638_018_1022_8 crossref_primary_10_1109_LGRS_2017_2699329 crossref_primary_10_1109_TGRS_2016_2645610 crossref_primary_10_11648_j_ajaa_20241103_11 crossref_primary_10_1117_1_JRS_16_024516 crossref_primary_10_35940_ijitee_C9790_0311422 crossref_primary_10_1016_j_isprsjprs_2023_01_001 crossref_primary_10_1109_LGRS_2017_2673806 crossref_primary_10_1016_j_isprsjprs_2013_12_011 crossref_primary_10_1109_LGRS_2015_2432135 crossref_primary_10_1016_j_patcog_2017_06_036 crossref_primary_10_1016_j_patrec_2019_06_019 crossref_primary_10_1155_2017_1796728 crossref_primary_10_52547_jgit_9_3_109 crossref_primary_10_3390_rs13020281 crossref_primary_10_1109_ACCESS_2021_3057165 crossref_primary_10_1016_j_isprsjprs_2014_10_007 crossref_primary_10_1016_j_ijleo_2014_06_062 crossref_primary_10_1109_JSTARS_2020_3015049 crossref_primary_10_1109_TGRS_2019_2935177 crossref_primary_10_1109_TGRS_2021_3095186 crossref_primary_10_1007_s12046_020_1292_9 crossref_primary_10_1007_s11767_014_3117_7 crossref_primary_10_1007_s00138_020_01153_7 crossref_primary_10_3390_electronics12040946 crossref_primary_10_1109_ACCESS_2019_2943346 |
Cites_doi | 10.1109/CVPR.2003.1211479 10.1109/TIT.1962.1057692 10.1109/LGRS.2009.2027139 10.1109/TPAMI.2007.70772 10.1109/34.993558 10.1109/TPAMI.2007.1144 10.1109/TGRS.2004.839547 10.1109/CVPR.2005.320 10.1109/TGRS.2008.916644 10.1109/TPAMI.2007.1062 10.1109/34.868688 10.1109/CVPR.2003.1211346 10.1109/TGRS.2009.2027895 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D F28 |
DOI | 10.1109/LGRS.2012.2183337 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Civil Engineering Abstracts Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 890 |
ExternalDocumentID | 2677997491 10_1109_LGRS_2012_2183337 6163347 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c359t-66c7a8a6e8a3a41664be7eaf0440308c17941527047fa9cf911703a7ff4663863 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Fri Jul 11 13:19:27 EDT 2025 Sun Aug 24 03:26:25 EDT 2025 Mon Jun 30 08:26:40 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Tue Jul 01 03:45:25 EDT 2025 Tue Aug 26 17:00:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-66c7a8a6e8a3a41664be7eaf0440308c17941527047fa9cf911703a7ff4663863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1018465360 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1770293500 crossref_primary_10_1109_LGRS_2012_2183337 proquest_miscellaneous_1559647775 ieee_primary_6163347 proquest_journals_1018465360 crossref_citationtrail_10_1109_LGRS_2012_2183337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2012 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref20 santini (ref18) 2001 ref11 ref2 cormen (ref17) 2001 ref1 bai (ref12) 2009 ref16 ref19 ref8 ref7 yang (ref14) 2008 leibe (ref5) 2004 ref3 shotton (ref9) 2008; 30 ref6 opelt (ref10) 2006; 2 fergus (ref4) 2004; 3021 |
References_xml | – ident: ref2 doi: 10.1109/CVPR.2003.1211479 – ident: ref20 doi: 10.1109/TIT.1962.1057692 – volume: 3021 start-page: 242 year: 2004 ident: ref4 article-title: A visual category filter for google images publication-title: Proc ECCV – ident: ref7 doi: 10.1109/LGRS.2009.2027139 – volume: 30 start-page: 1270 year: 2008 ident: ref9 article-title: Multiscale categorical object recognition using contour fragments publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70772 – ident: ref15 doi: 10.1109/34.993558 – ident: ref8 doi: 10.1109/TPAMI.2007.1144 – year: 2001 ident: ref18 publication-title: Exploratory Image Databases Content-Based Retrieval – ident: ref19 doi: 10.1109/TGRS.2004.839547 – ident: ref3 doi: 10.1109/CVPR.2005.320 – start-page: 17 year: 2004 ident: ref5 article-title: Combined object categorization and segmentation with an implicit shape model publication-title: Proc ECCV – start-page: 43 year: 2008 ident: ref14 article-title: A survey of shape feature extraction techniques publication-title: Pattern Recognit – year: 2001 ident: ref17 publication-title: Introduction to Algorithms – volume: 2 start-page: 575 year: 2006 ident: ref10 article-title: A boundary-fragment-model for object detection publication-title: Proc ECCV – start-page: 1335 year: 2009 ident: ref12 article-title: Shape band: A deformable object detection approach publication-title: Proc CVPR – ident: ref6 doi: 10.1109/TGRS.2008.916644 – ident: ref11 doi: 10.1109/TPAMI.2007.1062 – ident: ref13 doi: 10.1109/34.868688 – ident: ref16 doi: 10.1109/CVPR.2003.1211346 – ident: ref1 doi: 10.1109/TGRS.2009.2027895 |
SSID | ssj0024887 |
Score | 2.2369175 |
Snippet | In this letter, we propose a contour-based spatial model which can detect geospatial targets accurately in high-resolution remote sensing images. To detect the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 886 |
SubjectTerms | Aircraft Context Dynamic programming Geometric information Image detection Image segmentation Object detection Remote sensing Robustness Seeds Segmentation Shape Similarity spatial relationship modeling Target detection |
Title | Automatic Target Detection in High-Resolution Remote Sensing Images Using a Contour-Based Spatial Model |
URI | https://ieeexplore.ieee.org/document/6163347 https://www.proquest.com/docview/1018465360 https://www.proquest.com/docview/1559647775 https://www.proquest.com/docview/1770293500 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BEoILLS-xQCsj9YTw4k0cOznSBy9BDzykvUWOM16qQhZBcqC_vh4nuyBaIW6RMpEtfX58znyeD-CLpNxbUWpeDFBxWSjHTWw1N7RaepSdLemC8_lPdXwtT4fJcAb2pndhEDGIz7BPjyGXX45tQ7_K9pUnD7HUszDrD27tXa3nunppMMMjRsCTLB12GcyByPbPji4uScQV9YkPxGR5_mIPCqYq_6zEYXs5_ADnk461qpLf_aYu-vbPq5qN7-35R1jqeCY7aAfGMsxgtQILneX5zdMKzB8FT9-nVRgdNPU4VG5lV0EXzr5jHRRaFftVMVKCcPrL345RdoEeXWSXpHyvRuzkzq9IjyxID5hhVO3Kt82_-t2xZGR47Ac4I8e12zW4Pvxx9e2Yd_4L3MZJVnOlrDapUZia2HjipmSBGo0jl-pYpJbmMrniCqmdyazLyMUmNto56XlMquJ1mKvGFW4AS1IlnEYVZVHpKQsaFWHkhI2K0gwKKXsgJojktitOTh4Zt3k4pIgsJxBzAjHvQOzB7vST-7Yyx1vBqwTKNLDDowfbE9jzbu4-kugtpapzSvRgZ_razzpKpZgKx42P8QcxusKrkzditBaeTCVCbP6_9S1YpD62irVtmKsfGvzkKU5dfA5j-y9UnvYM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB31Q6hcoPRD3VLASJwQ3noTx06OhdJuYbeHdivtLXKccVtRsqhNDuXX43GyC6Ko4hYpjmzp2Z7nzPM8gHeScm9FqXkxQMVloRw3sdXc0G7pUXa2pAvO41M1vJBfpsl0CT4s7sIgYhCfYZ8eQy6_nNmGfpXtK08eYqmXYdXH_WTQ3tb6XVkvDXZ4xAl4kqXTLoc5ENn-6PjsnGRcUZ8YQUym539EoWCr8mAvDgHm6DmM50NrdSXf-k1d9O3Pv6o2_u_Y1-FZxzTZQTs1XsASVhuw1pmeX91vwJPj4Op7vwmXB009C7Vb2SQow9kh1kGjVbHripEWhNN__naWsjP0-CI7J-17dclOvvs96Y4F8QEzjOpd-b75Rx8fS0aWx36KM_Jcu9mCi6PPk09D3jkwcBsnWc2VstqkRmFqYuOpm5IFajSOfKpjkVpazeSLK6R2JrMuIx-b2GjnpGcyqYq3YaWaVbgDLEmVcBpVlEWlJy1oVISREzYqSjMopOyBmCOS2648Oblk3OThmCKynEDMCcS8A7EH7xef_GhrczzWeJNAWTTs8OjB3hz2vFu9dyR7S6nunBI9eLt47dcdJVNMhbPGt_FHMbrEq5NH2mgtPJ1KhNj9d-9vYG04GY_y0cnp15fwlMbb6tf2YKW-bfCVJzx18TrM819PL_lV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Target+Detection+in+High-Resolution+Remote+Sensing+Images+Using+a+Contour-Based+Spatial+Model&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Li%2C+Yu&rft.au=Sun%2C+Xian&rft.au=Wang%2C+Hongqi&rft.au=Sun%2C+Hao&rft.date=2012-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=9&rft.issue=5&rft.spage=886&rft_id=info:doi/10.1109%2FLGRS.2012.2183337&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2677997491 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |