Prediction on the spatial distribution of the seropositive rate of schistosomiasis in Hunan Province, China: a machine learning model integrated with the Kriging method
Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machi...
Saved in:
Published in | Parasitology research (1987) Vol. 123; no. 9; p. 316 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis. |
---|---|
AbstractList | Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis. Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis.Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis. |
ArticleNumber | 316 |
Author | Wang, Jiamin Jiang, Qingwu Zhou, Yu Huang, Junhui Tang, Ling Zheng, Mao Zhou, Yibiao Xu, Ning Cai, Yu Tong, Yixin Chen, Yue Gong, Yanfeng |
Author_xml | – sequence: 1 givenname: Ning surname: Xu fullname: Xu, Ning organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research – sequence: 2 givenname: Yu surname: Cai fullname: Cai, Yu organization: Hunan Institute for Schistosomiasis Control – sequence: 3 givenname: Yixin surname: Tong fullname: Tong, Yixin organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research – sequence: 4 givenname: Ling surname: Tang fullname: Tang, Ling organization: Hunan Institute for Schistosomiasis Control – sequence: 5 givenname: Yu surname: Zhou fullname: Zhou, Yu organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research – sequence: 6 givenname: Yanfeng surname: Gong fullname: Gong, Yanfeng organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research – sequence: 7 givenname: Junhui surname: Huang fullname: Huang, Junhui organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research – sequence: 8 givenname: Jiamin surname: Wang fullname: Wang, Jiamin organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research – sequence: 9 givenname: Yue surname: Chen fullname: Chen, Yue organization: School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa – sequence: 10 givenname: Qingwu surname: Jiang fullname: Jiang, Qingwu organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research – sequence: 11 givenname: Mao surname: Zheng fullname: Zheng, Mao email: zhengmao496@126.com organization: Hunan Institute for Schistosomiasis Control – sequence: 12 givenname: Yibiao surname: Zhou fullname: Zhou, Yibiao email: z_yibiao@hotmail.com organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39230789$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2KFDEUhYOMOD2jL-BCAm5cWHpvpf7iThp1xAFnoesilbrVlaEqaZPUNL6Rj2m6a1RwIUIggfOde7jkXLAz6ywx9hThFQLUrwNAIaoM8iKDRgjMDg_YBguRZyjL8oxtQKY3IIpzdhHCLQDWVVE8YudC5gLqRm7YjxtPvdHROMvTiSPxsFfRqIn3JkRvumXVhlUj7_YumGjuiHsV6SgEPSbUBTcbFUzgxvKrxSrLb7y7M1bTS74djVVvuOKzSrAlPpHy1tgdn11PU7JE2h3n9fxg4njK-uTN7kRQHF3_mD0c1BToyf19yb6-f_dle5Vdf_7wcfv2OtOilDGrKoCOdKEAFQy601DWlawHzLtSywGGoUFdocCu6AssagF9V2ukgQYsi6oUl-zFOnfv3beFQmxnEzRNk7LkltAKLEXdIKL8DxSgrNJQTOjzv9Bbt3ibFjlRjRSVPGY_u6eWbqa-3XszK_-9_fVdCchXQHsXgqfhN4LQHjvRrp1oUyfaUyfaQzKJ1RQSbHfk_2T_w_UTmiy7cw |
Cites_doi | 10.1016/j.actatropica.2016.03.028 10.16250/j.32.1374.2023073 10.1002/joc.5086 10.1186/s13071-019-3682-6 10.1186/s40249-021-00874-9 10.3390/app9081621 10.1016/j.ecohyd.2023.04.008 10.3389/fimmu.2020.574136 10.1016/S0020-7519(00)00056-4 10.1007/s10661-021-08946-x 10.1371/journal.pntd.0002350 10.16250/j.32.1374.2019225 10.1016/S0140-6736(13)61949-2 10.1126/science.aaf7894 10.1186/s13071-020-04526-z 10.1007/s12553-022-00712-4 10.1016/j.scs.2021.103643 10.1109/Access.2017.2696365 10.1371/journal.pntd.0010410 10.1016/S2214-109X(19)30346-8 10.1371/journal.pntd.0011466 10.1016/j.ijpara.2021.03.004 10.1890/02-4035 10.3390/diseases10040093 10.1186/s13071-018-2687-x 10.1186/s13071-022-05465-7 10.1016/j.pt.2003.10.019 10.1186/s40249-018-0443-2 10.16250/j.32.1374.2020057 10.1371/journal.pntd.0010620 10.1645/12-35.1 10.1186/s13071-020-04157-4 10.1186/s40249-020-00758-4 10.1016/j.pt.2004.06.006 10.1016/j.ocecoaman.2021.105697 10.1016/j.geoderma.2011.06.006 10.1371/journal.pntd.0009578 10.1016/S1001-6279(15)60005-1 10.1016/S1473-3099(06)70521-7 10.1080/00034983.1974.11686957 10.1017/S0950268819001481 10.1186/s13071-023-05952-5 10.1371/journal.pntd.0009091 10.1371/journal.pntd.0000337 10.3389/fpls.2018.00582 10.1016/j.geoderma.2019.02.019 10.12140/j.issn.1000-7423.2020.01.012 10.1016/s0035-9203(03)90112-x 10.1038/s41572-018-0013-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 7S9 L.6 |
DOI | 10.1007/s00436-024-08331-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Public Health |
EISSN | 1432-1955 |
EndPage | 316 |
ExternalDocumentID | 39230789 10_1007_s00436_024_08331_w |
Genre | Journal Article |
GeographicLocations | China Hunan China |
GeographicLocations_xml | – name: China – name: Hunan China |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .55 .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AAJSJ AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IFM IHE IHR IJ- IKXTQ INH INR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M YLTOR Z45 Z7U Z7V Z7W Z82 Z83 Z87 Z8O Z8P Z8Q Z8V Z8W Z91 ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABEEZ ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFGXO AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c359t-6600bec4a01a0fcbc057697f12b5c9f0ff81c6131b4d414730db7c1efef154653 |
IEDL.DBID | U2A |
ISSN | 0932-0113 1432-1955 |
IngestDate | Thu Jul 10 21:25:02 EDT 2025 Fri Jul 11 08:08:39 EDT 2025 Thu Aug 28 12:40:28 EDT 2025 Wed Feb 19 02:14:32 EST 2025 Tue Jul 01 03:58:11 EDT 2025 Fri Feb 21 02:40:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Schistosomiasis Seropositive Rate Machine Learning Geostatistical method Spatial Distribution |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-6600bec4a01a0fcbc057697f12b5c9f0ff81c6131b4d414730db7c1efef154653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 39230789 |
PQID | 3100893695 |
PQPubID | 2043610 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3153781119 proquest_miscellaneous_3100564651 proquest_journals_3100893695 pubmed_primary_39230789 crossref_primary_10_1007_s00436_024_08331_w springer_journals_10_1007_s00436_024_08331_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Founded as Zeitschrift für Parasitenkunde |
PublicationTitle | Parasitology research (1987) |
PublicationTitleAbbrev | Parasitol Res |
PublicationTitleAlternate | Parasitol Res |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Jean, Burke, Xie, Davis, Lobell, Ermon (CR18) 2016; 353 Hu, Xie, Tang, Li, Zou (CR15) 2018; 9 Li, Hou, Tan, Williams, Gray, Gordon, Kurscheid, Clements, Li, McManus (CR26) 2020; 11 Eneanya, Fronterre, Anagbogu, Okoronkwo, Garske, Cano, Donnelly (CR5) 2019; 12 Tupps, Kargbo-Labour, Paye, Dhakal, Hodges, Jones, Davlin, Sonnie, Manah, Imtiaz, Zhang (CR40) 2022; 16 Doenhoff, Chiodini, Hamilton (CR4) 2004; 20 CR30 Fingerut, Zimmer, Zimmer (CR8) 2003; 84 Guo, Jiang, Gu, Qiao, Li (CR12) 2013; 99 Oyewola, Dada, Misra (CR31) 2022; 12 Rullens, Stephenson, Lohrer, Townsend, Pilditch (CR35) 2021; 209 Alene, Gordon, Clements, Williams, Gray, Zhou, Li, Utzinger, Kurscheid, Forsyth, Zhou, Li, Li, Lin, Lou, Li, Ge, Xu, Yu, Hu, Xie, McManus (CR1) 2022; 10 Jiang, Deng, Zhou, Ren, Cai, Li, Hu, Li, Shi, Zhang, Zheng, Chen, Jiang, Zhou (CR19) 2021; 51 Wang, Li, Zhang, Lv, Xu (CR43) 2019; 31 Ruppel, Chlichlia, Bahgat (CR36) 2004; 20 L'Heureux, Grolinger, Elyamany, Capretz (CR23) 2017; 5 John, Kebonye, Agyeman, Ahado (CR20) 2021; 193 Gong, Zhu, Li, Zhang, Xue, Xia, Lv, Xu, Li (CR10) 2021; 10 Wang, Xu, Zhao, Li, Zhang, He, Swing, Yang (CR42) 2018; 7 Zheng, Wang, Zhu, Qiu, Wu (CR49) 1995; 6 Zhang, He, Yang, Dang, Li, Guo, Li, Cao, Xu, Li, Zhou (CR48) 2023; 35 Shrestha, McCulloch, Hedtke, Grant (CR37) 2022; 16 Kondeti, Ravi, Mutheneni, Kadiri, Kumaraswamy, Vadlamani, Upadhyayula (CR22) 2019; 147 Pouladi, Moller, Tabatabai, Greve (CR33) 2019; 342 Fornillos, Fontanilla, Chigusa, Kikuchi, Kirinoki, Kato-Hayashi, Kawazu, Angeles, Tabios, Moendeg, Goto, Tamayo, Gampoy, Pates, Chua, Leonardo (CR9) 2019; 36 Liu, Li, Yan, Chen, Li, Luan (CR28) 2023; 9 Yang, Gao, Cheng, Pan, Yang, Chen, Dai, Zhu, Zhou, Jiang (CR47) 2018; 11 Qin, Zhu, Qiu, Lu, Li, Pei (CR34) 2012; 171 Steinmann, Keiser, Bos, Tanner, Utzinger (CR38) 2006; 6 Eneanya, Koudou, Aboulaye, Elvis, Souleymane, Kouakou, Weil, Fischer (CR6) 2021; 15 Li, He, Zeng, McManus (CR24) 2003; 97 Upatham (CR41) 1974; 68 Manyangadze, Chimbari, Gebreslasie, Mukaratirwa (CR29) 2016; 159 Phillips, Ower, Mekete, Liyew, Maddren, Belay, Chernet, Anjulo, Mengistu, Salasibew, Tasew, Anderson (CR32) 2022; 15 Tong, Tang, Xia, Li, Hu, Huang, Wang, Jiang, Yin, Xu, Chen, Jiang, Zhou, Zhou (CR39) 2023; 17 Li, Gurarie, Lo, Zhu, King (CR25) 2019; 7 Xu, Zhang, Du, Song, Huang, Gong, Jiang, Tong, Yin, Wang, Jiang, Chen, Jiang, Dong, Y, Zhou YB (CR46) 2023; 16 Hung, Remais (CR17) 2008; 2 Li, Shi, Deng, Ren, He, Hu, Li, Zhang, Zheng, Wang, Dong, Chen, Jiang, Zhou (CR27) 2021; 14 Wang, Bergquist, King, Yang (CR45) 2021; 15 Guo, Xu, Zhang, Lv, Cao, Li, Zhou (CR13) 2020; 9 Jousson, Bartoli (CR21) 2000; 30 Zheng, Wang, Wang, Hou (CR50) 2015; 30 Han, Zhao, Gao (CR14) 2022; 78 Hu, Hao, Xia, Guo, Xue, Zhang, Wang, Dong, Xu, Li (CR16) 2020; 38 Fick, Hijmans (CR7) 2017; 37 Zhou, Li, Wei, Li, Qiao, Armaghani (CR51) 2019; 9 Balen, Liu, McManus, Raso, Utzinger, Xiao, Yu, Zhao, Li (CR2) 2013; 7 Wang, Zhou, Jiang, Wu, Jiang, Tang, Li, He, Ren (CR44) 2020; 32 Guan, Dai, Zhou, Ren, Qin, Li, Lv, Li, Zhou, Xu (CR11) 2020; 13 Colley, Bustinduy, Secor, King (CR3) 2014; 383 JY Hu (8331_CR15) 2018; 9 N Pouladi (8331_CR33) 2019; 342 YW Hung (8331_CR17) 2008; 2 J Balen (8331_CR2) 2013; 7 A Ruppel (8331_CR36) 2004; 20 N Jean (8331_CR18) 2016; 353 J Zheng (8331_CR49) 1995; 6 FY Li (8331_CR26) 2020; 11 K John (8331_CR20) 2021; 193 XK Hu (8331_CR16) 2020; 38 RJC Fornillos (8331_CR9) 2019; 36 LJ Zhang (8331_CR48) 2023; 35 P Steinmann (8331_CR38) 2006; 6 C Tupps (8331_CR40) 2022; 16 SL Wang (8331_CR43) 2019; 31 EY Li (8331_CR25) 2019; 7 PK Kondeti (8331_CR22) 2019; 147 Y Yang (8331_CR47) 2018; 11 W Wang (8331_CR45) 2021; 15 O Jousson (8331_CR21) 2000; 30 SS Zheng (8331_CR50) 2015; 30 AE Phillips (8331_CR32) 2022; 15 Z Guan (8331_CR11) 2020; 13 ES Upatham (8331_CR41) 1974; 68 MJ Doenhoff (8331_CR4) 2004; 20 JY Guo (8331_CR13) 2020; 9 V Rullens (8331_CR35) 2021; 209 CZ Qin (8331_CR34) 2012; 171 XY Wang (8331_CR42) 2018; 7 N Xu (8331_CR46) 2023; 16 Y Liu (8331_CR28) 2023; 9 T Manyangadze (8331_CR29) 2016; 159 HL Wang (8331_CR44) 2020; 32 DG Colley (8331_CR3) 2014; 383 DO Oyewola (8331_CR31) 2022; 12 YX Tong (8331_CR39) 2023; 17 SE Fick (8331_CR7) 2017; 37 SM Li (8331_CR27) 2021; 14 H Shrestha (8331_CR37) 2022; 16 YS Li (8331_CR24) 2003; 97 8331_CR30 L Han (8331_CR14) 2022; 78 OA Eneanya (8331_CR6) 2021; 15 JT Fingerut (8331_CR8) 2003; 84 YF Gong (8331_CR10) 2021; 10 OA Eneanya (8331_CR5) 2019; 12 J Zhou (8331_CR51) 2019; 9 A L'Heureux (8331_CR23) 2017; 5 Y Guo (8331_CR12) 2013; 99 HL Jiang (8331_CR19) 2021; 51 KA Alene (8331_CR1) 2022; 10 |
References_xml | – volume: 159 start-page: 176 year: 2016 end-page: 184 ident: CR29 article-title: Risk factors and micro-geographical heterogeneity of in Ndumo area, uMkhanyakude district, KwaZulu-Natal, South Africa publication-title: Acta Trop doi: 10.1016/j.actatropica.2016.03.028 – volume: 35 start-page: 217 issue: 3 year: 2023 end-page: 224,250 ident: CR48 article-title: Progress of schistosomiasis control in People’s Republic of China in 2022 publication-title: Chin J Schisto Control doi: 10.16250/j.32.1374.2023073 – volume: 37 start-page: 4302 issue: 12 year: 2017 end-page: 4315 ident: CR7 article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas publication-title: Int J Climatol doi: 10.1002/joc.5086 – volume: 12 start-page: 440 year: 2019 ident: CR5 article-title: Mapping the baseline prevalence of lymphatic filariasis across Nigeria publication-title: Parasit Vectors doi: 10.1186/s13071-019-3682-6 – volume: 10 start-page: 88 year: 2021 ident: CR10 article-title: Identification of the high-risk area for schistosomiasis transmission in China based on information value and machine learning: a newly data-driven modeling attempt publication-title: Infect Dis Poverty doi: 10.1186/s40249-021-00874-9 – volume: 9 start-page: 1621 issue: 8 year: 2019 ident: CR51 article-title: Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials publication-title: Appl Sci doi: 10.3390/app9081621 – volume: 9 start-page: 48 year: 2023 ident: CR28 article-title: Typical vegetation dynamics and hydrological changes of Dongting Lake wetland from 1985 to 2020 publication-title: Ecohydrol Hydrobiol doi: 10.1016/j.ecohyd.2023.04.008 – volume: 11 start-page: 574136 year: 2020 ident: CR26 article-title: Current Status of Schistosomiasis Control and Prospects for Elimination in the Dongting Lake Region of the People's Republic of China publication-title: Front Immunol doi: 10.3389/fimmu.2020.574136 – volume: 30 start-page: 747 issue: 6 year: 2000 end-page: 760 ident: CR21 article-title: The life cycle of Opecoeloides columbellae (Pagenstecher, 1863) n comb (Digenea, opecoelidae) evidence from molecules and morphology publication-title: Int J Parasitol doi: 10.1016/S0020-7519(00)00056-4 – volume: 193 start-page: 197 year: 2021 ident: CR20 article-title: Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data publication-title: Environ Monit Assess doi: 10.1007/s10661-021-08946-x – volume: 7 start-page: e2350 issue: 8 year: 2013 ident: CR2 article-title: Health access livelihood framework reveals potential barriers in the control of schistosomiasis in the Dongting Lake area of Hunan Province,China publication-title: Plos Negl Trop Dis doi: 10.1371/journal.pntd.0002350 – volume: 31 start-page: 459 issue: 5 year: 2019 end-page: 462,473 ident: CR43 article-title: Thinking on schistosomiasis control under the strategy of China’s Yangtze River Economic Belt publication-title: Chin J Schisto Control doi: 10.16250/j.32.1374.2019225 – volume: 383 start-page: 2253 issue: 9936 year: 2014 end-page: 2264 ident: CR3 article-title: Human schistosomiasis publication-title: Lancet doi: 10.1016/S0140-6736(13)61949-2 – volume: 353 start-page: 790 issue: 6301 year: 2016 end-page: 794 ident: CR18 article-title: Combining satellite imagery and machine learning to predict poverty publication-title: Science doi: 10.1126/science.aaf7894 – volume: 14 start-page: 7 year: 2021 ident: CR27 article-title: Spatio-temporal variations of emerging sites infested with schistosome-transmitting in Hunan Province, China, 1949–2016 publication-title: Parasit Vectors doi: 10.1186/s13071-020-04526-z – volume: 12 start-page: 1277 issue: 6 year: 2022 end-page: 1293 ident: CR31 article-title: Machine learning for optimizing daily COVID-19 vaccine dissemination to combat the pandemic publication-title: Health Technol doi: 10.1007/s12553-022-00712-4 – volume: 78 year: 2022 ident: CR14 article-title: Gu Z (2022) Prediction and evaluation of spatial distributions of ozone and urban heat island using a machine learning modified land use regression method publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.103643 – volume: 5 start-page: 7776 year: 2017 end-page: 7797 ident: CR23 article-title: Machine Learning With Big Data: Challenges and Approaches publication-title: Ieee Access doi: 10.1109/Access.2017.2696365 – volume: 16 start-page: e0010410 issue: 5 year: 2022 ident: CR40 article-title: Community-wide prevalence and intensity of soil-transmitted helminthiasis and Schistosoma mansoni in two districts of Sierra Leone publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0010410 – volume: 7 start-page: e1414 issue: 10 year: 2019 end-page: e1422 ident: CR25 article-title: Improving public health control of schistosomiasis with a modified WHO strategy: a model-based comparison study publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(19)30346-8 – volume: 17 start-page: e0011466 issue: 7 year: 2023 ident: CR39 article-title: Identifying determinants for the seropositive rate of schistosomiasis in Hunan province, China: A multi-scale geographically weighted regression model publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0011466 – volume: 51 start-page: 959 issue: 11 year: 2021 end-page: 965 ident: CR19 article-title: Machine learning algorithms to predict the 1 year unfavourable prognosis for advanced schistosomiasis publication-title: Int J Parasitol doi: 10.1016/j.ijpara.2021.03.004 – volume: 84 start-page: 2502 issue: 9 year: 2003 end-page: 2515 ident: CR8 article-title: Larval swimming overpowers turbulent mixing and facilitates transmission of a marine parasite publication-title: Ecology doi: 10.1890/02-4035 – volume: 10 start-page: 93 issue: 4 year: 2022 ident: CR1 article-title: Spatial Analysis of Schistosomiasis in Hunan and Jiangxi Provinces in the People's Republic of China publication-title: Diseases doi: 10.3390/diseases10040093 – volume: 11 start-page: 183 year: 2018 ident: CR47 article-title: Three Gorges Dam: polynomial regression modeling of water level and the density of schistosome-transmitting snails publication-title: Parasit Vectors doi: 10.1186/s13071-018-2687-x – volume: 15 start-page: 410 issue: 1 year: 2022 ident: CR32 article-title: Association between water, sanitation, and hygiene access and the prevalence of soil-transmitted helminth and schistosome infections in Wolayita publication-title: Ethiopia Parasite Vector doi: 10.1186/s13071-022-05465-7 – volume: 36 start-page: 402 issue: 2 year: 2019 end-page: 411 ident: CR9 article-title: Infection rate of in the snail quadrasi in endemic villages in the Philippines: Need for snail surveillance technique publication-title: Trop Biomed – volume: 20 start-page: 35 issue: 1 year: 2004 end-page: 39 ident: CR4 article-title: Specific and sensitive diagnosis of schistosome infection: can it be done with antibodies? publication-title: Trends Parasitol doi: 10.1016/j.pt.2003.10.019 – volume: 7 start-page: 62 year: 2018 ident: CR42 article-title: Estimating the prevalence of in China: a serological approach publication-title: Infect Dis Poverty doi: 10.1186/s40249-018-0443-2 – volume: 32 start-page: 317 issue: 3 year: 2020 end-page: 319 ident: CR44 article-title: Endemic situation of schistosomiasis in Hunan Province in 2019 publication-title: Chin J Schisto Control doi: 10.16250/j.32.1374.2020057 – volume: 16 start-page: e0010620 issue: 7 year: 2022 ident: CR37 article-title: Geospatial modeling of pre-intervention nodule prevalence of Onchocerca volvulus in Ethiopia as an aid to onchocerciasis elimination publication-title: Plos Neglect Trop Dis doi: 10.1371/journal.pntd.0010620 – volume: 99 start-page: 706 issue: 4 year: 2013 end-page: 707 ident: CR12 article-title: Prevalence of in wild rodents in five islands of the West Dongting Lake, China publication-title: J Parasitol doi: 10.1645/12-35.1 – ident: CR30 – volume: 13 start-page: 1 year: 2020 end-page: 9 ident: CR11 article-title: Assessment of knowledge, attitude and practices and the analysis of risk factors regarding schistosomiasis among fishermen and boatmen in the Dongting Lake Basin, the People's Republic of China publication-title: Parasite Vectors doi: 10.1186/s13071-020-04157-4 – volume: 9 start-page: 35 issue: 05 year: 2020 end-page: 44 ident: CR13 article-title: Surveillance on schistosomiasis in five provincial-level administrative divisions of the People’s Republic of China in the post-elimination era publication-title: Infect Dis Poverty doi: 10.1186/s40249-020-00758-4 – volume: 6 start-page: 26 year: 1995 end-page: 28 ident: CR49 article-title: Study of the relationship between the water-contact with cercariae of and social factors in the inhabitants in Yunnan Province publication-title: Chinese Journal of Zoonoses – volume: 20 start-page: 397 issue: 9 year: 2004 end-page: 400 ident: CR36 article-title: Invasion by schistosome cercariae: neglected aspects in publication-title: Trends Parasitol doi: 10.1016/j.pt.2004.06.006 – volume: 209 start-page: 105687 year: 2021 ident: CR35 article-title: Combined species occurrence and density predictions to improve marine spatial management publication-title: Ocean Coast Manage doi: 10.1016/j.ocecoaman.2021.105697 – volume: 171 start-page: 64 year: 2012 end-page: 74 ident: CR34 article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information publication-title: Geoderma doi: 10.1016/j.geoderma.2011.06.006 – volume: 15 start-page: e0009578 issue: 8 year: 2021 ident: CR45 article-title: Elimination of schistosomiasis in China: Current status and future prospects publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0009578 – volume: 30 start-page: 48 issue: 1 year: 2015 end-page: 62 ident: CR50 article-title: Sediment resuspension under action of wind in Taihu Lake publication-title: China Int J Sediment Res doi: 10.1016/S1001-6279(15)60005-1 – volume: 6 start-page: 411 issue: 7 year: 2006 end-page: 425 ident: CR38 article-title: Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(06)70521-7 – volume: 68 start-page: 343 issue: 3 year: 1974 end-page: 352 ident: CR41 article-title: Dispersion of St Lucian Schistosoma-Mansoni Cercariae in Natural Standing and Running Waters Determined by Cercaria Counts and Mouse Exposure publication-title: Ann Trop Med Parasit doi: 10.1080/00034983.1974.11686957 – volume: 147 start-page: e260 year: 2019 ident: CR22 article-title: Applications of machine learning techniques to predict filariasis using socio-economic factors publication-title: Epidemiol Infect doi: 10.1017/S0950268819001481 – volume: 16 start-page: 377 issue: 1 year: 2023 ident: CR46 article-title: Prediction of distribution in association with climate change using machine learning models publication-title: Parasit Vectors doi: 10.1186/s13071-023-05952-5 – volume: 15 start-page: e0009091 issue: 2 year: 2021 ident: CR6 article-title: Progress towards onchocerciasis elimination in Cote d'Ivoire: A geospatial modelling study publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0009091 – volume: 2 start-page: e337 issue: 11 year: 2008 ident: CR17 article-title: Quantitative detection of cercariae in water by real-time PCR publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000337 – volume: 9 start-page: 582 year: 2018 ident: CR15 article-title: Changes of vegetation distribution in the East Dongting Lake after the operation of the three Gorges Dam, China publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00582 – volume: 342 start-page: 85 year: 2019 end-page: 92 ident: CR33 article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.019 – volume: 38 start-page: 80 issue: 1 year: 2020 end-page: 86 ident: CR16 article-title: Detection of schistosomiasis transmission risks in Yunnan Province based on ecological niche modeling publication-title: Chin J Schisto Control doi: 10.12140/j.issn.1000-7423.2020.01.012 – volume: 97 start-page: 177 issue: 2 year: 2003 end-page: 181 ident: CR24 article-title: Epidemiological and morbidity assessment of infection in a migrant fisherman community, the Dongting Lake region, China publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/s0035-9203(03)90112-x – volume: 5 start-page: 7776 year: 2017 ident: 8331_CR23 publication-title: Ieee Access doi: 10.1109/Access.2017.2696365 – volume: 342 start-page: 85 year: 2019 ident: 8331_CR33 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.019 – volume: 68 start-page: 343 issue: 3 year: 1974 ident: 8331_CR41 publication-title: Ann Trop Med Parasit doi: 10.1080/00034983.1974.11686957 – volume: 15 start-page: e0009578 issue: 8 year: 2021 ident: 8331_CR45 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0009578 – volume: 353 start-page: 790 issue: 6301 year: 2016 ident: 8331_CR18 publication-title: Science doi: 10.1126/science.aaf7894 – volume: 7 start-page: e1414 issue: 10 year: 2019 ident: 8331_CR25 publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(19)30346-8 – volume: 12 start-page: 1277 issue: 6 year: 2022 ident: 8331_CR31 publication-title: Health Technol doi: 10.1007/s12553-022-00712-4 – volume: 10 start-page: 93 issue: 4 year: 2022 ident: 8331_CR1 publication-title: Diseases doi: 10.3390/diseases10040093 – volume: 16 start-page: e0010410 issue: 5 year: 2022 ident: 8331_CR40 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0010410 – ident: 8331_CR30 doi: 10.1038/s41572-018-0013-8 – volume: 9 start-page: 1621 issue: 8 year: 2019 ident: 8331_CR51 publication-title: Appl Sci doi: 10.3390/app9081621 – volume: 209 start-page: 105687 year: 2021 ident: 8331_CR35 publication-title: Ocean Coast Manage doi: 10.1016/j.ocecoaman.2021.105697 – volume: 20 start-page: 397 issue: 9 year: 2004 ident: 8331_CR36 publication-title: Trends Parasitol doi: 10.1016/j.pt.2004.06.006 – volume: 84 start-page: 2502 issue: 9 year: 2003 ident: 8331_CR8 publication-title: Ecology doi: 10.1890/02-4035 – volume: 171 start-page: 64 year: 2012 ident: 8331_CR34 publication-title: Geoderma doi: 10.1016/j.geoderma.2011.06.006 – volume: 78 year: 2022 ident: 8331_CR14 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.103643 – volume: 20 start-page: 35 issue: 1 year: 2004 ident: 8331_CR4 publication-title: Trends Parasitol doi: 10.1016/j.pt.2003.10.019 – volume: 16 start-page: e0010620 issue: 7 year: 2022 ident: 8331_CR37 publication-title: Plos Neglect Trop Dis doi: 10.1371/journal.pntd.0010620 – volume: 15 start-page: e0009091 issue: 2 year: 2021 ident: 8331_CR6 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0009091 – volume: 9 start-page: 582 year: 2018 ident: 8331_CR15 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00582 – volume: 11 start-page: 183 year: 2018 ident: 8331_CR47 publication-title: Parasit Vectors doi: 10.1186/s13071-018-2687-x – volume: 16 start-page: 377 issue: 1 year: 2023 ident: 8331_CR46 publication-title: Parasit Vectors doi: 10.1186/s13071-023-05952-5 – volume: 12 start-page: 440 year: 2019 ident: 8331_CR5 publication-title: Parasit Vectors doi: 10.1186/s13071-019-3682-6 – volume: 30 start-page: 747 issue: 6 year: 2000 ident: 8331_CR21 publication-title: Int J Parasitol doi: 10.1016/S0020-7519(00)00056-4 – volume: 14 start-page: 7 year: 2021 ident: 8331_CR27 publication-title: Parasit Vectors doi: 10.1186/s13071-020-04526-z – volume: 31 start-page: 459 issue: 5 year: 2019 ident: 8331_CR43 publication-title: Chin J Schisto Control doi: 10.16250/j.32.1374.2019225 – volume: 10 start-page: 88 year: 2021 ident: 8331_CR10 publication-title: Infect Dis Poverty doi: 10.1186/s40249-021-00874-9 – volume: 159 start-page: 176 year: 2016 ident: 8331_CR29 publication-title: Acta Trop doi: 10.1016/j.actatropica.2016.03.028 – volume: 13 start-page: 1 year: 2020 ident: 8331_CR11 publication-title: Parasite Vectors doi: 10.1186/s13071-020-04157-4 – volume: 193 start-page: 197 year: 2021 ident: 8331_CR20 publication-title: Environ Monit Assess doi: 10.1007/s10661-021-08946-x – volume: 97 start-page: 177 issue: 2 year: 2003 ident: 8331_CR24 publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/s0035-9203(03)90112-x – volume: 15 start-page: 410 issue: 1 year: 2022 ident: 8331_CR32 publication-title: Ethiopia Parasite Vector doi: 10.1186/s13071-022-05465-7 – volume: 2 start-page: e337 issue: 11 year: 2008 ident: 8331_CR17 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000337 – volume: 9 start-page: 48 year: 2023 ident: 8331_CR28 publication-title: Ecohydrol Hydrobiol doi: 10.1016/j.ecohyd.2023.04.008 – volume: 383 start-page: 2253 issue: 9936 year: 2014 ident: 8331_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(13)61949-2 – volume: 7 start-page: 62 year: 2018 ident: 8331_CR42 publication-title: Infect Dis Poverty doi: 10.1186/s40249-018-0443-2 – volume: 9 start-page: 35 issue: 05 year: 2020 ident: 8331_CR13 publication-title: Infect Dis Poverty doi: 10.1186/s40249-020-00758-4 – volume: 7 start-page: e2350 issue: 8 year: 2013 ident: 8331_CR2 publication-title: Plos Negl Trop Dis doi: 10.1371/journal.pntd.0002350 – volume: 37 start-page: 4302 issue: 12 year: 2017 ident: 8331_CR7 publication-title: Int J Climatol doi: 10.1002/joc.5086 – volume: 11 start-page: 574136 year: 2020 ident: 8331_CR26 publication-title: Front Immunol doi: 10.3389/fimmu.2020.574136 – volume: 36 start-page: 402 issue: 2 year: 2019 ident: 8331_CR9 publication-title: Trop Biomed – volume: 30 start-page: 48 issue: 1 year: 2015 ident: 8331_CR50 publication-title: China Int J Sediment Res doi: 10.1016/S1001-6279(15)60005-1 – volume: 51 start-page: 959 issue: 11 year: 2021 ident: 8331_CR19 publication-title: Int J Parasitol doi: 10.1016/j.ijpara.2021.03.004 – volume: 6 start-page: 411 issue: 7 year: 2006 ident: 8331_CR38 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(06)70521-7 – volume: 99 start-page: 706 issue: 4 year: 2013 ident: 8331_CR12 publication-title: J Parasitol doi: 10.1645/12-35.1 – volume: 38 start-page: 80 issue: 1 year: 2020 ident: 8331_CR16 publication-title: Chin J Schisto Control doi: 10.12140/j.issn.1000-7423.2020.01.012 – volume: 17 start-page: e0011466 issue: 7 year: 2023 ident: 8331_CR39 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0011466 – volume: 32 start-page: 317 issue: 3 year: 2020 ident: 8331_CR44 publication-title: Chin J Schisto Control doi: 10.16250/j.32.1374.2020057 – volume: 35 start-page: 217 issue: 3 year: 2023 ident: 8331_CR48 publication-title: Chin J Schisto Control doi: 10.16250/j.32.1374.2023073 – volume: 6 start-page: 26 year: 1995 ident: 8331_CR49 publication-title: Chinese Journal of Zoonoses – volume: 147 start-page: e260 year: 2019 ident: 8331_CR22 publication-title: Epidemiol Infect doi: 10.1017/S0950268819001481 |
SSID | ssj0017644 |
Score | 2.4028847 |
Snippet | Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 316 |
SubjectTerms | Animals Biomedical and Life Sciences Biomedicine China China - epidemiology gross domestic product Humans Immunology kriging lakes Learning algorithms Machine Learning Medical Microbiology Microbiology Models, Statistical prediction Public health rivers Schistosomiasis Schistosomiasis - epidemiology Schistosomiasis - prevention & control Seroepidemiologic Studies seroprevalence Spatial Analysis Spatial distribution surface temperature wind speed |
Title | Prediction on the spatial distribution of the seropositive rate of schistosomiasis in Hunan Province, China: a machine learning model integrated with the Kriging method |
URI | https://link.springer.com/article/10.1007/s00436-024-08331-w https://www.ncbi.nlm.nih.gov/pubmed/39230789 https://www.proquest.com/docview/3100893695 https://www.proquest.com/docview/3100564651 https://www.proquest.com/docview/3153781119 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6ahEIvpe9umi4q9NYYVivJXve2WbJdGhpy6ELai5H1CHuIXeJd8pf6MzMzfpSStlAw-CBZFho9ZjQz3wfwPuARoWwWkpjpkGjlbWJtnuKKd0Z6n6cuUoLzl_N0tdafL81llxTW9NHuvUuSd-oh2Y3R0hM8UwhRWcnkdg8ODNruFMi1ns4H30GWMoUrmuoUdCBVlyrz5zZ-P47u6Zj3_KN87CyfwONOXxTzVsBP4UGonsHD7zXfhj-Hnxc35Gmh0RX4oDYnGoqRxk88QeJ2bFaijm1ZIFKEhuOFBIFEUAHat4Qv0NTXG9tsGrGpxGpX2Upc8HWDC8eCWbY_CiuuOfYyiI5s4kowk44YQCe8oItd_tcZU25hDeaofgHr5enXxSrpyBcSp0y-TVLUhFC-2k6knURXOlTs0jyLcloal8dJjDPpUNCy1F5LjRuFLzMnQwxREsG6egn7VV2F1yBMbrPSZ8GhLqdDmc-knnqLw4_GoDKlGcGHXgbFjxZjoxjQlFliBUqsYIkVtyM46sVUdOutKchNMSNuQmzs3VCMK4XcH7YK9a6tY1Lifv9XHaMo91bmI3jVToGhS6hJKgLnH8FxPyd-deDv_T38v-pv4NGU5yeFsR3B_vZmF96i3rMtx3AwX56cnNP707ez0zHsLdLFmCf_HejBAHg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBtGL-HY1agt6MgPb093zEDwsatjsJiFgAsHL2NMP2UNmJLPL4v_x4M-0quchEhU8BObWNTPFVNVUddfjA3jp0EUInbrIp9JFUlgdaZ0naPFGcWvzxHhqcD48Smancn6mzrbge98LE6rd-5Rk-FMPzW5hWnqEPoUmKgsebbpSyoX7tsGNWvN2_z1K9VUc7304eTeLOiyByAiVr6IEHTuyK_WE64k3pcE4JclTz-NSmdxPvM-4Qb55Ka3kEvXelqnhzjvPCS9c4HOvwXamkkyNYHs6nX-cD9mKNAmgsROMhXBrzkXXnPNnrn93gJei2ksZ2eDo9m7DrS5CZdNWpe7AlqvuwvVPdTh_vwc_ji8ot0PyZHhh_MgaqsrGWywN4e3ws1jt2zVHMAxNqFBiNJaCFnBHTRMNmvp8qZtlw5YVm60rXbHjcMBh3C4LuN5vmGbnodrTsQ7e4gsL2D1sGHNhGR0lh3ctAsgXUgRU7PtweiUiegCjqq7cI2Aq12lpU2cwepSuzDMuY6vx8-P2U6hSjeF1L4PiazvVoxjmNweJFSixIkis2IxhpxdT0Vl4U1BiJCM0RHzYi2EZbZMSLrpy9bqlUQmhzf-LRgnq9uX5GB62KjCwhLGrIDiAMez2OvGLgb_z-_j_yJ_DjdnJ4UFxsH-0eAI346CrVES3A6PVxdo9xahrVT7rlJ7B56u2s58tpjrY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhCXqrxTCiwSnKjVrHfXjiv1UFGilECVA5EqLma9D5RD7apOFPGPOPITO7N-IFRA4lApt90448yMZnZn5vsAXjsMEUKnLvKpdJEUVkdaZwl6vFHc2iwxngacP50mk7n8cKbONuBnNwsTut27kmQz00AoTeVy_8L6_X7wLSCnRxhfCF1Z8GjdtlVO3fc1Htrqw5Nj1PCbOB6___xuErW8ApERKltGCQZ5FF3qIddDbwqDOUuSpZ7HhTKZH3o_4gbfgRfSSi7RB2yRGu6885y4wwU-9xbcljR9jB40j4_6ukWaBPrYIWZFeEjnoh3T-bPMv4fCa_nttdpsCHnjbdhqc1V21BjXfdhw5QO486UKN_EP4cfskqo8pFmGH8wkWU392fgVS3C8LZMWq3yz5oiQoQ69SowAKmgBz9aEbVBX5wtdL2q2KNlkVeqSzcJVh3F7LDB8HzDNzkPfp2Mt0cU3Flh8WA94YRldKoffmga6L9wR-LEfwfxGFPQYNsuqdE-BqUynhU2dwTxSuiIbcRlbjX8_HkSFKtQA3nY6yC8afI-8R3IOGstRY3nQWL4ewG6nprz19TqnEsmIeBHxYa_6ZfRSKr3o0lWrZo9KiHf-X3uUoLlfng3gSWMCvUiYxQoiBhjAXmcTvwT4u7w7_7f9JdydHY_zjyen02dwLw6mSt10u7C5vFy555h-LYsXweIZfL1pF7sC2y89vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+on+the+spatial+distribution+of+the+seropositive+rate+of+schistosomiasis+in+Hunan+Province%2C+China%3A+a+machine+learning+model+integrated+with+the+Kriging+method&rft.jtitle=Parasitology+research+%281987%29&rft.au=Xu%2C+Ning&rft.au=Cai%2C+Yu&rft.au=Tong%2C+Yixin&rft.au=Tang%2C+Ling&rft.date=2024-09-01&rft.issn=0932-0113&rft.eissn=1432-1955&rft.volume=123&rft.issue=9&rft_id=info:doi/10.1007%2Fs00436-024-08331-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00436_024_08331_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-0113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-0113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-0113&client=summon |