Prediction on the spatial distribution of the seropositive rate of schistosomiasis in Hunan Province, China: a machine learning model integrated with the Kriging method

Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machi...

Full description

Saved in:
Bibliographic Details
Published inParasitology research (1987) Vol. 123; no. 9; p. 316
Main Authors Xu, Ning, Cai, Yu, Tong, Yixin, Tang, Ling, Zhou, Yu, Gong, Yanfeng, Huang, Junhui, Wang, Jiamin, Chen, Yue, Jiang, Qingwu, Zheng, Mao, Zhou, Yibiao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis.
AbstractList Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis.
Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis.Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive rates in Hunan Province, pinpointing high-risk transmission areas and advocating for tailored control measures in low-endemic regions. Six machine learning models and their corresponding hybrid machine learning-Kriging models were employed to predict the seropositive rate. The optimal model was selected through internal and external validations to simulate the spatial distribution of seropositive rates. Our results showed that the hybrid machine learning-Kriging model demonstrated superior predictive performance compared to basic machine learning model and the Cubist-Kriging model emerged as the most optimal model for this study. The predictive map revealed elevated seropositive rates around Dongting Lake and its waterways with significant clustering, notably in the central and northern regions of Yiyang City and the northeastern areas of Changde City. The model identified gross domestic product, annual average wind speed and the nearest distance from the river as the top three predictors of seropositive rates, with annual average daytime surface temperature contributing the least. In conclusion, our research has revealed that integrating the Kriging method significantly enhances the predictive performance of machine learning models. We developed a Cubist-Kriging model with high predictive performance to forecast the spatial distribution of schistosomiasis seropositive rates. These findings provide valuable guidance for the precise prevention and control of schistosomiasis.
ArticleNumber 316
Author Wang, Jiamin
Jiang, Qingwu
Zhou, Yu
Huang, Junhui
Tang, Ling
Zheng, Mao
Zhou, Yibiao
Xu, Ning
Cai, Yu
Tong, Yixin
Chen, Yue
Gong, Yanfeng
Author_xml – sequence: 1
  givenname: Ning
  surname: Xu
  fullname: Xu, Ning
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
– sequence: 2
  givenname: Yu
  surname: Cai
  fullname: Cai, Yu
  organization: Hunan Institute for Schistosomiasis Control
– sequence: 3
  givenname: Yixin
  surname: Tong
  fullname: Tong, Yixin
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
– sequence: 4
  givenname: Ling
  surname: Tang
  fullname: Tang, Ling
  organization: Hunan Institute for Schistosomiasis Control
– sequence: 5
  givenname: Yu
  surname: Zhou
  fullname: Zhou, Yu
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
– sequence: 6
  givenname: Yanfeng
  surname: Gong
  fullname: Gong, Yanfeng
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
– sequence: 7
  givenname: Junhui
  surname: Huang
  fullname: Huang, Junhui
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
– sequence: 8
  givenname: Jiamin
  surname: Wang
  fullname: Wang, Jiamin
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
– sequence: 9
  givenname: Yue
  surname: Chen
  fullname: Chen, Yue
  organization: School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa
– sequence: 10
  givenname: Qingwu
  surname: Jiang
  fullname: Jiang, Qingwu
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
– sequence: 11
  givenname: Mao
  surname: Zheng
  fullname: Zheng, Mao
  email: zhengmao496@126.com
  organization: Hunan Institute for Schistosomiasis Control
– sequence: 12
  givenname: Yibiao
  surname: Zhou
  fullname: Zhou, Yibiao
  email: z_yibiao@hotmail.com
  organization: Fudan University School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Fudan University Center for Tropical Disease Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39230789$$D View this record in MEDLINE/PubMed
BookMark eNqNks2KFDEUhYOMOD2jL-BCAm5cWHpvpf7iThp1xAFnoesilbrVlaEqaZPUNL6Rj2m6a1RwIUIggfOde7jkXLAz6ywx9hThFQLUrwNAIaoM8iKDRgjMDg_YBguRZyjL8oxtQKY3IIpzdhHCLQDWVVE8YudC5gLqRm7YjxtPvdHROMvTiSPxsFfRqIn3JkRvumXVhlUj7_YumGjuiHsV6SgEPSbUBTcbFUzgxvKrxSrLb7y7M1bTS74djVVvuOKzSrAlPpHy1tgdn11PU7JE2h3n9fxg4njK-uTN7kRQHF3_mD0c1BToyf19yb6-f_dle5Vdf_7wcfv2OtOilDGrKoCOdKEAFQy601DWlawHzLtSywGGoUFdocCu6AssagF9V2ukgQYsi6oUl-zFOnfv3beFQmxnEzRNk7LkltAKLEXdIKL8DxSgrNJQTOjzv9Bbt3ibFjlRjRSVPGY_u6eWbqa-3XszK_-9_fVdCchXQHsXgqfhN4LQHjvRrp1oUyfaUyfaQzKJ1RQSbHfk_2T_w_UTmiy7cw
Cites_doi 10.1016/j.actatropica.2016.03.028
10.16250/j.32.1374.2023073
10.1002/joc.5086
10.1186/s13071-019-3682-6
10.1186/s40249-021-00874-9
10.3390/app9081621
10.1016/j.ecohyd.2023.04.008
10.3389/fimmu.2020.574136
10.1016/S0020-7519(00)00056-4
10.1007/s10661-021-08946-x
10.1371/journal.pntd.0002350
10.16250/j.32.1374.2019225
10.1016/S0140-6736(13)61949-2
10.1126/science.aaf7894
10.1186/s13071-020-04526-z
10.1007/s12553-022-00712-4
10.1016/j.scs.2021.103643
10.1109/Access.2017.2696365
10.1371/journal.pntd.0010410
10.1016/S2214-109X(19)30346-8
10.1371/journal.pntd.0011466
10.1016/j.ijpara.2021.03.004
10.1890/02-4035
10.3390/diseases10040093
10.1186/s13071-018-2687-x
10.1186/s13071-022-05465-7
10.1016/j.pt.2003.10.019
10.1186/s40249-018-0443-2
10.16250/j.32.1374.2020057
10.1371/journal.pntd.0010620
10.1645/12-35.1
10.1186/s13071-020-04157-4
10.1186/s40249-020-00758-4
10.1016/j.pt.2004.06.006
10.1016/j.ocecoaman.2021.105697
10.1016/j.geoderma.2011.06.006
10.1371/journal.pntd.0009578
10.1016/S1001-6279(15)60005-1
10.1016/S1473-3099(06)70521-7
10.1080/00034983.1974.11686957
10.1017/S0950268819001481
10.1186/s13071-023-05952-5
10.1371/journal.pntd.0009091
10.1371/journal.pntd.0000337
10.3389/fpls.2018.00582
10.1016/j.geoderma.2019.02.019
10.12140/j.issn.1000-7423.2020.01.012
10.1016/s0035-9203(03)90112-x
10.1038/s41572-018-0013-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
7S9
L.6
DOI 10.1007/s00436-024-08331-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Public Health
EISSN 1432-1955
EndPage 316
ExternalDocumentID 39230789
10_1007_s00436_024_08331_w
Genre Journal Article
GeographicLocations China
Hunan China
GeographicLocations_xml – name: China
– name: Hunan China
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.55
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AAJSJ
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
YLTOR
Z45
Z7U
Z7V
Z7W
Z82
Z83
Z87
Z8O
Z8P
Z8Q
Z8V
Z8W
Z91
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABEEZ
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFGXO
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
7S9
L.6
ID FETCH-LOGICAL-c359t-6600bec4a01a0fcbc057697f12b5c9f0ff81c6131b4d414730db7c1efef154653
IEDL.DBID U2A
ISSN 0932-0113
1432-1955
IngestDate Thu Jul 10 21:25:02 EDT 2025
Fri Jul 11 08:08:39 EDT 2025
Thu Aug 28 12:40:28 EDT 2025
Wed Feb 19 02:14:32 EST 2025
Tue Jul 01 03:58:11 EDT 2025
Fri Feb 21 02:40:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Schistosomiasis
Seropositive Rate
Machine Learning
Geostatistical method
Spatial Distribution
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-6600bec4a01a0fcbc057697f12b5c9f0ff81c6131b4d414730db7c1efef154653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39230789
PQID 3100893695
PQPubID 2043610
PageCount 1
ParticipantIDs proquest_miscellaneous_3153781119
proquest_miscellaneous_3100564651
proquest_journals_3100893695
pubmed_primary_39230789
crossref_primary_10_1007_s00436_024_08331_w
springer_journals_10_1007_s00436_024_08331_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Founded as Zeitschrift für Parasitenkunde
PublicationTitle Parasitology research (1987)
PublicationTitleAbbrev Parasitol Res
PublicationTitleAlternate Parasitol Res
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jean, Burke, Xie, Davis, Lobell, Ermon (CR18) 2016; 353
Hu, Xie, Tang, Li, Zou (CR15) 2018; 9
Li, Hou, Tan, Williams, Gray, Gordon, Kurscheid, Clements, Li, McManus (CR26) 2020; 11
Eneanya, Fronterre, Anagbogu, Okoronkwo, Garske, Cano, Donnelly (CR5) 2019; 12
Tupps, Kargbo-Labour, Paye, Dhakal, Hodges, Jones, Davlin, Sonnie, Manah, Imtiaz, Zhang (CR40) 2022; 16
Doenhoff, Chiodini, Hamilton (CR4) 2004; 20
CR30
Fingerut, Zimmer, Zimmer (CR8) 2003; 84
Guo, Jiang, Gu, Qiao, Li (CR12) 2013; 99
Oyewola, Dada, Misra (CR31) 2022; 12
Rullens, Stephenson, Lohrer, Townsend, Pilditch (CR35) 2021; 209
Alene, Gordon, Clements, Williams, Gray, Zhou, Li, Utzinger, Kurscheid, Forsyth, Zhou, Li, Li, Lin, Lou, Li, Ge, Xu, Yu, Hu, Xie, McManus (CR1) 2022; 10
Jiang, Deng, Zhou, Ren, Cai, Li, Hu, Li, Shi, Zhang, Zheng, Chen, Jiang, Zhou (CR19) 2021; 51
Wang, Li, Zhang, Lv, Xu (CR43) 2019; 31
Ruppel, Chlichlia, Bahgat (CR36) 2004; 20
L'Heureux, Grolinger, Elyamany, Capretz (CR23) 2017; 5
John, Kebonye, Agyeman, Ahado (CR20) 2021; 193
Gong, Zhu, Li, Zhang, Xue, Xia, Lv, Xu, Li (CR10) 2021; 10
Wang, Xu, Zhao, Li, Zhang, He, Swing, Yang (CR42) 2018; 7
Zheng, Wang, Zhu, Qiu, Wu (CR49) 1995; 6
Zhang, He, Yang, Dang, Li, Guo, Li, Cao, Xu, Li, Zhou (CR48) 2023; 35
Shrestha, McCulloch, Hedtke, Grant (CR37) 2022; 16
Kondeti, Ravi, Mutheneni, Kadiri, Kumaraswamy, Vadlamani, Upadhyayula (CR22) 2019; 147
Pouladi, Moller, Tabatabai, Greve (CR33) 2019; 342
Fornillos, Fontanilla, Chigusa, Kikuchi, Kirinoki, Kato-Hayashi, Kawazu, Angeles, Tabios, Moendeg, Goto, Tamayo, Gampoy, Pates, Chua, Leonardo (CR9) 2019; 36
Liu, Li, Yan, Chen, Li, Luan (CR28) 2023; 9
Yang, Gao, Cheng, Pan, Yang, Chen, Dai, Zhu, Zhou, Jiang (CR47) 2018; 11
Qin, Zhu, Qiu, Lu, Li, Pei (CR34) 2012; 171
Steinmann, Keiser, Bos, Tanner, Utzinger (CR38) 2006; 6
Eneanya, Koudou, Aboulaye, Elvis, Souleymane, Kouakou, Weil, Fischer (CR6) 2021; 15
Li, He, Zeng, McManus (CR24) 2003; 97
Upatham (CR41) 1974; 68
Manyangadze, Chimbari, Gebreslasie, Mukaratirwa (CR29) 2016; 159
Phillips, Ower, Mekete, Liyew, Maddren, Belay, Chernet, Anjulo, Mengistu, Salasibew, Tasew, Anderson (CR32) 2022; 15
Tong, Tang, Xia, Li, Hu, Huang, Wang, Jiang, Yin, Xu, Chen, Jiang, Zhou, Zhou (CR39) 2023; 17
Li, Gurarie, Lo, Zhu, King (CR25) 2019; 7
Xu, Zhang, Du, Song, Huang, Gong, Jiang, Tong, Yin, Wang, Jiang, Chen, Jiang, Dong, Y, Zhou YB (CR46) 2023; 16
Hung, Remais (CR17) 2008; 2
Li, Shi, Deng, Ren, He, Hu, Li, Zhang, Zheng, Wang, Dong, Chen, Jiang, Zhou (CR27) 2021; 14
Wang, Bergquist, King, Yang (CR45) 2021; 15
Guo, Xu, Zhang, Lv, Cao, Li, Zhou (CR13) 2020; 9
Jousson, Bartoli (CR21) 2000; 30
Zheng, Wang, Wang, Hou (CR50) 2015; 30
Han, Zhao, Gao (CR14) 2022; 78
Hu, Hao, Xia, Guo, Xue, Zhang, Wang, Dong, Xu, Li (CR16) 2020; 38
Fick, Hijmans (CR7) 2017; 37
Zhou, Li, Wei, Li, Qiao, Armaghani (CR51) 2019; 9
Balen, Liu, McManus, Raso, Utzinger, Xiao, Yu, Zhao, Li (CR2) 2013; 7
Wang, Zhou, Jiang, Wu, Jiang, Tang, Li, He, Ren (CR44) 2020; 32
Guan, Dai, Zhou, Ren, Qin, Li, Lv, Li, Zhou, Xu (CR11) 2020; 13
Colley, Bustinduy, Secor, King (CR3) 2014; 383
JY Hu (8331_CR15) 2018; 9
N Pouladi (8331_CR33) 2019; 342
YW Hung (8331_CR17) 2008; 2
J Balen (8331_CR2) 2013; 7
A Ruppel (8331_CR36) 2004; 20
N Jean (8331_CR18) 2016; 353
J Zheng (8331_CR49) 1995; 6
FY Li (8331_CR26) 2020; 11
K John (8331_CR20) 2021; 193
XK Hu (8331_CR16) 2020; 38
RJC Fornillos (8331_CR9) 2019; 36
LJ Zhang (8331_CR48) 2023; 35
P Steinmann (8331_CR38) 2006; 6
C Tupps (8331_CR40) 2022; 16
SL Wang (8331_CR43) 2019; 31
EY Li (8331_CR25) 2019; 7
PK Kondeti (8331_CR22) 2019; 147
Y Yang (8331_CR47) 2018; 11
W Wang (8331_CR45) 2021; 15
O Jousson (8331_CR21) 2000; 30
SS Zheng (8331_CR50) 2015; 30
AE Phillips (8331_CR32) 2022; 15
Z Guan (8331_CR11) 2020; 13
ES Upatham (8331_CR41) 1974; 68
MJ Doenhoff (8331_CR4) 2004; 20
JY Guo (8331_CR13) 2020; 9
V Rullens (8331_CR35) 2021; 209
CZ Qin (8331_CR34) 2012; 171
XY Wang (8331_CR42) 2018; 7
N Xu (8331_CR46) 2023; 16
Y Liu (8331_CR28) 2023; 9
T Manyangadze (8331_CR29) 2016; 159
HL Wang (8331_CR44) 2020; 32
DG Colley (8331_CR3) 2014; 383
DO Oyewola (8331_CR31) 2022; 12
YX Tong (8331_CR39) 2023; 17
SE Fick (8331_CR7) 2017; 37
SM Li (8331_CR27) 2021; 14
H Shrestha (8331_CR37) 2022; 16
YS Li (8331_CR24) 2003; 97
8331_CR30
L Han (8331_CR14) 2022; 78
OA Eneanya (8331_CR6) 2021; 15
JT Fingerut (8331_CR8) 2003; 84
YF Gong (8331_CR10) 2021; 10
OA Eneanya (8331_CR5) 2019; 12
J Zhou (8331_CR51) 2019; 9
A L'Heureux (8331_CR23) 2017; 5
Y Guo (8331_CR12) 2013; 99
HL Jiang (8331_CR19) 2021; 51
KA Alene (8331_CR1) 2022; 10
References_xml – volume: 159
  start-page: 176
  year: 2016
  end-page: 184
  ident: CR29
  article-title: Risk factors and micro-geographical heterogeneity of in Ndumo area, uMkhanyakude district, KwaZulu-Natal, South Africa
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2016.03.028
– volume: 35
  start-page: 217
  issue: 3
  year: 2023
  end-page: 224,250
  ident: CR48
  article-title: Progress of schistosomiasis control in People’s Republic of China in 2022
  publication-title: Chin J Schisto Control
  doi: 10.16250/j.32.1374.2023073
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  end-page: 4315
  ident: CR7
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int J Climatol
  doi: 10.1002/joc.5086
– volume: 12
  start-page: 440
  year: 2019
  ident: CR5
  article-title: Mapping the baseline prevalence of lymphatic filariasis across Nigeria
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-019-3682-6
– volume: 10
  start-page: 88
  year: 2021
  ident: CR10
  article-title: Identification of the high-risk area for schistosomiasis transmission in China based on information value and machine learning: a newly data-driven modeling attempt
  publication-title: Infect Dis Poverty
  doi: 10.1186/s40249-021-00874-9
– volume: 9
  start-page: 1621
  issue: 8
  year: 2019
  ident: CR51
  article-title: Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials
  publication-title: Appl Sci
  doi: 10.3390/app9081621
– volume: 9
  start-page: 48
  year: 2023
  ident: CR28
  article-title: Typical vegetation dynamics and hydrological changes of Dongting Lake wetland from 1985 to 2020
  publication-title: Ecohydrol Hydrobiol
  doi: 10.1016/j.ecohyd.2023.04.008
– volume: 11
  start-page: 574136
  year: 2020
  ident: CR26
  article-title: Current Status of Schistosomiasis Control and Prospects for Elimination in the Dongting Lake Region of the People's Republic of China
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.574136
– volume: 30
  start-page: 747
  issue: 6
  year: 2000
  end-page: 760
  ident: CR21
  article-title: The life cycle of Opecoeloides columbellae (Pagenstecher, 1863) n comb (Digenea, opecoelidae) evidence from molecules and morphology
  publication-title: Int J Parasitol
  doi: 10.1016/S0020-7519(00)00056-4
– volume: 193
  start-page: 197
  year: 2021
  ident: CR20
  article-title: Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-021-08946-x
– volume: 7
  start-page: e2350
  issue: 8
  year: 2013
  ident: CR2
  article-title: Health access livelihood framework reveals potential barriers in the control of schistosomiasis in the Dongting Lake area of Hunan Province,China
  publication-title: Plos Negl Trop Dis
  doi: 10.1371/journal.pntd.0002350
– volume: 31
  start-page: 459
  issue: 5
  year: 2019
  end-page: 462,473
  ident: CR43
  article-title: Thinking on schistosomiasis control under the strategy of China’s Yangtze River Economic Belt
  publication-title: Chin J Schisto Control
  doi: 10.16250/j.32.1374.2019225
– volume: 383
  start-page: 2253
  issue: 9936
  year: 2014
  end-page: 2264
  ident: CR3
  article-title: Human schistosomiasis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61949-2
– volume: 353
  start-page: 790
  issue: 6301
  year: 2016
  end-page: 794
  ident: CR18
  article-title: Combining satellite imagery and machine learning to predict poverty
  publication-title: Science
  doi: 10.1126/science.aaf7894
– volume: 14
  start-page: 7
  year: 2021
  ident: CR27
  article-title: Spatio-temporal variations of emerging sites infested with schistosome-transmitting in Hunan Province, China, 1949–2016
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-020-04526-z
– volume: 12
  start-page: 1277
  issue: 6
  year: 2022
  end-page: 1293
  ident: CR31
  article-title: Machine learning for optimizing daily COVID-19 vaccine dissemination to combat the pandemic
  publication-title: Health Technol
  doi: 10.1007/s12553-022-00712-4
– volume: 78
  year: 2022
  ident: CR14
  article-title: Gu Z (2022) Prediction and evaluation of spatial distributions of ozone and urban heat island using a machine learning modified land use regression method
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.103643
– volume: 5
  start-page: 7776
  year: 2017
  end-page: 7797
  ident: CR23
  article-title: Machine Learning With Big Data: Challenges and Approaches
  publication-title: Ieee Access
  doi: 10.1109/Access.2017.2696365
– volume: 16
  start-page: e0010410
  issue: 5
  year: 2022
  ident: CR40
  article-title: Community-wide prevalence and intensity of soil-transmitted helminthiasis and Schistosoma mansoni in two districts of Sierra Leone
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0010410
– volume: 7
  start-page: e1414
  issue: 10
  year: 2019
  end-page: e1422
  ident: CR25
  article-title: Improving public health control of schistosomiasis with a modified WHO strategy: a model-based comparison study
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(19)30346-8
– volume: 17
  start-page: e0011466
  issue: 7
  year: 2023
  ident: CR39
  article-title: Identifying determinants for the seropositive rate of schistosomiasis in Hunan province, China: A multi-scale geographically weighted regression model
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0011466
– volume: 51
  start-page: 959
  issue: 11
  year: 2021
  end-page: 965
  ident: CR19
  article-title: Machine learning algorithms to predict the 1 year unfavourable prognosis for advanced schistosomiasis
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2021.03.004
– volume: 84
  start-page: 2502
  issue: 9
  year: 2003
  end-page: 2515
  ident: CR8
  article-title: Larval swimming overpowers turbulent mixing and facilitates transmission of a marine parasite
  publication-title: Ecology
  doi: 10.1890/02-4035
– volume: 10
  start-page: 93
  issue: 4
  year: 2022
  ident: CR1
  article-title: Spatial Analysis of Schistosomiasis in Hunan and Jiangxi Provinces in the People's Republic of China
  publication-title: Diseases
  doi: 10.3390/diseases10040093
– volume: 11
  start-page: 183
  year: 2018
  ident: CR47
  article-title: Three Gorges Dam: polynomial regression modeling of water level and the density of schistosome-transmitting snails
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-018-2687-x
– volume: 15
  start-page: 410
  issue: 1
  year: 2022
  ident: CR32
  article-title: Association between water, sanitation, and hygiene access and the prevalence of soil-transmitted helminth and schistosome infections in Wolayita
  publication-title: Ethiopia Parasite Vector
  doi: 10.1186/s13071-022-05465-7
– volume: 36
  start-page: 402
  issue: 2
  year: 2019
  end-page: 411
  ident: CR9
  article-title: Infection rate of in the snail quadrasi in endemic villages in the Philippines: Need for snail surveillance technique
  publication-title: Trop Biomed
– volume: 20
  start-page: 35
  issue: 1
  year: 2004
  end-page: 39
  ident: CR4
  article-title: Specific and sensitive diagnosis of schistosome infection: can it be done with antibodies?
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2003.10.019
– volume: 7
  start-page: 62
  year: 2018
  ident: CR42
  article-title: Estimating the prevalence of in China: a serological approach
  publication-title: Infect Dis Poverty
  doi: 10.1186/s40249-018-0443-2
– volume: 32
  start-page: 317
  issue: 3
  year: 2020
  end-page: 319
  ident: CR44
  article-title: Endemic situation of schistosomiasis in Hunan Province in 2019
  publication-title: Chin J Schisto Control
  doi: 10.16250/j.32.1374.2020057
– volume: 16
  start-page: e0010620
  issue: 7
  year: 2022
  ident: CR37
  article-title: Geospatial modeling of pre-intervention nodule prevalence of Onchocerca volvulus in Ethiopia as an aid to onchocerciasis elimination
  publication-title: Plos Neglect Trop Dis
  doi: 10.1371/journal.pntd.0010620
– volume: 99
  start-page: 706
  issue: 4
  year: 2013
  end-page: 707
  ident: CR12
  article-title: Prevalence of in wild rodents in five islands of the West Dongting Lake, China
  publication-title: J Parasitol
  doi: 10.1645/12-35.1
– ident: CR30
– volume: 13
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR11
  article-title: Assessment of knowledge, attitude and practices and the analysis of risk factors regarding schistosomiasis among fishermen and boatmen in the Dongting Lake Basin, the People's Republic of China
  publication-title: Parasite Vectors
  doi: 10.1186/s13071-020-04157-4
– volume: 9
  start-page: 35
  issue: 05
  year: 2020
  end-page: 44
  ident: CR13
  article-title: Surveillance on schistosomiasis in five provincial-level administrative divisions of the People’s Republic of China in the post-elimination era
  publication-title: Infect Dis Poverty
  doi: 10.1186/s40249-020-00758-4
– volume: 6
  start-page: 26
  year: 1995
  end-page: 28
  ident: CR49
  article-title: Study of the relationship between the water-contact with cercariae of and social factors in the inhabitants in Yunnan Province
  publication-title: Chinese Journal of Zoonoses
– volume: 20
  start-page: 397
  issue: 9
  year: 2004
  end-page: 400
  ident: CR36
  article-title: Invasion by schistosome cercariae: neglected aspects in
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2004.06.006
– volume: 209
  start-page: 105687
  year: 2021
  ident: CR35
  article-title: Combined species occurrence and density predictions to improve marine spatial management
  publication-title: Ocean Coast Manage
  doi: 10.1016/j.ocecoaman.2021.105697
– volume: 171
  start-page: 64
  year: 2012
  end-page: 74
  ident: CR34
  article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.06.006
– volume: 15
  start-page: e0009578
  issue: 8
  year: 2021
  ident: CR45
  article-title: Elimination of schistosomiasis in China: Current status and future prospects
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0009578
– volume: 30
  start-page: 48
  issue: 1
  year: 2015
  end-page: 62
  ident: CR50
  article-title: Sediment resuspension under action of wind in Taihu Lake
  publication-title: China Int J Sediment Res
  doi: 10.1016/S1001-6279(15)60005-1
– volume: 6
  start-page: 411
  issue: 7
  year: 2006
  end-page: 425
  ident: CR38
  article-title: Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(06)70521-7
– volume: 68
  start-page: 343
  issue: 3
  year: 1974
  end-page: 352
  ident: CR41
  article-title: Dispersion of St Lucian Schistosoma-Mansoni Cercariae in Natural Standing and Running Waters Determined by Cercaria Counts and Mouse Exposure
  publication-title: Ann Trop Med Parasit
  doi: 10.1080/00034983.1974.11686957
– volume: 147
  start-page: e260
  year: 2019
  ident: CR22
  article-title: Applications of machine learning techniques to predict filariasis using socio-economic factors
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268819001481
– volume: 16
  start-page: 377
  issue: 1
  year: 2023
  ident: CR46
  article-title: Prediction of distribution in association with climate change using machine learning models
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-023-05952-5
– volume: 15
  start-page: e0009091
  issue: 2
  year: 2021
  ident: CR6
  article-title: Progress towards onchocerciasis elimination in Cote d'Ivoire: A geospatial modelling study
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0009091
– volume: 2
  start-page: e337
  issue: 11
  year: 2008
  ident: CR17
  article-title: Quantitative detection of cercariae in water by real-time PCR
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000337
– volume: 9
  start-page: 582
  year: 2018
  ident: CR15
  article-title: Changes of vegetation distribution in the East Dongting Lake after the operation of the three Gorges Dam, China
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00582
– volume: 342
  start-page: 85
  year: 2019
  end-page: 92
  ident: CR33
  article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.019
– volume: 38
  start-page: 80
  issue: 1
  year: 2020
  end-page: 86
  ident: CR16
  article-title: Detection of schistosomiasis transmission risks in Yunnan Province based on ecological niche modeling
  publication-title: Chin J Schisto Control
  doi: 10.12140/j.issn.1000-7423.2020.01.012
– volume: 97
  start-page: 177
  issue: 2
  year: 2003
  end-page: 181
  ident: CR24
  article-title: Epidemiological and morbidity assessment of infection in a migrant fisherman community, the Dongting Lake region, China
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/s0035-9203(03)90112-x
– volume: 5
  start-page: 7776
  year: 2017
  ident: 8331_CR23
  publication-title: Ieee Access
  doi: 10.1109/Access.2017.2696365
– volume: 342
  start-page: 85
  year: 2019
  ident: 8331_CR33
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.019
– volume: 68
  start-page: 343
  issue: 3
  year: 1974
  ident: 8331_CR41
  publication-title: Ann Trop Med Parasit
  doi: 10.1080/00034983.1974.11686957
– volume: 15
  start-page: e0009578
  issue: 8
  year: 2021
  ident: 8331_CR45
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0009578
– volume: 353
  start-page: 790
  issue: 6301
  year: 2016
  ident: 8331_CR18
  publication-title: Science
  doi: 10.1126/science.aaf7894
– volume: 7
  start-page: e1414
  issue: 10
  year: 2019
  ident: 8331_CR25
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(19)30346-8
– volume: 12
  start-page: 1277
  issue: 6
  year: 2022
  ident: 8331_CR31
  publication-title: Health Technol
  doi: 10.1007/s12553-022-00712-4
– volume: 10
  start-page: 93
  issue: 4
  year: 2022
  ident: 8331_CR1
  publication-title: Diseases
  doi: 10.3390/diseases10040093
– volume: 16
  start-page: e0010410
  issue: 5
  year: 2022
  ident: 8331_CR40
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0010410
– ident: 8331_CR30
  doi: 10.1038/s41572-018-0013-8
– volume: 9
  start-page: 1621
  issue: 8
  year: 2019
  ident: 8331_CR51
  publication-title: Appl Sci
  doi: 10.3390/app9081621
– volume: 209
  start-page: 105687
  year: 2021
  ident: 8331_CR35
  publication-title: Ocean Coast Manage
  doi: 10.1016/j.ocecoaman.2021.105697
– volume: 20
  start-page: 397
  issue: 9
  year: 2004
  ident: 8331_CR36
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2004.06.006
– volume: 84
  start-page: 2502
  issue: 9
  year: 2003
  ident: 8331_CR8
  publication-title: Ecology
  doi: 10.1890/02-4035
– volume: 171
  start-page: 64
  year: 2012
  ident: 8331_CR34
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.06.006
– volume: 78
  year: 2022
  ident: 8331_CR14
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.103643
– volume: 20
  start-page: 35
  issue: 1
  year: 2004
  ident: 8331_CR4
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2003.10.019
– volume: 16
  start-page: e0010620
  issue: 7
  year: 2022
  ident: 8331_CR37
  publication-title: Plos Neglect Trop Dis
  doi: 10.1371/journal.pntd.0010620
– volume: 15
  start-page: e0009091
  issue: 2
  year: 2021
  ident: 8331_CR6
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0009091
– volume: 9
  start-page: 582
  year: 2018
  ident: 8331_CR15
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00582
– volume: 11
  start-page: 183
  year: 2018
  ident: 8331_CR47
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-018-2687-x
– volume: 16
  start-page: 377
  issue: 1
  year: 2023
  ident: 8331_CR46
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-023-05952-5
– volume: 12
  start-page: 440
  year: 2019
  ident: 8331_CR5
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-019-3682-6
– volume: 30
  start-page: 747
  issue: 6
  year: 2000
  ident: 8331_CR21
  publication-title: Int J Parasitol
  doi: 10.1016/S0020-7519(00)00056-4
– volume: 14
  start-page: 7
  year: 2021
  ident: 8331_CR27
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-020-04526-z
– volume: 31
  start-page: 459
  issue: 5
  year: 2019
  ident: 8331_CR43
  publication-title: Chin J Schisto Control
  doi: 10.16250/j.32.1374.2019225
– volume: 10
  start-page: 88
  year: 2021
  ident: 8331_CR10
  publication-title: Infect Dis Poverty
  doi: 10.1186/s40249-021-00874-9
– volume: 159
  start-page: 176
  year: 2016
  ident: 8331_CR29
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2016.03.028
– volume: 13
  start-page: 1
  year: 2020
  ident: 8331_CR11
  publication-title: Parasite Vectors
  doi: 10.1186/s13071-020-04157-4
– volume: 193
  start-page: 197
  year: 2021
  ident: 8331_CR20
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-021-08946-x
– volume: 97
  start-page: 177
  issue: 2
  year: 2003
  ident: 8331_CR24
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/s0035-9203(03)90112-x
– volume: 15
  start-page: 410
  issue: 1
  year: 2022
  ident: 8331_CR32
  publication-title: Ethiopia Parasite Vector
  doi: 10.1186/s13071-022-05465-7
– volume: 2
  start-page: e337
  issue: 11
  year: 2008
  ident: 8331_CR17
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000337
– volume: 9
  start-page: 48
  year: 2023
  ident: 8331_CR28
  publication-title: Ecohydrol Hydrobiol
  doi: 10.1016/j.ecohyd.2023.04.008
– volume: 383
  start-page: 2253
  issue: 9936
  year: 2014
  ident: 8331_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61949-2
– volume: 7
  start-page: 62
  year: 2018
  ident: 8331_CR42
  publication-title: Infect Dis Poverty
  doi: 10.1186/s40249-018-0443-2
– volume: 9
  start-page: 35
  issue: 05
  year: 2020
  ident: 8331_CR13
  publication-title: Infect Dis Poverty
  doi: 10.1186/s40249-020-00758-4
– volume: 7
  start-page: e2350
  issue: 8
  year: 2013
  ident: 8331_CR2
  publication-title: Plos Negl Trop Dis
  doi: 10.1371/journal.pntd.0002350
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  ident: 8331_CR7
  publication-title: Int J Climatol
  doi: 10.1002/joc.5086
– volume: 11
  start-page: 574136
  year: 2020
  ident: 8331_CR26
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.574136
– volume: 36
  start-page: 402
  issue: 2
  year: 2019
  ident: 8331_CR9
  publication-title: Trop Biomed
– volume: 30
  start-page: 48
  issue: 1
  year: 2015
  ident: 8331_CR50
  publication-title: China Int J Sediment Res
  doi: 10.1016/S1001-6279(15)60005-1
– volume: 51
  start-page: 959
  issue: 11
  year: 2021
  ident: 8331_CR19
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2021.03.004
– volume: 6
  start-page: 411
  issue: 7
  year: 2006
  ident: 8331_CR38
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(06)70521-7
– volume: 99
  start-page: 706
  issue: 4
  year: 2013
  ident: 8331_CR12
  publication-title: J Parasitol
  doi: 10.1645/12-35.1
– volume: 38
  start-page: 80
  issue: 1
  year: 2020
  ident: 8331_CR16
  publication-title: Chin J Schisto Control
  doi: 10.12140/j.issn.1000-7423.2020.01.012
– volume: 17
  start-page: e0011466
  issue: 7
  year: 2023
  ident: 8331_CR39
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0011466
– volume: 32
  start-page: 317
  issue: 3
  year: 2020
  ident: 8331_CR44
  publication-title: Chin J Schisto Control
  doi: 10.16250/j.32.1374.2020057
– volume: 35
  start-page: 217
  issue: 3
  year: 2023
  ident: 8331_CR48
  publication-title: Chin J Schisto Control
  doi: 10.16250/j.32.1374.2023073
– volume: 6
  start-page: 26
  year: 1995
  ident: 8331_CR49
  publication-title: Chinese Journal of Zoonoses
– volume: 147
  start-page: e260
  year: 2019
  ident: 8331_CR22
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268819001481
SSID ssj0017644
Score 2.4028847
Snippet Schistosomiasis remains a formidable challenge to global public health. This study aims to predict the spatial distribution of schistosomiasis seropositive...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 316
SubjectTerms Animals
Biomedical and Life Sciences
Biomedicine
China
China - epidemiology
gross domestic product
Humans
Immunology
kriging
lakes
Learning algorithms
Machine Learning
Medical Microbiology
Microbiology
Models, Statistical
prediction
Public health
rivers
Schistosomiasis
Schistosomiasis - epidemiology
Schistosomiasis - prevention & control
Seroepidemiologic Studies
seroprevalence
Spatial Analysis
Spatial distribution
surface temperature
wind speed
Title Prediction on the spatial distribution of the seropositive rate of schistosomiasis in Hunan Province, China: a machine learning model integrated with the Kriging method
URI https://link.springer.com/article/10.1007/s00436-024-08331-w
https://www.ncbi.nlm.nih.gov/pubmed/39230789
https://www.proquest.com/docview/3100893695
https://www.proquest.com/docview/3100564651
https://www.proquest.com/docview/3153781119
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6ahEIvpe9umi4q9NYYVivJXve2WbJdGhpy6ELai5H1CHuIXeJd8pf6MzMzfpSStlAw-CBZFho9ZjQz3wfwPuARoWwWkpjpkGjlbWJtnuKKd0Z6n6cuUoLzl_N0tdafL81llxTW9NHuvUuSd-oh2Y3R0hM8UwhRWcnkdg8ODNruFMi1ns4H30GWMoUrmuoUdCBVlyrz5zZ-P47u6Zj3_KN87CyfwONOXxTzVsBP4UGonsHD7zXfhj-Hnxc35Gmh0RX4oDYnGoqRxk88QeJ2bFaijm1ZIFKEhuOFBIFEUAHat4Qv0NTXG9tsGrGpxGpX2Upc8HWDC8eCWbY_CiuuOfYyiI5s4kowk44YQCe8oItd_tcZU25hDeaofgHr5enXxSrpyBcSp0y-TVLUhFC-2k6knURXOlTs0jyLcloal8dJjDPpUNCy1F5LjRuFLzMnQwxREsG6egn7VV2F1yBMbrPSZ8GhLqdDmc-knnqLw4_GoDKlGcGHXgbFjxZjoxjQlFliBUqsYIkVtyM46sVUdOutKchNMSNuQmzs3VCMK4XcH7YK9a6tY1Lifv9XHaMo91bmI3jVToGhS6hJKgLnH8FxPyd-deDv_T38v-pv4NGU5yeFsR3B_vZmF96i3rMtx3AwX56cnNP707ez0zHsLdLFmCf_HejBAHg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBtGL-HY1agt6MgPb093zEDwsatjsJiFgAsHL2NMP2UNmJLPL4v_x4M-0quchEhU8BObWNTPFVNVUddfjA3jp0EUInbrIp9JFUlgdaZ0naPFGcWvzxHhqcD48Smancn6mzrbge98LE6rd-5Rk-FMPzW5hWnqEPoUmKgsebbpSyoX7tsGNWvN2_z1K9VUc7304eTeLOiyByAiVr6IEHTuyK_WE64k3pcE4JclTz-NSmdxPvM-4Qb55Ka3kEvXelqnhzjvPCS9c4HOvwXamkkyNYHs6nX-cD9mKNAmgsROMhXBrzkXXnPNnrn93gJei2ksZ2eDo9m7DrS5CZdNWpe7AlqvuwvVPdTh_vwc_ji8ot0PyZHhh_MgaqsrGWywN4e3ws1jt2zVHMAxNqFBiNJaCFnBHTRMNmvp8qZtlw5YVm60rXbHjcMBh3C4LuN5vmGbnodrTsQ7e4gsL2D1sGHNhGR0lh3ctAsgXUgRU7PtweiUiegCjqq7cI2Aq12lpU2cwepSuzDMuY6vx8-P2U6hSjeF1L4PiazvVoxjmNweJFSixIkis2IxhpxdT0Vl4U1BiJCM0RHzYi2EZbZMSLrpy9bqlUQmhzf-LRgnq9uX5GB62KjCwhLGrIDiAMez2OvGLgb_z-_j_yJ_DjdnJ4UFxsH-0eAI346CrVES3A6PVxdo9xahrVT7rlJ7B56u2s58tpjrY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhCXqrxTCiwSnKjVrHfXjiv1UFGilECVA5EqLma9D5RD7apOFPGPOPITO7N-IFRA4lApt90448yMZnZn5vsAXjsMEUKnLvKpdJEUVkdaZwl6vFHc2iwxngacP50mk7n8cKbONuBnNwsTut27kmQz00AoTeVy_8L6_X7wLSCnRxhfCF1Z8GjdtlVO3fc1Htrqw5Nj1PCbOB6___xuErW8ApERKltGCQZ5FF3qIddDbwqDOUuSpZ7HhTKZH3o_4gbfgRfSSi7RB2yRGu6885y4wwU-9xbcljR9jB40j4_6ukWaBPrYIWZFeEjnoh3T-bPMv4fCa_nttdpsCHnjbdhqc1V21BjXfdhw5QO486UKN_EP4cfskqo8pFmGH8wkWU392fgVS3C8LZMWq3yz5oiQoQ69SowAKmgBz9aEbVBX5wtdL2q2KNlkVeqSzcJVh3F7LDB8HzDNzkPfp2Mt0cU3Flh8WA94YRldKoffmga6L9wR-LEfwfxGFPQYNsuqdE-BqUynhU2dwTxSuiIbcRlbjX8_HkSFKtQA3nY6yC8afI-8R3IOGstRY3nQWL4ewG6nprz19TqnEsmIeBHxYa_6ZfRSKr3o0lWrZo9KiHf-X3uUoLlfng3gSWMCvUiYxQoiBhjAXmcTvwT4u7w7_7f9JdydHY_zjyen02dwLw6mSt10u7C5vFy555h-LYsXweIZfL1pF7sC2y89vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+on+the+spatial+distribution+of+the+seropositive+rate+of+schistosomiasis+in+Hunan+Province%2C+China%3A+a+machine+learning+model+integrated+with+the+Kriging+method&rft.jtitle=Parasitology+research+%281987%29&rft.au=Xu%2C+Ning&rft.au=Cai%2C+Yu&rft.au=Tong%2C+Yixin&rft.au=Tang%2C+Ling&rft.date=2024-09-01&rft.issn=0932-0113&rft.eissn=1432-1955&rft.volume=123&rft.issue=9&rft_id=info:doi/10.1007%2Fs00436-024-08331-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00436_024_08331_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-0113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-0113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-0113&client=summon