Detecting Direction of Movement Using Pyroelectric Infrared Sensors
Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movemen...
Saved in:
Published in | IEEE sensors journal Vol. 14; no. 5; pp. 1482 - 1489 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2013.2296601 |
Cover
Abstract | Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movement of an object moving on the motion plane of the PIR sensor. In this paper, we present a novel method of detecting a relative direction of human movement (in eight directions uniformly distributed) with two pairs of PIR sensors whose sensing elements are orthogonally aligned. We have developed a data collection unit with four dual sensing element PIR sensors with modified lenses, and collected data set from six subjects walking in eight directions each. Based on the collected PIR signals, we have performed classification analysis with well known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from two orthogonally aligned PIR sensors with modified lenses, we were able to achieve more than 98% correct detection of direction of movement. We also found that with the reduced feature set composed of three peak values for each PIR sensor, we could achieve 89%-95% recognition accuracy according to machine learning algorithms. |
---|---|
AbstractList | Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movement of an object moving on the motion plane of the PIR sensor. In this paper, we present a novel method of detecting a relative direction of human movement (in eight directions uniformly distributed) with two pairs of PIR sensors whose sensing elements are orthogonally aligned. We have developed a data collection unit with four dual sensing element PIR sensors with modified lenses, and collected data set from six subjects walking in eight directions each. Based on the collected PIR signals, we have performed classification analysis with well known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from two orthogonally aligned PIR sensors with modified lenses, we were able to achieve more than 98% correct detection of direction of movement. We also found that with the reduced feature set composed of three peak values for each PIR sensor, we could achieve 89%-95% recognition accuracy according to machine learning algorithms. Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by alternating the effective polarization of the sensing elements in a PIR sensor, it is possible to determine the relative direction of the movement of an object moving on the motion plane of the PIR sensor. In this paper, we present a novel method of detecting a relative direction of human movement (in eight directions uniformly distributed) with two pairs of PIR sensors whose sensing elements are orthogonally aligned. We have developed a data collection unit with four dual sensing element PIR sensors with modified lenses, and collected data set from six subjects walking in eight directions each. Based on the collected PIR signals, we have performed classification analysis with well known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from two orthogonally aligned PIR sensors with modified lenses, we were able to achieve more than 98% correct detection of direction of movement. We also found that with the reduced feature set composed of three peak values for each PIR sensor, we could achieve 89%-95% recognition accuracy according to machine learning algorithms. [PUBLICATION ABSTRACT] |
Author | Min-Hwan Song Jaeseok Yun |
Author_xml | – sequence: 1 givenname: Jaeseok surname: Yun fullname: Yun, Jaeseok – sequence: 2 givenname: Min-Hwan surname: Song fullname: Song, Min-Hwan |
BookMark | eNp9kE9LAzEQxYNUsK1-APGy4HlrJtnNbo7SVq34D2rBW0izE9nSJjXZCv327tLiwYOnefDeb4Z5A9Jz3iEhl0BHAFTePM6nLyNGgY8Yk0JQOCF9yPMyhSIre53mNM148XFGBjGuKAVZ5EWfjCfYoGlq95lM6tAp7xJvk2f_jRt0TbKInfe2Dx7XrR1qk8ycDTpglczRRR_iOTm1eh3x4jiHZHE3fR8_pE-v97Px7VNqeC6bVDDOTamzSiwNWKBouLaWMQG51UsBGTWQZxIsL7mpqKSIUtJKA2hJtSz5kFwf9m6D_9phbNTK74JrTyrIqWQMBBdtqjikTPAxBrTK1I3u_mqCrtcKqOoaU11jqmtMHRtrSfhDbkO90WH_L3N1YGpE_M0LIYuSlfwHUoV4Tw |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1145_3351280 crossref_primary_10_1109_JSEN_2020_3040228 crossref_primary_10_1016_j_vacuum_2024_113543 crossref_primary_10_1109_JSEN_2021_3111132 crossref_primary_10_3156_jsoft_28_887 crossref_primary_10_1109_JSEN_2015_2501407 crossref_primary_10_1109_JSEN_2018_2885168 crossref_primary_10_1016_j_asej_2022_102108 crossref_primary_10_1016_j_carbon_2021_12_095 crossref_primary_10_1016_j_compag_2023_108000 crossref_primary_10_1109_JIOT_2021_3098238 crossref_primary_10_1049_iet_opt_2015_0066 crossref_primary_10_3390_s19173648 crossref_primary_10_1016_j_compag_2024_108645 crossref_primary_10_1109_LSENS_2017_2782179 crossref_primary_10_1007_s11235_024_01148_z crossref_primary_10_1177_1420326X19875621 crossref_primary_10_1016_j_engappai_2022_105508 crossref_primary_10_1016_j_dsp_2021_103247 crossref_primary_10_1007_s12652_019_01260_y crossref_primary_10_1002_aelm_202400686 crossref_primary_10_1002_tee_23574 crossref_primary_10_1109_JSEN_2016_2514606 crossref_primary_10_1007_s10846_017_0762_8 crossref_primary_10_1016_j_sintl_2024_100303 crossref_primary_10_1063_1_4998430 crossref_primary_10_1016_j_enbuild_2019_03_022 crossref_primary_10_3390_s24030953 crossref_primary_10_1109_ACCESS_2019_2917322 crossref_primary_10_1002_adpr_202300009 crossref_primary_10_1002_ente_201500050 crossref_primary_10_3390_computers6010003 crossref_primary_10_1109_TIM_2020_2981106 crossref_primary_10_1016_j_compscitech_2015_01_007 crossref_primary_10_3390_s21196684 crossref_primary_10_1088_2631_8695_ad351e crossref_primary_10_1109_TCE_2019_2920086 crossref_primary_10_3233_JCM_226776 crossref_primary_10_1109_JSEN_2020_2974633 crossref_primary_10_1016_j_joule_2022_06_001 crossref_primary_10_1109_JSEN_2018_2844252 crossref_primary_10_1109_TSMC_2016_2578465 crossref_primary_10_1108_SR_09_2021_0331 crossref_primary_10_1007_s00779_020_01402_6 crossref_primary_10_1016_j_proeng_2016_07_345 crossref_primary_10_1016_j_infrared_2024_105124 crossref_primary_10_1109_JIOT_2019_2963326 crossref_primary_10_1002_adsr_202300168 crossref_primary_10_1080_18824889_2021_1987635 crossref_primary_10_1515_ijeeps_2020_0124 crossref_primary_10_3390_s140508057 crossref_primary_10_1002_adom_202101147 crossref_primary_10_2139_ssrn_3931619 crossref_primary_10_1007_s11220_025_00566_w |
Cites_doi | 10.1364/OE.11.002142 10.1109/EDERC.2012.6532255 10.1364/OE.14.006643 10.1109/TCE.2011.6018869 10.1109/JSEN.2006.884562 10.1109/AVSS.2007.4425326 10.1117/1.2360948 10.1109/GCCE.2012.6379899 10.1109/ICCSE.2012.92 10.1109/SENSOR.1997.635472 10.1109/JSEN.2008.2007690 10.1364/OPEX.14.000609 10.1088/0034-4885/49/12/002 10.1109/ICCA.2009.5410239 10.1145/2461381.2461407 10.1117/12.707928 10.1109/JSEN.2009.2039792 10.1007/978-3-642-31479-7_19 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2013.2296601 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1489 |
ExternalDocumentID | 3253187711 10_1109_JSEN_2013_2296601 6697828 |
Genre | orig-research |
GrantInformation_xml | – fundername: IT Research and Development Program of MKE/KEIT grantid: 10041262 – fundername: Open IoT Software Platform Development for Internet of Things Services and Global Ecosystem |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c359t-6233c8a4d6bc1f10ec3aff22615fab6140c15491f383cd090ee990da11a90a983 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Sun Jun 29 15:21:35 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Tue Jul 01 02:46:03 EDT 2025 Wed Aug 27 03:05:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-6233c8a4d6bc1f10ec3aff22615fab6140c15491f383cd090ee990da11a90a983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1509221636 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2013_2296601 proquest_journals_1509221636 ieee_primary_6697828 crossref_primary_10_1109_JSEN_2013_2296601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 shankar (ref4) 2006; 45 ref14 ref20 (ref23) 2014 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 (ref9) 1994 hao (ref6) 2009; 3 ref3 (ref21) 2014 ref5 (ref22) 2014 |
References_xml | – ident: ref1 doi: 10.1364/OE.11.002142 – ident: ref11 doi: 10.1109/EDERC.2012.6532255 – ident: ref3 doi: 10.1364/OE.14.006643 – volume: 3 start-page: 428 year: 2009 ident: ref6 article-title: Multiple human tracking and identification with wireless distributed pyroelectric sensor systems publication-title: IEEE Sensors J – ident: ref15 doi: 10.1109/TCE.2011.6018869 – ident: ref5 doi: 10.1109/JSEN.2006.884562 – year: 2014 ident: ref22 publication-title: WEKA 3 Data mining software in JAVA – year: 2014 ident: ref21 publication-title: Pyroelectric Infrared Sensors – ident: ref13 doi: 10.1109/AVSS.2007.4425326 – year: 2014 ident: ref23 publication-title: Technical notes on the design and operation of passive infrared motion sensors – volume: 45 start-page: 106401-1 year: 2006 ident: ref4 article-title: Human-tracking systems using pyroelectric infrared detectors publication-title: Opt Eng doi: 10.1117/1.2360948 – year: 1994 ident: ref9 publication-title: Method and apparatus for detecting direction and speed using PIR sensor – ident: ref16 doi: 10.1109/GCCE.2012.6379899 – ident: ref12 doi: 10.1109/ICCSE.2012.92 – ident: ref10 doi: 10.1109/SENSOR.1997.635472 – ident: ref19 doi: 10.1109/JSEN.2008.2007690 – ident: ref2 doi: 10.1364/OPEX.14.000609 – ident: ref18 doi: 10.1088/0034-4885/49/12/002 – ident: ref7 doi: 10.1109/ICCA.2009.5410239 – ident: ref17 doi: 10.1145/2461381.2461407 – ident: ref20 doi: 10.1117/12.707928 – ident: ref14 doi: 10.1109/JSEN.2009.2039792 – ident: ref8 doi: 10.1007/978-3-642-31479-7_19 |
SSID | ssj0019757 |
Score | 2.3552444 |
Snippet | Pyroelectric infrared (PIR) sensors are widely used as a simple but powerful people presence triggers, e.g., automatic lighting systems. In particular, by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1482 |
SubjectTerms | Accuracy Legged locomotion machine learning movement detection occupancy sensing occupant localization Pyroelectric infrared sensor Sensor arrays Sensor systems Sensors Support vector machines |
Title | Detecting Direction of Movement Using Pyroelectric Infrared Sensors |
URI | https://ieeexplore.ieee.org/document/6697828 https://www.proquest.com/docview/1509221636 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9ML-rBrylOp-TgSeyWNG3XHGUqczARprBbSdIERWll6w7615uk2fAL8VZKEsJ7Sd7v5b38HsCpUInGWOogVLEKojgVgaAaB6GMiNa9ntDC3neMbpPBQzScxJMGnC_fwiilXPKZ6thPF8vPSzm3V2XdJDE-T5iuwIpZZvVbrWXEgPUcq6fZwDiIaG_iI5gEs-5wfHVrk7hoJwwtGSX5YoNcUZUfJ7EzL9dbMFpMrM4qee7MK9GR7984G_87823Y9DgTXdQLYwcaqtiFjU_sg7uw5gugP741oX-pbDTB_Ef-ECwLVGo0Kh2feIVcagG6e5uWdeGcJ4luCj216etobFzhcjrbg4frq_v-IPD1FQJJY1YFBvlQmfIoT4QkmmAlKdfa4DESay6M3cbSErgRbbxYmWOGlTK2K-eEcIY5S-k-rBZloQ4ApYITRQVnBp1ECRacCqY4Zjo0LhOReQvwQuKZ9OTjtgbGS-acEMwyq6TMKinzSmrB2bLLa8288VfjphX6sqGXdwvaC7Vmfm_OMgOBWRgaHJoc_t7rCNbN2FGd1tiG1Wo6V8cGelTixK25DxlB1OU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgEJ74OKgH38bVVTl4MnaF0nbL0aya9bEbEzXZWwMUotG0Zrd70F8vUHbjK8Zb00AgM8B8wwzfABwKlWiMpQ5CFasgilMRCKpxEMqIaN1uCy3sfUevn3QfoqtBPJiB4-lbGKWUSz5TLfvpYvl5Kcf2quwkSYzPE6azMG_sfhTXr7WmMQPWdryeZgvjIKLtgY9hEsxOru7O-zaNi7bC0NJRki9WyJVV-XEWOwNzsQK9ydTqvJLn1rgSLfn-jbXxv3NfhWWPNNFpvTTWYEYV67D0iX9wHRZ8CfTHtw3onCkbTzD_kT8GywKVGvVKxyheIZdcgG7fhmVdOudJostCD20CO7ozznA5HG3Cw8X5facb-AoLgaQxqwKDfahMeZQnQhJNsJKUa20QGYk1F8ZyY2kp3Ig2fqzMMcNKGeuVc0I4w5yldAvmirJQ24BSwYmigjODT6IEC04FUxwzHRqnici8AXgi8Ux6-nFbBeMlc24IZplVUmaVlHklNeBo2uW15t74q_GGFfq0oZd3A5oTtWZ-d44yA4JZGBokmuz83usAFrr3vZvs5rJ_vQuLZpyoTnJswlw1HKs9A0Qqse_W3wdqydgy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Direction+of+Movement+Using+Pyroelectric+Infrared+Sensors&rft.jtitle=IEEE+sensors+journal&rft.au=Yun%2C+Jaeseok&rft.au=Song%2C+Min-Hwan&rft.date=2014-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=14&rft.issue=5&rft.spage=1482&rft_id=info:doi/10.1109%2FJSEN.2013.2296601&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3253187711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |