Advanced Driver Assistance Based on Front-View and Rear-Side-View Scene Analysis

This paper proposes a high-performance advanced driver assistance system that analyses front-view driving scenes and rear-side-view scenes. Dense optical flow analysis is calculated for both views to extract motion information. The system performs ego-lane position identification via an effective fu...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1487; no. 1; pp. 12037 - 12043
Main Authors Cheng, Hsu-Yung, Yu, Chih-Chang
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a high-performance advanced driver assistance system that analyses front-view driving scenes and rear-side-view scenes. Dense optical flow analysis is calculated for both views to extract motion information. The system performs ego-lane position identification via an effective fuzzy system and indicates if the vehicle is driving on an inner or outer lane. Extracted flow intensities are utilized as the input for deep convolutional neural networks to issue warning events. The front-view event warning system is more responsive to various types of potential approaching dangers because there is no need to detect vehicles first. The rear-side-view scene analysis provides safety check for vehicle doors. Optical flow information and neural networks are also used for rear-side-view scene analysis. The experimental results have shown that the proposed methods can effective detect events or dangerous conditions and help increase the safety of the drivers and road users.
AbstractList This paper proposes a high-performance advanced driver assistance system that analyses front-view driving scenes and rear-side-view scenes. Dense optical flow analysis is calculated for both views to extract motion information. The system performs ego-lane position identification via an effective fuzzy system and indicates if the vehicle is driving on an inner or outer lane. Extracted flow intensities are utilized as the input for deep convolutional neural networks to issue warning events. The front-view event warning system is more responsive to various types of potential approaching dangers because there is no need to detect vehicles first. The rear-side-view scene analysis provides safety check for vehicle doors. Optical flow information and neural networks are also used for rear-side-view scene analysis. The experimental results have shown that the proposed methods can effective detect events or dangerous conditions and help increase the safety of the drivers and road users.
Author Cheng, Hsu-Yung
Yu, Chih-Chang
Author_xml – sequence: 1
  givenname: Hsu-Yung
  surname: Cheng
  fullname: Cheng, Hsu-Yung
  email: chengsy@csie.ncu.edu.tw,
  organization: Department of Computer Science and Information Engineering, National Central University , Taiwan
– sequence: 2
  givenname: Chih-Chang
  surname: Yu
  fullname: Yu, Chih-Chang
  organization: Department of Information and Computer Engineering, Chung Yuan Christian University , Taiwan
BookMark eNqFkF1LwzAUhoNMcJv-BgveCbX5aJv0sk7nBwOHVW9D1pxCx0xr0k32702pTATBc5PDm-c95_BO0Mg0BhA6J_iKYCEiwmMapkmWRiQWPCIRJhQzfoTGh5_RoRfiBE2cW2PMfPExWuZ6p0wJOrix9Q5skDtXu66XgmvlvN6YYG4b04VvNXwGyujgGZQNi1rDIBUlGAhyozZ7bz1Fx5XaODj7fqfodX77MrsPF093D7N8EZYsybr-rIrppIo5wVRUwGMOlJIsxlxXWewbX1QzDqzUACxLmYhXK45TTRNFV2yKLoa5rW0-tuA6uW621h_hJE3SLBWEssxTfKBK2zhnoZKtrd-V3UuCZR-f7IORfUiyj08SOcTnnZeDs27an9GPy1nxG5StrjzM_oD_W_EFjxV-4w
Cites_doi 10.1007/s00138-010-0287-7
10.1109/TITS.2013.2274760
10.1109/TITS.2013.2246835
10.1049/iet-cvi.2007.0073
10.1007/3-540-45103-X_50
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1088/1742-6596/1487/1/012037
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Advanced Driver Assistance Based on Front-View and Rear-Side-View Scene Analysis
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1487_1_012037
JPCS_1487_1_012037
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c359t-659f3d5f471028fe747e2219407df941944442d37e3cdee396384bb706d25a2b3
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Tue Jul 15 10:22:02 EDT 2025
Tue Jul 01 03:15:39 EDT 2025
Wed Aug 21 03:34:55 EDT 2024
Thu Jan 07 15:21:17 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-659f3d5f471028fe747e2219407df941944442d37e3cdee396384bb706d25a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/1487/1/012037
PQID 2569681239
PQPubID 4998668
PageCount 7
ParticipantIDs proquest_journals_2569681239
iop_journals_10_1088_1742_6596_1487_1_012037
crossref_primary_10_1088_1742_6596_1487_1_012037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 20200301
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Nieto (JPCS_1487_1_012037bib7) 2011; 22
Lin (JPCS_1487_1_012037bib2) 2015
Onkarappa (JPCS_1487_1_012037bib5) 2014; 15
Farneback (JPCS_1487_1_012037bib8) 2003; 2749
Cheng (JPCS_1487_1_012037bib3) 2010; 4
Dang (JPCS_1487_1_012037bib4) 2017
Xin (JPCS_1487_1_012037bib9) 2011
Vinel (JPCS_1487_1_012037bib1) 2012
Nie (JPCS_1487_1_012037bib6) 2013
Sivaraman (JPCS_1487_1_012037bib10) 2013; 14
Zhang (JPCS_1487_1_012037bib11) 2014
References_xml – volume: 22
  start-page: 927
  year: 2011
  ident: JPCS_1487_1_012037bib7
  article-title: Road environment modeling using robust perspective analysis and recursive Bayesian segmentation
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-010-0287-7
– volume: 15
  start-page: 136
  year: 2014
  ident: JPCS_1487_1_012037bib5
  article-title: Speed and texture: an empirical study on optical-flow accuracy in ADAS scenarios
  publication-title: IEEE Trans. on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2274760
– volume: 14
  start-page: 906
  year: 2013
  ident: JPCS_1487_1_012037bib10
  article-title: Integrated lane and vehicle detection, localization, and tracking: A synergistic approach
  publication-title: IEEE Trans. Intelligent Transportation System
  doi: 10.1109/TITS.2013.2246835
– start-page: 476
  year: 2015
  ident: JPCS_1487_1_012037bib2
  article-title: A Blind Zone Alert System Based on Intra-Vehicular Wireless Sensor Networks
– volume: 4
  start-page: 37
  year: 2010
  ident: JPCS_1487_1_012037bib3
  article-title: Environment classification and hierarchical lane detection for structured and unstructured roads
  publication-title: IET Computer Vision
  doi: 10.1049/iet-cvi.2007.0073
– volume: 2749
  start-page: 363
  year: 2003
  ident: JPCS_1487_1_012037bib8
  article-title: Two-frame motion estimation based on polynomial expansion
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/3-540-45103-X_50
– start-page: 2319
  year: 2012
  ident: JPCS_1487_1_012037bib1
  article-title: An Overtaking Assistance System Based on Joint Beaconing and Real-Time Video Transmission
– start-page: 338
  year: 2014
  ident: JPCS_1487_1_012037bib11
  article-title: Overtaking vehicle detection using a spatio-temporal CRF
– start-page: 3865
  year: 2013
  ident: JPCS_1487_1_012037bib6
  article-title: Model-based optical flow for large displacements and homogeneous regions
– start-page: 1459
  year: 2017
  ident: JPCS_1487_1_012037bib4
– start-page: 513
  year: 2011
  ident: JPCS_1487_1_012037bib9
  article-title: Traffic Flow Characteristic Analysis at Intersections from Multi-layer Spectral Clustering of Motion Patterns using Raw Vehicle Trajectory
SSID ssj0033337
Score 2.216273
Snippet This paper proposes a high-performance advanced driver assistance system that analyses front-view driving scenes and rear-side-view scenes. Dense optical flow...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12037
SubjectTerms Advanced driver assistance systems
Artificial neural networks
Neural networks
Optical flow (image analysis)
Physics
Safety
Scene analysis
Warning systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT8IwEG4EYuKL8WdE0TTRR5tBu0H3ZEAhhAdCQAxvzbrrEl62Cfj_e926IDHRPi3dvfRr-91de70j5EkHMg7REGBRIAzzIxmwEMBnEKM6EVJLkRQBstPueOlPVsHKHbhtXVhlxYkFUUMW2zNyD1VzaHNlifAl_2S2apS9XXUlNGqkgRQsZZ00BsPpbF5xscDWK59Ecoa6VlYRXuj2ub6w66FH0PM6nn1Gasuh_9BPtXWW_yLpQvOMzsipMxlpv5zjc3Jk0gtyXIRuxttLMuu7a3z6trFBFhQRt0YhdtEB6iigWUpHNk8B-8Ah0igFOsf1zRZrMGXXIkbGo1V-kiuyHA3fX8fM1UlgsQjCnR1EIiBI_MJaSAx6CIYjE6GvBkno4wc2DqJnRAzGCLvnfK177S7wIOJaXJN6mqXmhlDNo0iC7sagtS-5iDTqrg4YCO3DQh41SbtCR-VlOgxVXGNLqSygygKqLKCqo0pAm-QZUVRua2z_F388EJ_MXheHEiqHpEla1aTsRfdL5Pbv33fkhFu3uQgla5H6bvNl7tG22OkHt4C-AdlhxKE
  priority: 102
  providerName: ProQuest
Title Advanced Driver Assistance Based on Front-View and Rear-Side-View Scene Analysis
URI https://iopscience.iop.org/article/10.1088/1742-6596/1487/1/012037
https://www.proquest.com/docview/2569681239
Volume 1487
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB6sIvjiLdajBPTRtDbZI_vo0So-tKX1egubY6EI21JXBH-9kz3QKiJiHpYQJpvsZDPzhf1mFuBY-UJHCARo7HNLvVj4NDLGo0ajO-FCCZ7kBNlecH3n3Tz6j59jYSbT0vQ3sVokCi5UWBLiRAsxNKOBHwUthPJhq91y8Z88rMESF-g_XRBff1BZY44lLIIiXSchKo7Xzzea81A1nMU3M537nu4a6GrWBeXkqfmSqaZ--5LQ8X-PtQ6rJTQlZ0WPDViw6SYs5xRR_bwFg7OSLkAuZ47MQXBlHfjEJnKOvtCQSUq6Lh8CvR_bVxKnhgxxH9HR2NiiaaTRspIqD8o23HU7txfXtPwfA9XcjzI3uYQbP_FyVJJYPIlYhhYPz4QmiTysYGGGh5ZrYy13e9tTKjwNDPNjpvgOLKaT1O4CUSyOhVGBNkp5gvFYoY9sG2siF8DI4jqcVmsgp0XaDZl_LhdCOkVJpyjpFCXbslBUHU5QtbLcgs-_ix_Nid8MLkbzEnJqkjocVEv_IYooMXJp23i097cx92GFueN6TmE7gMVs9mIPEdNkqgE10b1qwNJ5pzcYNvJXGK99_vAONqvm-w
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUNVeENBW3fKyBL1hLWsnWfuAKl7L8hRioeLmxhlH4pJd2EVV_xS_sTN5CFAlOJFT5IwS6fPY30w8D4ANH5vMkiEg01gHGaUmlhYxkpgRnWjjjc7LANnzpH8dHd_EN1Pw2OTCcFhlsyeWGzUOM_5H3iZqtlwrS9ufozvJXaP4dLVpoVGpxUn4-4dctvH20T7N7w-legdXe31ZdxWQmY7tRCaxzTXGeVRyax7Ing6K1i15NpjbiG7oUqi7QWcYgmYNjbzvbiWo4lR5Te-dhtlIE5NzZnrvsNn5NV3dKgFT0WeMaeLJyMmsx2zSJv-j2-60OWmVm68_Y8Pp2-HoP0ooea43D3O1gSp2Ko1agKlQLMKHMlA0G3-Gi506aEDs33NIh6D5ZROUhsQuMSKKYSF6XBVB_iJARVqguCTY5OAWQzU0yGh_FU01lC9w_S74fYWZYliEbyC8SlODPsnQ-8gonXpiyg4GtJzGqNIWbDXouFFVfMOVh-bGOAbUMaCOAXUdVwHagk1C0dULcfy2-PoL8eOLvcFLCTfCvAXLzaQ8iT4p5PfXH6_Bx_7V2ak7PTo_WYJPih32MohtGWYm9w9hhayaiV8tVUnA7_fW3X_yxP45
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD64ieKLeMXp1IA-GrslTZs-zkvxhg7n7S00TQp76cY28e970osyRMQ8hXDaJl-Sc76Qc04BjrWQaYREgCaCW-onUtDIGJ-aFM0Jl1ryrHCQvQ-unv2bN_G2APFXLMxoXKn-U6yWiYJLCCuHOOkhh2Y0EFHgIZUPva7n4j956I1N1oBFwdHi4Lp-4K-1RuZYwjIw0j0oZe3n9fvL5qxUA3vyQ1UX9ideg9WKOJJe2c11WLD5BiwVDpzpdBP6veoyn1xMnKsFQdwdNcQmcoaWypBRTmKXrYC-DO0HSXJDHnGV08HQ2LJpkKLeI3WWki14ji-fzq9o9bcEmnIRzdwgMm5E5hecIbN4TrAM9RGe2EwW-VjBwgwPLU-NtdztPF_rsBMYJhKm-TY081Fud4BoliTS6CA1WvuS8USjBesaayIXXsiSFnRqdNS4TIqhistsKZUDVDlAlQNUdVUJaAtOEEVVbZDp3-JHc-I3_fPBvITC6W5Bu56Ub1HkcJFLqsaj3f998xCW-xexuru-v92DFebO1YWvWRuas8m73UfyMdMHxcr6BJS0x2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Driver+Assistance+Based+on+Front-View+and+Rear-Side-View+Scene+Analysis&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Cheng%2C+Hsu-Yung&rft.au=Yu%2C+Chih-Chang&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1487&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1487%2F1%2F012037&rft.externalDocID=JPCS_1487_1_012037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon