Stochastic Decision-Making Optimization Model for Large Electricity Self-Producers Using Natural Gas in Industrial Processes: An Approach Considering a Regret Cost Function

In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This paper presents a decision-making structure for large consumers with flexibility to manage electricity or natural gas consumption to satisfy the...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 17; no. 21; p. 5389
Main Authors Leonel, Laís Domingues, Balan, Mateus Henrique, Camargo, Luiz Armando Steinle, Ramos, Dorel Soares, Castro, Roberto, Clemente, Felipe Serachiani
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This paper presents a decision-making structure for large consumers with flexibility to manage electricity or natural gas consumption to satisfy the demands of industrial processes. The proposed modelling energy system structure relates monthly medium and hourly short-term decisions to which these agents are subjected, represented by two connected optimization models. In the medium term, the decision occurs under uncertain conditions of energy and natural gas market prices, as well as hydropower generation (self-production). The monthly decision is represented by a risk-constrained optimization model. In the short term, hourly optimization considers the operational flexibility of energy and/or natural gas consumption, subject to the strategy defined in the medium term and mathematically connected by a regret cost function. The model application of a real case of a Brazilian aluminum producer indicates a measured energy cost reduction of USD 3.98 millions over a six-month analysis period.
AbstractList In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This paper presents a decision-making structure for large consumers with flexibility to manage electricity or natural gas consumption to satisfy the demands of industrial processes. The proposed modelling energy system structure relates monthly medium and hourly short-term decisions to which these agents are subjected, represented by two connected optimization models. In the medium term, the decision occurs under uncertain conditions of energy and natural gas market prices, as well as hydropower generation (self-production). The monthly decision is represented by a risk-constrained optimization model. In the short term, hourly optimization considers the operational flexibility of energy and/or natural gas consumption, subject to the strategy defined in the medium term and mathematically connected by a regret cost function. The model application of a real case of a Brazilian aluminum producer indicates a measured energy cost reduction of USD 3.98 millions over a six-month analysis period.
Audience Academic
Author Castro, Roberto
Camargo, Luiz Armando Steinle
Ramos, Dorel Soares
Clemente, Felipe Serachiani
Leonel, Laís Domingues
Balan, Mateus Henrique
Author_xml – sequence: 1
  givenname: Laís Domingues
  surname: Leonel
  fullname: Leonel, Laís Domingues
– sequence: 2
  givenname: Mateus Henrique
  orcidid: 0000-0002-4065-2332
  surname: Balan
  fullname: Balan, Mateus Henrique
– sequence: 3
  givenname: Luiz Armando Steinle
  orcidid: 0000-0002-1031-4703
  surname: Camargo
  fullname: Camargo, Luiz Armando Steinle
– sequence: 4
  givenname: Dorel Soares
  orcidid: 0000-0003-3044-6399
  surname: Ramos
  fullname: Ramos, Dorel Soares
– sequence: 5
  givenname: Roberto
  orcidid: 0000-0002-8659-4908
  surname: Castro
  fullname: Castro, Roberto
– sequence: 6
  givenname: Felipe Serachiani
  surname: Clemente
  fullname: Clemente, Felipe Serachiani
BookMark eNpNUsFu1DAUjFCRKKUXvsASN6SU2E6cmNtqactKW4ooPUcv9nPqJWsvtnMo38RH4nRRwT74aTQzHvu918WJ8w6L4i2tLjiX1Qd0tGW04Z18UZxSKUVJq5af_Fe_Ks5j3FV5cU4556fF77vk1QPEZBX5hMpG6115Az-sG8ntIdm9_QUpY-TGa5yI8YFsIYxILidUKVhl0yO5w8mUX4PXs8IQyX1c1F8gzQEmcg2RWEc2Ts8xCzKSmQpjxPiRrBxZHQ7Bg3oga--i1RgWMZBvOAZMGYyJXM1OLSHeFC8NTBHP_55nxf3V5ff153J7e71Zr7al4o1MpRDV0HQdgqSDRi2xbuqaoqKmbfUAIE1jJDViENDVRssWRVMPmlUyFwIVPys2R1_tYdcfgt1DeOw92P4J8GHsIeQfm7Bnom3pYGjDDNZqAMkAmaiHFhlvKOjs9e7olV_5c8aY-p2fg8vxe06ZYPlq1mXWxZE1Qja1zvgUQOWtcW9VbrOxGV91ubt1U3WL4P1RoIKPMaB5jkmrfpmG_t808D-XO6tf
Cites_doi 10.1016/j.energy.2023.127710
10.1016/j.jclepro.2019.01.085
10.3390/en14196368
10.1016/j.egyr.2023.04.371
10.3390/en17112792
10.3390/en17133200
10.1016/j.eist.2023.100696
10.1016/j.compchemeng.2024.108885
10.3390/en15010068
10.1016/j.compchemeng.2020.107191
10.1109/SEST48500.2020.9203149
10.1016/j.est.2022.104478
10.1109/UPEC.2018.8542037
10.1049/ip-gtd:20050466
10.21314/JOR.2000.038
10.1016/j.epsr.2020.106709
10.1109/TPWRS.2007.895164
10.1016/j.epsr.2020.106669
10.1016/j.ejor.2012.08.022
10.3390/en13092249
10.1016/j.egyr.2023.04.129
10.1016/j.eneco.2022.105841
10.1016/j.enpol.2009.09.010
10.23919/PSCC.2018.8442754
10.1016/j.epsr.2020.106828
10.1049/iet-rpg.2019.0233
10.1016/j.enconman.2015.07.018
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en17215389
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journal Collection
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_26771bf152fe4cba92ae264b7e2351ad
A815345088
10_3390_en17215389
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c359t-660b588ea91bded9e45441ec1f77dbaa9f5f91f6b6a84fd97e654bd209e656ec3
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 01:31:20 EDT 2025
Mon Jun 30 14:43:00 EDT 2025
Tue Jul 01 05:40:26 EDT 2025
Tue Jul 01 04:13:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-660b588ea91bded9e45441ec1f77dbaa9f5f91f6b6a84fd97e654bd209e656ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4065-2332
0000-0002-1031-4703
0000-0003-3044-6399
0000-0002-8659-4908
OpenAccessLink https://doaj.org/article/26771bf152fe4cba92ae264b7e2351ad
PQID 3126265428
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_26771bf152fe4cba92ae264b7e2351ad
proquest_journals_3126265428
gale_infotracacademiconefile_A815345088
crossref_primary_10_3390_en17215389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Leo (ref_9) 2021; 145
Shapiro (ref_21) 2013; 224
ref_33
ref_31
Philpott (ref_7) 2007; 22
ref_30
Lima (ref_12) 2021; 190
Jordehi (ref_1) 2022; 51
ref_17
Conejo (ref_6) 2006; 153
Zare (ref_8) 2010; 38
Arellano (ref_15) 2023; 9
Abedinia (ref_10) 2019; 215
Santos (ref_32) 2020; 189
Situ (ref_16) 2023; 9
Eitan (ref_23) 2023; 46
Silva (ref_14) 2022; 107
ref_25
ref_24
ref_20
Pedrini (ref_13) 2020; 189
ref_3
Angizeh (ref_5) 2019; 13
ref_2
Kanta (ref_19) 2025; 192
ref_29
ref_28
ref_27
ref_26
Rockfellar (ref_22) 2000; 2
Dimitriadis (ref_18) 2023; 277
ref_4
Nojavan (ref_11) 2015; 103
References_xml – ident: ref_28
– volume: 277
  start-page: 127710
  year: 2023
  ident: ref_18
  article-title: Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127710
– ident: ref_30
– volume: 215
  start-page: 878
  year: 2019
  ident: ref_10
  article-title: Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.085
– ident: ref_26
– ident: ref_29
  doi: 10.3390/en14196368
– volume: 9
  start-page: 5384
  year: 2023
  ident: ref_15
  article-title: Electricity procurement of large consumers considering power-purchase agreements
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.04.371
– ident: ref_4
  doi: 10.3390/en17112792
– ident: ref_24
  doi: 10.3390/en17133200
– volume: 46
  start-page: 100696
  year: 2023
  ident: ref_23
  article-title: Neglecting exit doors: How does regret cost shape the irreversible execution of renewable energy megaprojects?
  publication-title: Environ. Innov. Soc. Transit.
  doi: 10.1016/j.eist.2023.100696
– volume: 192
  start-page: 108885
  year: 2025
  ident: ref_19
  article-title: Strategic investments and portfolio management in interdependente low-carbon electricity and natural gas markets
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2024.108885
– ident: ref_17
  doi: 10.3390/en15010068
– volume: 145
  start-page: 107191
  year: 2021
  ident: ref_9
  article-title: Stochastic short-term integrated electricity procurement and production scheduling for a large consumer
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107191
– ident: ref_20
  doi: 10.1109/SEST48500.2020.9203149
– volume: 51
  start-page: 104478
  year: 2022
  ident: ref_1
  article-title: Risk-aware two-stage stochastic programming for electricity procurement of a large consumer with storage system and demand response
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104478
– ident: ref_3
  doi: 10.1109/UPEC.2018.8542037
– ident: ref_25
– volume: 153
  start-page: 407
  year: 2006
  ident: ref_6
  article-title: Risk-constrained electricity procurement for a large consumer
  publication-title: IEE Proc.-Gener. Transm. Distrib.
  doi: 10.1049/ip-gtd:20050466
– volume: 2
  start-page: 21
  year: 2000
  ident: ref_22
  article-title: Optimization of Conditional Value-at-Risk
  publication-title: J. Risk
  doi: 10.21314/JOR.2000.038
– ident: ref_33
– ident: ref_27
– volume: 189
  start-page: 106709
  year: 2020
  ident: ref_32
  article-title: Hourly pricing and day-ahead dispatch setting in Brazil: The DESSEM model
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106709
– volume: 22
  start-page: 744
  year: 2007
  ident: ref_7
  article-title: A Stochastic Programming Approach to Electric Energy Procurement for Large Consumers
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.895164
– volume: 189
  start-page: 106669
  year: 2020
  ident: ref_13
  article-title: Hedging power market risk by investing in self-production from complementing renewable sources
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106669
– volume: 224
  start-page: 375
  year: 2013
  ident: ref_21
  article-title: Risk neutral and risk averse stochastic dual dynamic programming method
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.08.022
– ident: ref_2
  doi: 10.3390/en13092249
– volume: 9
  start-page: 409
  year: 2023
  ident: ref_16
  article-title: Risk aware decomposition of online scheduling for large flexible consumers considering the age of information
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.04.129
– volume: 107
  start-page: 105841
  year: 2022
  ident: ref_14
  article-title: Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2022.105841
– volume: 38
  start-page: 234
  year: 2010
  ident: ref_8
  article-title: Electricity procurement for large consumers based on Information Gap Decision Theory
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.09.010
– ident: ref_31
  doi: 10.23919/PSCC.2018.8442754
– volume: 190
  start-page: 106828
  year: 2021
  ident: ref_12
  article-title: Free contract environment for big electricity consumer in Brazil considering correlated scenarios of energy, power demand and spot prices
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106828
– volume: 13
  start-page: 2705
  year: 2019
  ident: ref_5
  article-title: Stochastic risk-based flexibility scheduling for large customers with onsite solar generation
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2019.0233
– volume: 103
  start-page: 1008
  year: 2015
  ident: ref_11
  article-title: Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.07.018
SSID ssj0000331333
Score 2.3709197
Snippet In the context of high energy costs and energy transition, the optimal use of energy resources for industrial consumption is of fundamental importance. This...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5389
SubjectTerms Alternative energy sources
Aluminum industry
Consumers
Decision making
Economic aspects
Electricity
energy procurement
Energy transition
Flexibility
Integer programming
integrated stochastic optimization model
Investment analysis
load-supply flexibility
Market prices
Mathematical functions
Natural gas
Optimization
Power plants
Production processes
regret cost function
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB8SkWChoJJE5RkzixYy5oC7tUiC5VS6XeItsZl0olWzbhX_EjmfF6u3CAW-R82NJ4xm8cz3tCvKacx-eoTOYJLWRVCIpcqq4oS1FNrV3wqLne-WihDs-qT-f1edpwG9Kxyk1MjIG6W3reI9-XRUnYuya0_O76R8aqUfx3NUlo3Ba7FIIbSr52D2aL45ObXZZcSkrC5JqXVFJ-v489Jz3k5uavlSgS9v8rLMe1Zn5f3EsgEaZrqz4Qt7B_KO7-QR34SPw6HZf-m2WWZfiQdHKyoygtBV8oDHxP9ZXAYmdXQNAUPvOhb5hF3ZtLT-gbTvEqZMeR85VQIMTjA7CwkYoDPtoBLnvYantAKirA4S1Me5gmNnLYaH7yyxZOkDL4kRqHEea0aPIgHouz-ezr-8MsKS9kXtZmzJTKXd00aE3hOuwMVixVhr4IWnfOWhPqYIqgnLJNFTqjkSzjujI3dKHQyydip1_2-FSA1yi1k7ntKkXgEK3Dkr4Rclc6i7KbiFcbK7TXa4KNlhITtlW7tdVEHLCBbp5gUuzYsFxdtMnH2lJpXbhAiCRg5Z01pUXCe05jKevCUldv2Lwtu-64st6mCgQaKJNgtdOG-qoYsU7E3mYGtMmnh3Y7A5_9__Zzcack6LOuWNwTO-PqJ74g6DK6l2l-_gaqyfLv
  priority: 102
  providerName: ProQuest
Title Stochastic Decision-Making Optimization Model for Large Electricity Self-Producers Using Natural Gas in Industrial Processes: An Approach Considering a Regret Cost Function
URI https://www.proquest.com/docview/3126265428
https://doaj.org/article/26771bf152fe4cba92ae264b7e2351ad
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgXOCAKB8iUKKRQOK0anb9teaWQpKqoqFqqZTbyvaO1Upli5rlX_EjGXsdGg6ol16i1SrZWDsznvckz3uMfSDO4yeoTOEJLRQiBEUlJQWxFFVL7YJHHeedj5fq8FwcreRqy-orngkb5IGHF7dfKa1LF6jNBBTeWVNZpCbuNFZclraNuy_1vC0ylfZgzol88UGPlBOv38cukh0qb_NPB0pC_f_bjlOPmT9jTzM4hOmwqF32ALvn7MmWZOAL9vusv_YXNqorw5fsj1McJ0sp-Ebl_yPPVUI0ObsCgqTwNR72hlnyu7n0hLrhDK9CcZK0Xgn9QTo2AEubJDhgYddw2cGtpwfkYQJcf4JpB9OsQg4br8_4YwunSMy9p5vrHubULOMiXrLz-ez758MiOy4UnkvTF0pNnKxrtKZ0LbYGRbQoQ18GrVtnrQkymDIop2wtQms0KilcSwGgC4Wev2I73XWHrxl4jVw7PrGtUAQK0Tqs6Blh4ipnkbcj9n4ThebnIKzRECGJsWpuYzViBzFAf78RxbDTDUqRJqdIc1eKjNjHGN4mlmx_Y73Nkwe00Ch-1Uxr-i8RkeqI7W0yoMm1vG54WRHrk8TT3tzHat6yxxUBo2GecY_t9De_8B0Bm96N2cN6vhizRwez5cnpOGU0fS5W5R_rs_3j
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOQAHxKdYKDASIE5REztxYiSEFtrtlu4uiLZSb67tjEulki2bIMR_QvxGxtmkCwe49RbFiR1pxuM3juc9xp5TzuNilCpyhBai1HtJUypLKUuRRZZb7zAP9c7TmRwfpu-PsqM19quvhQnHKvuY2Abqcu7CHvmmSDhh74zQ8pvzr1FQjQp_V3sJjaVb7OGP75Sy1a93t8i-LzgfbR-8G0edqkDkRKaaSMrYZkWBRiW2xFJhGmS40CU-z0trjPKZV4mXVpoi9aXKkUa1JY8VXUh0gvq9wq6mQqgwo4rRzsWeTiwEpXxiyYJK7fEmViHFoqCi_lr3WnmAfy0C7co2usVudpAUhksfus3WsLrDbvxBVHiX_dxv5u6zCZzOsNWp8kTTVsgKPlDQ-dJVc0KQVjsDAsIwCUfMYbtV2Tl1hPVhH8989LFlmCXMCe1hBZiZlvgDdkwNpxWslESgK2HA-hUMKxh23OfQK4yGlw18wpMFNnSzbmBES3T4iHvs8FIscp-tV_MKHzBwOYrcitiUqSQoisYipz58bLk1KMoBe9ZbQZ8v6Tw0pUHBVnplqwF7Gwx08USg4G5vzBcnupvRmss8T6wn_OMxddYobpDQpc2RiywxNNTLYF4dAkWzMM509Q70oYFySw8LGisN-HjANnoP0F0EqfXK3x_-v_kpuzY-mE70ZHe294hd5wS6lrWSG2y9WXzDxwSaGvuk9VRgx5c9NX4Dsv0wFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJyF4QPwUZQNOAsRT1CRO7BoJoY62bGwr1cakvWW2cx6TtnS0QYj_ib-Av45z6qzwAG97i5zEsXTn83eO7_sYe0k5j41RqMgSWogy5wRNqTyjLEX0c2mcRenrnfcnYvso-3icH6-xX20tjD9W2cbEJlCXM-v3yHs8SQl754SWey4ci5gOx-8uv0ZeQcr_aW3lNJYusos_vlP6tni7MyRbv0rT8ejz--0oKAxElueqjoSITd7vo1aJKbFUmHlJLrSJk7I0WiuXO5U4YYTuZ65UEmkEpkxjRRcCLad-b7B1SVlR3GHrW6PJ9OBqhyfmnBJAvuRE5VzFPax8wkUhRv21CjZiAf9aEpp1bnyX3QkAFQZLj7rH1rC6z27_QVv4gP08rGf2i_YMzzAMGj3RfiNrBZ8oBF2E2k7wQmvnQLAY9vyBcxg1mjtnlpA_HOK5i6YN3ywhUGiOLsBENzQg8EEv4KyCla4IhIIGXLyBQQWDwIQOrd6of1nDAZ7OsabGRQ1jWrD9IB6yo2uxySPWqWYVPmZgJXJpeKzLTBAwRW0wpT5cbFKjkZdd9qK1QnG5JPcoKCnytipWtuqyLW-gqyc8IXfTMJufFmF-F6mQMjGO0JDDzBqtUo2ENY3ElOeJpk-99uYtfNio59rqUP1AA_UEXMWgT9_KPFruss3WA4oQTxbFyvuf_P_2c3aTpkWxtzPZ3WC3UkJgy8LJTdap59_wKSGo2jwLrgrs5Lpnx29xVjWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Decision-Making+Optimization+Model+for+Large+Electricity+Self-Producers+Using+Natural+Gas+in+Industrial+Processes%3A+An+Approach+Considering+a+Regret+Cost+Function&rft.jtitle=Energies+%28Basel%29&rft.au=Leonel%2C+La%C3%ADs+Domingues&rft.au=Balan%2C+Mateus+Henrique&rft.au=Camargo%2C+Luiz+Armando+Steinle&rft.au=Ramos%2C+Dorel+Soares&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=17&rft.issue=21&rft_id=info:doi/10.3390%2Fen17215389&rft.externalDocID=A815345088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon