Detecting Direction of Movement Using Pyroelectric Infrared Sensors

Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movemen...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 14; no. 5; pp. 1482 - 1489
Main Authors Yun, Jaeseok, Song, Min-Hwan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2013.2296601

Cover

Abstract Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movement of an object moving on the motion plane of the PIR sensor. In this paper, we present a novel method of detecting a relative direction of human movement (in eight directions uniformly distributed) with two pairs of PIR sensors whose sensing elements are orthogonally aligned. We have developed a data collection unit with four dual sensing element PIR sensors with modified lenses, and collected data set from six subjects walking in eight directions each. Based on the collected PIR signals, we have performed classification analysis with well known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from two orthogonally aligned PIR sensors with modified lenses, we were able to achieve more than 98% correct detection of direction of movement. We also found that with the reduced feature set composed of three peak values for each PIR sensor, we could achieve 89%-95% recognition accuracy according to machine learning algorithms.
AbstractList Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movement of an object moving on the motion plane of the PIR sensor. In this paper, we present a novel method of detecting a relative direction of human movement (in eight directions uniformly distributed) with two pairs of PIR sensors whose sensing elements are orthogonally aligned. We have developed a data collection unit with four dual sensing element PIR sensors with modified lenses, and collected data set from six subjects walking in eight directions each. Based on the collected PIR signals, we have performed classification analysis with well known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from two orthogonally aligned PIR sensors with modified lenses, we were able to achieve more than 98% correct detection of direction of movement. We also found that with the reduced feature set composed of three peak values for each PIR sensor, we could achieve 89%-95% recognition accuracy according to machine learning algorithms.
Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movement of an object moving on the motion plane of the PIR sensor. In this paper, we present a novel method of detecting a relative direction of human movement (in eight directions uniformly distributed) with two pairs of PIR sensors whose sensing elements are orthogonally aligned. We have developed a data collection unit with four dual sensing element PIR sensors with modified lenses, and collected data set from six subjects walking in eight directions each. Based on the collected PIR signals, we have performed classification analysis with well known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from two orthogonally aligned PIR sensors with modified lenses, we were able to achieve more than 98% correct detection of direction of movement. We also found that with the reduced feature set composed of three peak values for each PIR sensor, we could achieve 89%-95% recognition accuracy according to machine learning algorithms. [PUBLICATION ABSTRACT]
Author Min-Hwan Song
Jaeseok Yun
Author_xml – sequence: 1
  givenname: Jaeseok
  surname: Yun
  fullname: Yun, Jaeseok
– sequence: 2
  givenname: Min-Hwan
  surname: Song
  fullname: Song, Min-Hwan
BookMark eNp9kE9LAzEQxYNUsK1-APGy4HlrJtnNbo7SVq34D2rBW0izE9nSJjXZCv327tLiwYOnefDeb4Z5A9Jz3iEhl0BHAFTePM6nLyNGgY8Yk0JQOCF9yPMyhSIre53mNM148XFGBjGuKAVZ5EWfjCfYoGlq95lM6tAp7xJvk2f_jRt0TbKInfe2Dx7XrR1qk8ycDTpglczRRR_iOTm1eh3x4jiHZHE3fR8_pE-v97Px7VNqeC6bVDDOTamzSiwNWKBouLaWMQG51UsBGTWQZxIsL7mpqKSIUtJKA2hJtSz5kFwf9m6D_9phbNTK74JrTyrIqWQMBBdtqjikTPAxBrTK1I3u_mqCrtcKqOoaU11jqmtMHRtrSfhDbkO90WH_L3N1YGpE_M0LIYuSlfwHUoV4Tw
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1145_3351280
crossref_primary_10_1109_JSEN_2020_3040228
crossref_primary_10_1016_j_vacuum_2024_113543
crossref_primary_10_1109_JSEN_2021_3111132
crossref_primary_10_3156_jsoft_28_887
crossref_primary_10_1109_JSEN_2015_2501407
crossref_primary_10_1109_JSEN_2018_2885168
crossref_primary_10_1016_j_asej_2022_102108
crossref_primary_10_1016_j_carbon_2021_12_095
crossref_primary_10_1016_j_compag_2023_108000
crossref_primary_10_1109_JIOT_2021_3098238
crossref_primary_10_1049_iet_opt_2015_0066
crossref_primary_10_3390_s19173648
crossref_primary_10_1016_j_compag_2024_108645
crossref_primary_10_1109_LSENS_2017_2782179
crossref_primary_10_1007_s11235_024_01148_z
crossref_primary_10_1177_1420326X19875621
crossref_primary_10_1016_j_engappai_2022_105508
crossref_primary_10_1016_j_dsp_2021_103247
crossref_primary_10_1007_s12652_019_01260_y
crossref_primary_10_1002_aelm_202400686
crossref_primary_10_1002_tee_23574
crossref_primary_10_1109_JSEN_2016_2514606
crossref_primary_10_1007_s10846_017_0762_8
crossref_primary_10_1016_j_sintl_2024_100303
crossref_primary_10_1063_1_4998430
crossref_primary_10_1016_j_enbuild_2019_03_022
crossref_primary_10_3390_s24030953
crossref_primary_10_1109_ACCESS_2019_2917322
crossref_primary_10_1002_adpr_202300009
crossref_primary_10_1002_ente_201500050
crossref_primary_10_3390_computers6010003
crossref_primary_10_1109_TIM_2020_2981106
crossref_primary_10_1016_j_compscitech_2015_01_007
crossref_primary_10_3390_s21196684
crossref_primary_10_1088_2631_8695_ad351e
crossref_primary_10_1109_TCE_2019_2920086
crossref_primary_10_3233_JCM_226776
crossref_primary_10_1109_JSEN_2020_2974633
crossref_primary_10_1016_j_joule_2022_06_001
crossref_primary_10_1109_JSEN_2018_2844252
crossref_primary_10_1109_TSMC_2016_2578465
crossref_primary_10_1108_SR_09_2021_0331
crossref_primary_10_1007_s00779_020_01402_6
crossref_primary_10_1016_j_proeng_2016_07_345
crossref_primary_10_1016_j_infrared_2024_105124
crossref_primary_10_1109_JIOT_2019_2963326
crossref_primary_10_1002_adsr_202300168
crossref_primary_10_1080_18824889_2021_1987635
crossref_primary_10_1515_ijeeps_2020_0124
crossref_primary_10_3390_s140508057
crossref_primary_10_1002_adom_202101147
crossref_primary_10_2139_ssrn_3931619
crossref_primary_10_1007_s11220_025_00566_w
Cites_doi 10.1364/OE.11.002142
10.1109/EDERC.2012.6532255
10.1364/OE.14.006643
10.1109/TCE.2011.6018869
10.1109/JSEN.2006.884562
10.1109/AVSS.2007.4425326
10.1117/1.2360948
10.1109/GCCE.2012.6379899
10.1109/ICCSE.2012.92
10.1109/SENSOR.1997.635472
10.1109/JSEN.2008.2007690
10.1364/OPEX.14.000609
10.1088/0034-4885/49/12/002
10.1109/ICCA.2009.5410239
10.1145/2461381.2461407
10.1117/12.707928
10.1109/JSEN.2009.2039792
10.1007/978-3-642-31479-7_19
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2013.2296601
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1489
ExternalDocumentID 3253187711
10_1109_JSEN_2013_2296601
6697828
Genre orig-research
GrantInformation_xml – fundername: IT Research and Development Program of MKE/KEIT
  grantid: 10041262
– fundername: Open IoT Software Platform Development for Internet of Things Services and Global Ecosystem
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c359t-6233c8a4d6bc1f10ec3aff22615fab6140c15491f383cd090ee990da11a90a983
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Sun Jun 29 15:21:35 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Tue Jul 01 02:46:03 EDT 2025
Wed Aug 27 03:05:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-6233c8a4d6bc1f10ec3aff22615fab6140c15491f383cd090ee990da11a90a983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1509221636
PQPubID 75733
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2013_2296601
proquest_journals_1509221636
ieee_primary_6697828
crossref_primary_10_1109_JSEN_2013_2296601
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
shankar (ref4) 2006; 45
ref14
ref20
(ref23) 2014
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
(ref9) 1994
hao (ref6) 2009; 3
ref3
(ref21) 2014
ref5
(ref22) 2014
References_xml – ident: ref1
  doi: 10.1364/OE.11.002142
– ident: ref11
  doi: 10.1109/EDERC.2012.6532255
– ident: ref3
  doi: 10.1364/OE.14.006643
– volume: 3
  start-page: 428
  year: 2009
  ident: ref6
  article-title: Multiple human tracking and identification with wireless distributed pyroelectric sensor systems
  publication-title: IEEE Sensors J
– ident: ref15
  doi: 10.1109/TCE.2011.6018869
– ident: ref5
  doi: 10.1109/JSEN.2006.884562
– year: 2014
  ident: ref22
  publication-title: WEKA 3 Data mining software in JAVA
– year: 2014
  ident: ref21
  publication-title: Pyroelectric Infrared Sensors
– ident: ref13
  doi: 10.1109/AVSS.2007.4425326
– year: 2014
  ident: ref23
  publication-title: Technical notes on the design and operation of passive infrared motion sensors
– volume: 45
  start-page: 106401-1
  year: 2006
  ident: ref4
  article-title: Human-tracking systems using pyroelectric infrared detectors
  publication-title: Opt Eng
  doi: 10.1117/1.2360948
– year: 1994
  ident: ref9
  publication-title: Method and apparatus for detecting direction and speed using PIR sensor
– ident: ref16
  doi: 10.1109/GCCE.2012.6379899
– ident: ref12
  doi: 10.1109/ICCSE.2012.92
– ident: ref10
  doi: 10.1109/SENSOR.1997.635472
– ident: ref19
  doi: 10.1109/JSEN.2008.2007690
– ident: ref2
  doi: 10.1364/OPEX.14.000609
– ident: ref18
  doi: 10.1088/0034-4885/49/12/002
– ident: ref7
  doi: 10.1109/ICCA.2009.5410239
– ident: ref17
  doi: 10.1145/2461381.2461407
– ident: ref20
  doi: 10.1117/12.707928
– ident: ref14
  doi: 10.1109/JSEN.2009.2039792
– ident: ref8
  doi: 10.1007/978-3-642-31479-7_19
SSID ssj0019757
Score 2.3552444
Snippet Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1482
SubjectTerms Accuracy
Legged locomotion
machine learning
movement detection
occupancy sensing
occupant localization
Pyroelectric infrared sensor
Sensor arrays
Sensor systems
Sensors
Support vector machines
Title Detecting Direction of Movement Using Pyroelectric Infrared Sensors
URI https://ieeexplore.ieee.org/document/6697828
https://www.proquest.com/docview/1509221636
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9ML-rBrylOp-TgSeyWNG3XHGUqczARprBbSdIERWll6w7615uk2fAL8VZKEsJ7Sd7v5b38HsCpUInGWOogVLEKojgVgaAaB6GMiNa9ntDC3neMbpPBQzScxJMGnC_fwiilXPKZ6thPF8vPSzm3V2XdJDE-T5iuwIpZZvVbrWXEgPUcq6fZwDiIaG_iI5gEs-5wfHVrk7hoJwwtGSX5YoNcUZUfJ7EzL9dbMFpMrM4qee7MK9GR7984G_87823Y9DgTXdQLYwcaqtiFjU_sg7uw5gugP741oX-pbDTB_Ef-ECwLVGo0Kh2feIVcagG6e5uWdeGcJ4luCj216etobFzhcjrbg4frq_v-IPD1FQJJY1YFBvlQmfIoT4QkmmAlKdfa4DESay6M3cbSErgRbbxYmWOGlTK2K-eEcIY5S-k-rBZloQ4ApYITRQVnBp1ECRacCqY4Zjo0LhOReQvwQuKZ9OTjtgbGS-acEMwyq6TMKinzSmrB2bLLa8288VfjphX6sqGXdwvaC7Vmfm_OMgOBWRgaHJoc_t7rCNbN2FGd1tiG1Wo6V8cGelTixK25DxlB1OU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgEJ74OKgH38bVVTl4MnaF0nbL0aya9bEbEzXZWwMUotG0Zrd70F8vUHbjK8Zb00AgM8B8wwzfABwKlWiMpQ5CFasgilMRCKpxEMqIaN1uCy3sfUevn3QfoqtBPJiB4-lbGKWUSz5TLfvpYvl5Kcf2quwkSYzPE6azMG_sfhTXr7WmMQPWdryeZgvjIKLtgY9hEsxOru7O-zaNi7bC0NJRki9WyJVV-XEWOwNzsQK9ydTqvJLn1rgSLfn-jbXxv3NfhWWPNNFpvTTWYEYV67D0iX9wHRZ8CfTHtw3onCkbTzD_kT8GywKVGvVKxyheIZdcgG7fhmVdOudJostCD20CO7ozznA5HG3Cw8X5facb-AoLgaQxqwKDfahMeZQnQhJNsJKUa20QGYk1F8ZyY2kp3Ig2fqzMMcNKGeuVc0I4w5yldAvmirJQ24BSwYmigjODT6IEC04FUxwzHRqnici8AXgi8Ux6-nFbBeMlc24IZplVUmaVlHklNeBo2uW15t74q_GGFfq0oZd3A5oTtWZ-d44yA4JZGBokmuz83usAFrr3vZvs5rJ_vQuLZpyoTnJswlw1HKs9A0Qqse_W3wdqydgy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Direction+of+Movement+Using+Pyroelectric+Infrared+Sensors&rft.jtitle=IEEE+sensors+journal&rft.au=Yun%2C+Jaeseok&rft.au=Song%2C+Min-Hwan&rft.date=2014-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=14&rft.issue=5&rft.spage=1482&rft_id=info:doi/10.1109%2FJSEN.2013.2296601&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3253187711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon