Stochastic Decision-Making Optimization Model for Large Electricity Self-Producers Using Natural Gas in Industrial Processes: An Approach Considering a Regret Cost Function
In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This paper presents a decision-making structure for large consumers with flexibility to manage electricity or natural gas consumption to satisfy the...
Saved in:
Published in | Energies (Basel) Vol. 17; no. 21; p. 5389 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This paper presents a decision-making structure for large consumers with flexibility to manage electricity or natural gas consumption to satisfy the demands of industrial processes. The proposed modelling energy system structure relates monthly medium and hourly short-term decisions to which these agents are subjected, represented by two connected optimization models. In the medium term, the decision occurs under uncertain conditions of energy and natural gas market prices, as well as hydropower generation (self-production). The monthly decision is represented by a risk-constrained optimization model. In the short term, hourly optimization considers the operational flexibility of energy and/or natural gas consumption, subject to the strategy defined in the medium term and mathematically connected by a regret cost function. The model application of a real case of a Brazilian aluminum producer indicates a measured energy cost reduction of USD 3.98 millions over a six-month analysis period. |
---|---|
AbstractList | In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This paper presents a decision-making structure for large consumers with flexibility to manage electricity or natural gas consumption to satisfy the demands of industrial processes. The proposed modelling energy system structure relates monthly medium and hourly short-term decisions to which these agents are subjected, represented by two connected optimization models. In the medium term, the decision occurs under uncertain conditions of energy and natural gas market prices, as well as hydropower generation (self-production). The monthly decision is represented by a risk-constrained optimization model. In the short term, hourly optimization considers the operational flexibility of energy and/or natural gas consumption, subject to the strategy defined in the medium term and mathematically connected by a regret cost function. The model application of a real case of a Brazilian aluminum producer indicates a measured energy cost reduction of USD 3.98 millions over a six-month analysis period. |
Audience | Academic |
Author | Castro, Roberto Camargo, Luiz Armando Steinle Ramos, Dorel Soares Clemente, Felipe Serachiani Leonel, Laís Domingues Balan, Mateus Henrique |
Author_xml | – sequence: 1 givenname: Laís Domingues surname: Leonel fullname: Leonel, Laís Domingues – sequence: 2 givenname: Mateus Henrique orcidid: 0000-0002-4065-2332 surname: Balan fullname: Balan, Mateus Henrique – sequence: 3 givenname: Luiz Armando Steinle orcidid: 0000-0002-1031-4703 surname: Camargo fullname: Camargo, Luiz Armando Steinle – sequence: 4 givenname: Dorel Soares orcidid: 0000-0003-3044-6399 surname: Ramos fullname: Ramos, Dorel Soares – sequence: 5 givenname: Roberto orcidid: 0000-0002-8659-4908 surname: Castro fullname: Castro, Roberto – sequence: 6 givenname: Felipe Serachiani surname: Clemente fullname: Clemente, Felipe Serachiani |
BookMark | eNpNUsFu1DAUjFCRKKUXvsASN6SU2E6cmNtqactKW4ooPUcv9nPqJWsvtnMo38RH4nRRwT74aTQzHvu918WJ8w6L4i2tLjiX1Qd0tGW04Z18UZxSKUVJq5af_Fe_Ks5j3FV5cU4556fF77vk1QPEZBX5hMpG6115Az-sG8ntIdm9_QUpY-TGa5yI8YFsIYxILidUKVhl0yO5w8mUX4PXs8IQyX1c1F8gzQEmcg2RWEc2Ts8xCzKSmQpjxPiRrBxZHQ7Bg3oga--i1RgWMZBvOAZMGYyJXM1OLSHeFC8NTBHP_55nxf3V5ff153J7e71Zr7al4o1MpRDV0HQdgqSDRi2xbuqaoqKmbfUAIE1jJDViENDVRssWRVMPmlUyFwIVPys2R1_tYdcfgt1DeOw92P4J8GHsIeQfm7Bnom3pYGjDDNZqAMkAmaiHFhlvKOjs9e7olV_5c8aY-p2fg8vxe06ZYPlq1mXWxZE1Qja1zvgUQOWtcW9VbrOxGV91ubt1U3WL4P1RoIKPMaB5jkmrfpmG_t808D-XO6tf |
Cites_doi | 10.1016/j.energy.2023.127710 10.1016/j.jclepro.2019.01.085 10.3390/en14196368 10.1016/j.egyr.2023.04.371 10.3390/en17112792 10.3390/en17133200 10.1016/j.eist.2023.100696 10.1016/j.compchemeng.2024.108885 10.3390/en15010068 10.1016/j.compchemeng.2020.107191 10.1109/SEST48500.2020.9203149 10.1016/j.est.2022.104478 10.1109/UPEC.2018.8542037 10.1049/ip-gtd:20050466 10.21314/JOR.2000.038 10.1016/j.epsr.2020.106709 10.1109/TPWRS.2007.895164 10.1016/j.epsr.2020.106669 10.1016/j.ejor.2012.08.022 10.3390/en13092249 10.1016/j.egyr.2023.04.129 10.1016/j.eneco.2022.105841 10.1016/j.enpol.2009.09.010 10.23919/PSCC.2018.8442754 10.1016/j.epsr.2020.106828 10.1049/iet-rpg.2019.0233 10.1016/j.enconman.2015.07.018 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en17215389 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_26771bf152fe4cba92ae264b7e2351ad A815345088 10_3390_en17215389 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c359t-660b588ea91bded9e45441ec1f77dbaa9f5f91f6b6a84fd97e654bd209e656ec3 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Mon Jun 30 14:43:00 EDT 2025 Tue Jul 01 05:40:26 EDT 2025 Tue Jul 01 04:13:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-660b588ea91bded9e45441ec1f77dbaa9f5f91f6b6a84fd97e654bd209e656ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4065-2332 0000-0002-1031-4703 0000-0003-3044-6399 0000-0002-8659-4908 |
OpenAccessLink | https://doaj.org/article/26771bf152fe4cba92ae264b7e2351ad |
PQID | 3126265428 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26771bf152fe4cba92ae264b7e2351ad proquest_journals_3126265428 gale_infotracacademiconefile_A815345088 crossref_primary_10_3390_en17215389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Leo (ref_9) 2021; 145 Shapiro (ref_21) 2013; 224 ref_33 ref_31 Philpott (ref_7) 2007; 22 ref_30 Lima (ref_12) 2021; 190 Jordehi (ref_1) 2022; 51 ref_17 Conejo (ref_6) 2006; 153 Zare (ref_8) 2010; 38 Arellano (ref_15) 2023; 9 Abedinia (ref_10) 2019; 215 Santos (ref_32) 2020; 189 Situ (ref_16) 2023; 9 Eitan (ref_23) 2023; 46 Silva (ref_14) 2022; 107 ref_25 ref_24 ref_20 Pedrini (ref_13) 2020; 189 ref_3 Angizeh (ref_5) 2019; 13 ref_2 Kanta (ref_19) 2025; 192 ref_29 ref_28 ref_27 ref_26 Rockfellar (ref_22) 2000; 2 Dimitriadis (ref_18) 2023; 277 ref_4 Nojavan (ref_11) 2015; 103 |
References_xml | – ident: ref_28 – volume: 277 start-page: 127710 year: 2023 ident: ref_18 article-title: Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets publication-title: Energy doi: 10.1016/j.energy.2023.127710 – ident: ref_30 – volume: 215 start-page: 878 year: 2019 ident: ref_10 article-title: Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.085 – ident: ref_26 – ident: ref_29 doi: 10.3390/en14196368 – volume: 9 start-page: 5384 year: 2023 ident: ref_15 article-title: Electricity procurement of large consumers considering power-purchase agreements publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.04.371 – ident: ref_4 doi: 10.3390/en17112792 – ident: ref_24 doi: 10.3390/en17133200 – volume: 46 start-page: 100696 year: 2023 ident: ref_23 article-title: Neglecting exit doors: How does regret cost shape the irreversible execution of renewable energy megaprojects? publication-title: Environ. Innov. Soc. Transit. doi: 10.1016/j.eist.2023.100696 – volume: 192 start-page: 108885 year: 2025 ident: ref_19 article-title: Strategic investments and portfolio management in interdependente low-carbon electricity and natural gas markets publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2024.108885 – ident: ref_17 doi: 10.3390/en15010068 – volume: 145 start-page: 107191 year: 2021 ident: ref_9 article-title: Stochastic short-term integrated electricity procurement and production scheduling for a large consumer publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107191 – ident: ref_20 doi: 10.1109/SEST48500.2020.9203149 – volume: 51 start-page: 104478 year: 2022 ident: ref_1 article-title: Risk-aware two-stage stochastic programming for electricity procurement of a large consumer with storage system and demand response publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104478 – ident: ref_3 doi: 10.1109/UPEC.2018.8542037 – ident: ref_25 – volume: 153 start-page: 407 year: 2006 ident: ref_6 article-title: Risk-constrained electricity procurement for a large consumer publication-title: IEE Proc.-Gener. Transm. Distrib. doi: 10.1049/ip-gtd:20050466 – volume: 2 start-page: 21 year: 2000 ident: ref_22 article-title: Optimization of Conditional Value-at-Risk publication-title: J. Risk doi: 10.21314/JOR.2000.038 – ident: ref_33 – ident: ref_27 – volume: 189 start-page: 106709 year: 2020 ident: ref_32 article-title: Hourly pricing and day-ahead dispatch setting in Brazil: The DESSEM model publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106709 – volume: 22 start-page: 744 year: 2007 ident: ref_7 article-title: A Stochastic Programming Approach to Electric Energy Procurement for Large Consumers publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2007.895164 – volume: 189 start-page: 106669 year: 2020 ident: ref_13 article-title: Hedging power market risk by investing in self-production from complementing renewable sources publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106669 – volume: 224 start-page: 375 year: 2013 ident: ref_21 article-title: Risk neutral and risk averse stochastic dual dynamic programming method publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.08.022 – ident: ref_2 doi: 10.3390/en13092249 – volume: 9 start-page: 409 year: 2023 ident: ref_16 article-title: Risk aware decomposition of online scheduling for large flexible consumers considering the age of information publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.04.129 – volume: 107 start-page: 105841 year: 2022 ident: ref_14 article-title: Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems publication-title: Energy Econ. doi: 10.1016/j.eneco.2022.105841 – volume: 38 start-page: 234 year: 2010 ident: ref_8 article-title: Electricity procurement for large consumers based on Information Gap Decision Theory publication-title: Energy Policy doi: 10.1016/j.enpol.2009.09.010 – ident: ref_31 doi: 10.23919/PSCC.2018.8442754 – volume: 190 start-page: 106828 year: 2021 ident: ref_12 article-title: Free contract environment for big electricity consumer in Brazil considering correlated scenarios of energy, power demand and spot prices publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106828 – volume: 13 start-page: 2705 year: 2019 ident: ref_5 article-title: Stochastic risk-based flexibility scheduling for large customers with onsite solar generation publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2019.0233 – volume: 103 start-page: 1008 year: 2015 ident: ref_11 article-title: Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.07.018 |
SSID | ssj0000331333 |
Score | 2.3709197 |
Snippet | In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 5389 |
SubjectTerms | Alternative energy sources Aluminum industry Consumers Decision making Economic aspects Electricity energy procurement Energy transition Flexibility Integer programming integrated stochastic optimization model Investment analysis load-supply flexibility Market prices Mathematical functions Natural gas Optimization Power plants Production processes regret cost function |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB8SkWChoJJE5RkzixYy5oC7tUiC5VS6XeItsZl0olWzbhX_EjmfF6u3CAW-R82NJ4xm8cz3tCvKacx-eoTOYJLWRVCIpcqq4oS1FNrV3wqLne-WihDs-qT-f1edpwG9Kxyk1MjIG6W3reI9-XRUnYuya0_O76R8aqUfx3NUlo3Ba7FIIbSr52D2aL45ObXZZcSkrC5JqXVFJ-v489Jz3k5uavlSgS9v8rLMe1Zn5f3EsgEaZrqz4Qt7B_KO7-QR34SPw6HZf-m2WWZfiQdHKyoygtBV8oDHxP9ZXAYmdXQNAUPvOhb5hF3ZtLT-gbTvEqZMeR85VQIMTjA7CwkYoDPtoBLnvYantAKirA4S1Me5gmNnLYaH7yyxZOkDL4kRqHEea0aPIgHouz-ezr-8MsKS9kXtZmzJTKXd00aE3hOuwMVixVhr4IWnfOWhPqYIqgnLJNFTqjkSzjujI3dKHQyydip1_2-FSA1yi1k7ntKkXgEK3Dkr4Rclc6i7KbiFcbK7TXa4KNlhITtlW7tdVEHLCBbp5gUuzYsFxdtMnH2lJpXbhAiCRg5Z01pUXCe05jKevCUldv2Lwtu-64st6mCgQaKJNgtdOG-qoYsU7E3mYGtMmnh3Y7A5_9__Zzcack6LOuWNwTO-PqJ74g6DK6l2l-_gaqyfLv priority: 102 providerName: ProQuest |
Title | Stochastic Decision-Making Optimization Model for Large Electricity Self-Producers Using Natural Gas in Industrial Processes: An Approach Considering a Regret Cost Function |
URI | https://www.proquest.com/docview/3126265428 https://doaj.org/article/26771bf152fe4cba92ae264b7e2351ad |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgXOCAKB8iUKKRQOK0anb9teaWQpKqoqFqqZTbyvaO1Upli5rlX_EjGXsdGg6ol16i1SrZWDsznvckz3uMfSDO4yeoTOEJLRQiBEUlJQWxFFVL7YJHHeedj5fq8FwcreRqy-orngkb5IGHF7dfKa1LF6jNBBTeWVNZpCbuNFZclraNuy_1vC0ylfZgzol88UGPlBOv38cukh0qb_NPB0pC_f_bjlOPmT9jTzM4hOmwqF32ALvn7MmWZOAL9vusv_YXNqorw5fsj1McJ0sp-Ebl_yPPVUI0ObsCgqTwNR72hlnyu7n0hLrhDK9CcZK0Xgn9QTo2AEubJDhgYddw2cGtpwfkYQJcf4JpB9OsQg4br8_4YwunSMy9p5vrHubULOMiXrLz-ez758MiOy4UnkvTF0pNnKxrtKZ0LbYGRbQoQ18GrVtnrQkymDIop2wtQms0KilcSwGgC4Wev2I73XWHrxl4jVw7PrGtUAQK0Tqs6Blh4ipnkbcj9n4ThebnIKzRECGJsWpuYzViBzFAf78RxbDTDUqRJqdIc1eKjNjHGN4mlmx_Y73Nkwe00Ch-1Uxr-i8RkeqI7W0yoMm1vG54WRHrk8TT3tzHat6yxxUBo2GecY_t9De_8B0Bm96N2cN6vhizRwez5cnpOGU0fS5W5R_rs_3j |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOQAHxKdYKDASIE5REztxYiSEFtrtlu4uiLZSb67tjEulki2bIMR_QvxGxtmkCwe49RbFiR1pxuM3juc9xp5TzuNilCpyhBai1HtJUypLKUuRRZZb7zAP9c7TmRwfpu-PsqM19quvhQnHKvuY2Abqcu7CHvmmSDhh74zQ8pvzr1FQjQp_V3sJjaVb7OGP75Sy1a93t8i-LzgfbR-8G0edqkDkRKaaSMrYZkWBRiW2xFJhGmS40CU-z0trjPKZV4mXVpoi9aXKkUa1JY8VXUh0gvq9wq6mQqgwo4rRzsWeTiwEpXxiyYJK7fEmViHFoqCi_lr3WnmAfy0C7co2usVudpAUhksfus3WsLrDbvxBVHiX_dxv5u6zCZzOsNWp8kTTVsgKPlDQ-dJVc0KQVjsDAsIwCUfMYbtV2Tl1hPVhH8989LFlmCXMCe1hBZiZlvgDdkwNpxWslESgK2HA-hUMKxh23OfQK4yGlw18wpMFNnSzbmBES3T4iHvs8FIscp-tV_MKHzBwOYrcitiUqSQoisYipz58bLk1KMoBe9ZbQZ8v6Tw0pUHBVnplqwF7Gwx08USg4G5vzBcnupvRmss8T6wn_OMxddYobpDQpc2RiywxNNTLYF4dAkWzMM509Q70oYFySw8LGisN-HjANnoP0F0EqfXK3x_-v_kpuzY-mE70ZHe294hd5wS6lrWSG2y9WXzDxwSaGvuk9VRgx5c9NX4Dsv0wFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJyF4QPwUZQNOAsRT1CRO7BoJoY62bGwr1cakvWW2cx6TtnS0QYj_ib-Av45z6qzwAG97i5zEsXTn83eO7_sYe0k5j41RqMgSWogy5wRNqTyjLEX0c2mcRenrnfcnYvso-3icH6-xX20tjD9W2cbEJlCXM-v3yHs8SQl754SWey4ci5gOx-8uv0ZeQcr_aW3lNJYusos_vlP6tni7MyRbv0rT8ejz--0oKAxElueqjoSITd7vo1aJKbFUmHlJLrSJk7I0WiuXO5U4YYTuZ65UEmkEpkxjRRcCLad-b7B1SVlR3GHrW6PJ9OBqhyfmnBJAvuRE5VzFPax8wkUhRv21CjZiAf9aEpp1bnyX3QkAFQZLj7rH1rC6z27_QVv4gP08rGf2i_YMzzAMGj3RfiNrBZ8oBF2E2k7wQmvnQLAY9vyBcxg1mjtnlpA_HOK5i6YN3ywhUGiOLsBENzQg8EEv4KyCla4IhIIGXLyBQQWDwIQOrd6of1nDAZ7OsabGRQ1jWrD9IB6yo2uxySPWqWYVPmZgJXJpeKzLTBAwRW0wpT5cbFKjkZdd9qK1QnG5JPcoKCnytipWtuqyLW-gqyc8IXfTMJufFmF-F6mQMjGO0JDDzBqtUo2ENY3ElOeJpk-99uYtfNio59rqUP1AA_UEXMWgT9_KPFruss3WA4oQTxbFyvuf_P_2c3aTpkWxtzPZ3WC3UkJgy8LJTdap59_wKSGo2jwLrgrs5Lpnx29xVjWo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Decision-Making+Optimization+Model+for+Large+Electricity+Self-Producers+Using+Natural+Gas+in+Industrial+Processes%3A+An+Approach+Considering+a+Regret+Cost+Function&rft.jtitle=Energies+%28Basel%29&rft.au=Leonel%2C+La%C3%ADs+Domingues&rft.au=Balan%2C+Mateus+Henrique&rft.au=Camargo%2C+Luiz+Armando+Steinle&rft.au=Ramos%2C+Dorel+Soares&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=17&rft.issue=21&rft_id=info:doi/10.3390%2Fen17215389&rft.externalDocID=A815345088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |