Radiographic Findings Associated With Mild Hip Dysplasia in 3869 Patients Using a Deep Learning Measurement Tool

Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplas...

Full description

Saved in:
Bibliographic Details
Published inArthroplasty today Vol. 28; p. 101398
Main Authors Jang, Seong Jun, Driscoll, Daniel A., Anderson, Christopher G., Sokrab, Ruba, Flevas, Dimitrios A., Mayman, David J., Vigdorchik, Jonathan M., Jerabek, Seth A., Sculco, Peter K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs. Patients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle. The algorithm had no significant difference (P > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower (P < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp). A DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk.
AbstractList Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs. Patients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle. The algorithm had no significant difference (P > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower (P < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp). A DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk.
Background: Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs. Methods: Patients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle. Results: The algorithm had no significant difference (P > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower (P < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp). Conclusions: A DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk.
Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs.BackgroundHip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs.Patients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle.MethodsPatients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle.The algorithm had no significant difference (P > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower (P < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp).ResultsThe algorithm had no significant difference (P > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower (P < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp).A DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk.ConclusionsA DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk.
Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated a deep learning (DL) algorithm to measure angles relevant to hip dysplasia and applied this algorithm to determine the prevalence of dysplasia in a large population based on incremental radiographic cutoffs. Patients from the Osteoarthritis Initiative with anteroposterior pelvis radiographs and without previous THAs were included. A DL algorithm automated 3 angles associated with hip dysplasia: modified lateral center-edge angle (LCEA), Tönnis angle, and modified Sharp angle. The algorithm was validated against manual measurements, and all angles were measured in a cohort of 3869 patients (61.2 ± 9.2 years, 57.1% female). The percentile distributions and prevalence of dysplastic hips were analyzed using each angle. The algorithm had no significant difference ( > .05) in measurements (paired difference: 0.3°-0.7°) against readers and had excellent agreement for dysplasia classification (kappa = 0.78-0.88). In 140 minutes, 23,214 measurements were automated for 3869 patients. LCEA and Sharp angles were higher and the Tönnis angle was lower ( < .01) in females. The dysplastic hip prevalence varied from 2.5% to 20% utilizing the following cutoffs: 17.3°-25.5° (LCEA), 9.4°-15.6° (Tönnis), and 41.3°-45.9° (Sharp). A DL algorithm was developed to measure and classify hips with mild hip dysplasia. The reported prevalence of dysplasia in a large patient cohort was dependent on both the measurement and threshold, with 12.4% of patients having dysplasia radiographic indices indicative of higher THA risk.
ArticleNumber 101398
Author Sculco, Peter K.
Jang, Seong Jun
Vigdorchik, Jonathan M.
Driscoll, Daniel A.
Anderson, Christopher G.
Mayman, David J.
Jerabek, Seth A.
Sokrab, Ruba
Flevas, Dimitrios A.
Author_xml – sequence: 1
  givenname: Seong Jun
  orcidid: 0000-0002-9967-9476
  surname: Jang
  fullname: Jang, Seong Jun
  email: seongjang22@gmail.com
  organization: Weill Cornell College of Medicine, New York, NY, USA
– sequence: 2
  givenname: Daniel A.
  orcidid: 0000-0003-4449-8990
  surname: Driscoll
  fullname: Driscoll, Daniel A.
  organization: Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
– sequence: 3
  givenname: Christopher G.
  orcidid: 0000-0001-9399-9404
  surname: Anderson
  fullname: Anderson, Christopher G.
  organization: Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
– sequence: 4
  givenname: Ruba
  surname: Sokrab
  fullname: Sokrab, Ruba
  organization: Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
– sequence: 5
  givenname: Dimitrios A.
  surname: Flevas
  fullname: Flevas, Dimitrios A.
  organization: Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
– sequence: 6
  givenname: David J.
  surname: Mayman
  fullname: Mayman, David J.
  organization: Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY, USA
– sequence: 7
  givenname: Jonathan M.
  surname: Vigdorchik
  fullname: Vigdorchik, Jonathan M.
  organization: Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY, USA
– sequence: 8
  givenname: Seth A.
  surname: Jerabek
  fullname: Jerabek, Seth A.
  organization: Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY, USA
– sequence: 9
  givenname: Peter K.
  surname: Sculco
  fullname: Sculco, Peter K.
  organization: Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38993836$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhU1JadI0f6CLomU3M9HLsgWFEpLmARNaSkKX4lq6ntHgsVzJE8i_r1ynIdl0JenqnE9X97wvDvrQY1F8ZHTJKFOn2yXE0S055XIqCF2_KY64KPlCSMkOXuwPi5OUtpRmF6WS8XfFoai1FrVQR8XwE5wP6wjDxlty6Xvn-3UiZykF62FER375cUNufefItR_IxWMaOkgeiO-JqJUmP2D02I-J3KdsJUAuEAeyQoj9dL5FSPuIuywhdyF0H4q3LXQJT57W4-L-8tvd-fVi9f3q5vxstbCi1ONCMUERqKaq5srV0jYcWuaU5LRkjKm2aRvNSsnKpuKtcFK2lRUgNQIgSBDHxc3MdQG2Zoh-B_HRBPDmbyHEtckD9LZDUzYCQFrUraukqtuaWQShsLKNrhBsZn2dWcO-2aGz-S8RulfQ1ze935h1eDCMcVGJUmXC5ydCDL_3mEaz88li10GPYZ-MoJVmWanrLOWz1MaQUsT2-R1GzRS92U6dOzNFb-bos-nTyw6fLf-CzoIvswDzzB88RpNsjs2i8xHtmIfi_8f_Ay_Wwh8
Cites_doi 10.3348/kjr.2020.0051
10.1016/j.eats.2017.06.011
10.5301/HIP.2011.8696
10.1371/journal.pone.0210706
10.1093/rheumatology/keh436
10.1097/BPO.0000000000002065
10.1007/s11999-008-0626-4
10.1016/j.arth.2022.03.002
10.1097/01241398-200203000-00020
10.1007/s11999-012-2779-4
10.1007/s002560100402
10.2106/JBJS.H.01674
10.1016/j.arth.2022.03.033
10.1093/rheumatology/39.7.745
10.1016/j.arth.2023.03.087
10.1016/j.arth.2021.02.026
10.1097/BOR.0b013e32833d20ae
10.3390/diagnostics12112597
10.1097/BRS.0000000000003830
10.3109/02841850903447086
10.1016/S1076-6332(03)00671-8
10.1093/jhps/hnv041
10.1302/0301-620X.95B2.30744
10.1302/0301-620X.72B2.2312554
10.1302/0301-620X.43B2.268
10.1007/s11999-014-4038-3
10.1259/0007-1285-38-455-810
10.1038/s41467-021-26990-6
10.1007/s00256-013-1574-y
10.1007/s11420-011-9235-y
10.1016/S0140-6736(19)30417-9
10.1038/s41598-020-63395-9
10.1097/MD.0000000000018500
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.artd.2024.101398
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2352-3441
ExternalDocumentID oai_doaj_org_article_5b3aa4ce9fd7468f81cea36e7cb97eac
10_1016_j_artd_2024_101398
38993836
S2352344124000839
Genre Journal Article
GroupedDBID .1-
.FO
0R~
0SF
1P~
457
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEVXI
AEXQZ
AFCTW
AFRHN
AFTJW
AGHFR
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
NCXOZ
O9-
OF0
OK1
OR.
RIG
ROL
RPM
SSZ
Z5R
AFJKZ
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c359t-6130ea0906826d84cb2af1d642051116fbfb915415b72f3d44f7c3a49eaaea4a3
IEDL.DBID RPM
ISSN 2352-3441
IngestDate Tue Oct 22 15:08:48 EDT 2024
Fri Jul 12 06:10:30 EDT 2024
Sat Oct 26 04:41:49 EDT 2024
Thu Sep 26 21:17:32 EDT 2024
Sat Nov 02 12:09:56 EDT 2024
Sat Aug 31 16:00:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Hip dysplasia
Artificial intelligence
Osteoarthritis
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-6130ea0906826d84cb2af1d642051116fbfb915415b72f3d44f7c3a49eaaea4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9967-9476
0000-0003-4449-8990
0000-0001-9399-9404
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237356/
PMID 38993836
PQID 3079173598
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5b3aa4ce9fd7468f81cea36e7cb97eac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11237356
proquest_miscellaneous_3079173598
crossref_primary_10_1016_j_artd_2024_101398
pubmed_primary_38993836
elsevier_sciencedirect_doi_10_1016_j_artd_2024_101398
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arthroplasty today
PublicationTitleAlternate Arthroplast Today
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hunter, Bierma-Zeinstra (bib1) 2019; 393
Lester (bib21) 2012; 8
Jacobsen, Sonne-Holm (bib5) 2005; 44
Mannava, Geeslin, Frangiamore, Cinque, Geeslin, Chahla (bib22) 2017; 6
Wiberg (bib13) 1939; 83
Tolpadi, Lee, Pedoia, Majumdar (bib29) 2020; 10
Clohisy, Carlisle, Trousdale, Kim, Beaule, Morgan (bib17) 2009; 467
Tannast, Hanke, Zheng, Steppacher, Siebenrock (bib11) 2015; 473
Laborie, Engesæter, Lehmann, Sera, Dezateux, Engesæter (bib8) 2013; 42
Stubbs, Anz, Frino, Lang, Weaver, Stitzel (bib3) 2011; 21
Hanson, Kapron, Swenson, Maak, Peters, Aoki (bib15) 2015; 2
Troelsen, Rømer, Kring, Elmengaard, Søballe (bib12) 2010; 51
Omeroglu, Bicimoglu, Agus, Tumer (bib32) 2002; 31
Ogata, Moriya, Tsuchiya, Akita, Kamegaya, Someya (bib16) 1990; 72
Jang, Fontana, Kunze, Anderson, Sculco, Mayman (bib31) 2023; 38
Gosvig, Jacobsen, Sonne-Holm, Palm, Troelsen (bib4) 2010; 92
Engesaeter, Laborie, Lehmann, Fevang, Lie, Engesaeter (bib6) 2013; 95-B
Tang, Sun, Shen (bib27) 2021; 12
Inoue, Wicart, Kawasaki, Huang, Ushiyama, Hukuda (bib7) 2000; 39
Rouzrokh, Wyles, Philbrick, Ramazanian, Weston, Cai (bib23) 2021; 36
Tonnis (bib10) 1987
Park, Jeon, Cho, Kim, Lee, Choi (bib19) 2021; 22
Li, Zhong, Huang, Liu, Qin, Wang (bib20) 2019; 98
Karnuta, Murphy, Luu, Ryan, Haeberle, Brown (bib25) 2023; 38
Ghasseminia, Lim, Concepcion, Kirschner, Teo, Dulai (bib28) 2022; 42
Baker-Lepain, Lane (bib2) 2010; 22
Lu, Dercle, Zhao, Schwartz (bib30) 2021; 12
Philippon, Briggs, Carlisle, Patterson (bib33) 2013; 471
Murray (bib34) 1965; 38
Jang, Kunze, Vigdorchik, Jerabek, Mayman, Sculco (bib24) 2022; 37
Arunachalam, Mishra, Daescu, Cederberg, Rakheja, Sengupta (bib26) 2019; 14
Jensen, Graumann, Overgaard, Gerke, Lundemann, Haubro (bib18) 2022; 12
Sharp (bib9) 1961; 43-B
Agus, Bicimoglu, Omeroglu, Tumer (bib14) 2023; 22
Tang (10.1016/j.artd.2024.101398_bib27) 2021; 12
Clohisy (10.1016/j.artd.2024.101398_bib17) 2009; 467
Arunachalam (10.1016/j.artd.2024.101398_bib26) 2019; 14
Tonnis (10.1016/j.artd.2024.101398_bib10) 1987
Agus (10.1016/j.artd.2024.101398_bib14) 2023; 22
Park (10.1016/j.artd.2024.101398_bib19) 2021; 22
Tannast (10.1016/j.artd.2024.101398_bib11) 2015; 473
Jensen (10.1016/j.artd.2024.101398_bib18) 2022; 12
Jang (10.1016/j.artd.2024.101398_bib24) 2022; 37
Troelsen (10.1016/j.artd.2024.101398_bib12) 2010; 51
Engesaeter (10.1016/j.artd.2024.101398_bib6) 2013; 95-B
Howard (10.1016/j.artd.2024.101398_bib52) 2020
Sharp (10.1016/j.artd.2024.101398_bib9) 1961; 43-B
Murray (10.1016/j.artd.2024.101398_bib34) 1965; 38
Lester (10.1016/j.artd.2024.101398_bib21) 2012; 8
Jacobsen (10.1016/j.artd.2024.101398_bib5) 2005; 44
Zou (10.1016/j.artd.2024.101398_bib53) 2004; 11
Tolpadi (10.1016/j.artd.2024.101398_bib29) 2020; 10
Karnuta (10.1016/j.artd.2024.101398_bib25) 2023; 38
Gosvig (10.1016/j.artd.2024.101398_bib4) 2010; 92
Laborie (10.1016/j.artd.2024.101398_bib8) 2013; 42
Li (10.1016/j.artd.2024.101398_bib20) 2019; 98
Ronneberger (10.1016/j.artd.2024.101398_bib51) 2015
Lu (10.1016/j.artd.2024.101398_bib30) 2021; 12
Jang (10.1016/j.artd.2024.101398_bib31) 2023; 38
Omeroglu (10.1016/j.artd.2024.101398_bib32) 2002; 31
Inoue (10.1016/j.artd.2024.101398_bib7) 2000; 39
Rouzrokh (10.1016/j.artd.2024.101398_bib23) 2021; 36
Ogata (10.1016/j.artd.2024.101398_bib16) 1990; 72
Wiberg (10.1016/j.artd.2024.101398_bib13) 1939; 83
Philippon (10.1016/j.artd.2024.101398_bib33) 2013; 471
Stubbs (10.1016/j.artd.2024.101398_bib3) 2011; 21
Hanson (10.1016/j.artd.2024.101398_bib15) 2015; 2
Schwartz (10.1016/j.artd.2024.101398_bib54) 2021; 46
Mannava (10.1016/j.artd.2024.101398_bib22) 2017; 6
Baker-Lepain (10.1016/j.artd.2024.101398_bib2) 2010; 22
Hunter (10.1016/j.artd.2024.101398_bib1) 2019; 393
Ghasseminia (10.1016/j.artd.2024.101398_bib28) 2022; 42
References_xml – volume: 83
  start-page: 1
  year: 1939
  end-page: 135
  ident: bib13
  article-title: Studies on dysplastic acetabula and congenital subluxation of the hip joint: with special reference to the complication of osteoarthritis
  publication-title: Acta Chir Scand
  contributor:
    fullname: Wiberg
– volume: 42
  start-page: 925
  year: 2013
  end-page: 935
  ident: bib8
  article-title: Radiographic measurements of hip dysplasia at skeletal maturity--new reference intervals based on 2,038 19-year-old Norwegians
  publication-title: Skeletal Radiol
  contributor:
    fullname: Engesæter
– volume: 42
  start-page: e315
  year: 2022
  end-page: e323
  ident: bib28
  article-title: Interobserver variability of hip dysplasia indices on sweep ultrasound for novices, experts, and artificial intelligence
  publication-title: J Pediatr Orthop
  contributor:
    fullname: Dulai
– volume: 12
  start-page: 2597
  year: 2022
  ident: bib18
  article-title: A deep learning algorithm for radiographic measurements of the hip in adults-A reliability and agreement study
  publication-title: Diagnostics
  contributor:
    fullname: Haubro
– volume: 393
  start-page: 1745
  year: 2019
  end-page: 1759
  ident: bib1
  article-title: Osteoarthritis
  publication-title: Lancet
  contributor:
    fullname: Bierma-Zeinstra
– volume: 98
  year: 2019
  ident: bib20
  article-title: Auxiliary diagnosis of developmental dysplasia of the hip by automated detection of Sharp's angle on standardized anteroposterior pelvic radiographs
  publication-title: Medicine
  contributor:
    fullname: Wang
– volume: 31
  start-page: 25
  year: 2002
  end-page: 29
  ident: bib32
  article-title: Measurement of center-edge angle in developmental dysplasia of the hip: a comparison of two methods in patients under 20 years of age
  publication-title: Skeletal Radiol
  contributor:
    fullname: Tumer
– volume: 22
  start-page: 538
  year: 2010
  end-page: 543
  ident: bib2
  article-title: Relationship between joint shape and the development of osteoarthritis
  publication-title: Curr Opin Rheumatol
  contributor:
    fullname: Lane
– volume: 22
  start-page: 612
  year: 2021
  end-page: 623
  ident: bib19
  article-title: Diagnostic performance of a new convolutional neural network algorithm for detecting developmental dysplasia of the hip on anteroposterior radiographs
  publication-title: Korean J Radiol
  contributor:
    fullname: Choi
– volume: 38
  start-page: 1998
  year: 2023
  end-page: 2003.e1
  ident: bib25
  article-title: Artificial intelligence for automated implant identification in total hip arthroplasty: a multicenter external validation study exceeding two million plain radiographs
  publication-title: J Arthroplasty
  contributor:
    fullname: Brown
– volume: 10
  start-page: 6371
  year: 2020
  ident: bib29
  article-title: Deep learning predicts total knee replacement from magnetic resonance images
  publication-title: Sci Rep
  contributor:
    fullname: Majumdar
– volume: 38
  start-page: 810
  year: 1965
  end-page: 824
  ident: bib34
  article-title: The aetiology of primary osteoarthritis of the hip
  publication-title: BJR
  contributor:
    fullname: Murray
– volume: 22
  start-page: 228
  year: 2023
  end-page: 231
  ident: bib14
  article-title: How should the acetabular angle of Sharp be measured on a pelvic radiograph?
  publication-title: J Pediatr Orthop
  contributor:
    fullname: Tumer
– volume: 43-B
  start-page: 268
  year: 1961
  end-page: 272
  ident: bib9
  article-title: Acetabular dysplasia
  publication-title: J Bone Joint Surg Br
  contributor:
    fullname: Sharp
– volume: 473
  start-page: 1234
  year: 2015
  end-page: 1246
  ident: bib11
  article-title: What are the radiographic reference values for acetabular under- and overcoverage?
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Siebenrock
– volume: 38
  start-page: S44
  year: 2023
  end-page: S50.e6
  ident: bib31
  article-title: An interpretable machine learning model for predicting 10-year total hip arthroplasty risk
  publication-title: J Arthroplasty
  contributor:
    fullname: Mayman
– volume: 6
  start-page: e2003
  year: 2017
  end-page: e2009
  ident: bib22
  article-title: Comprehensive clinical evaluation of femoroacetabular impingement: part 2, plain radiography
  publication-title: Arthrosc Tech
  contributor:
    fullname: Chahla
– volume: 21
  start-page: 549
  year: 2011
  end-page: 558
  ident: bib3
  article-title: Classic measures of hip dysplasia do not correlate with three-dimensional computer tomographic measures and indices
  publication-title: HIP Int
  contributor:
    fullname: Stitzel
– volume: 12
  start-page: 6654
  year: 2021
  ident: bib30
  article-title: Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging
  publication-title: Nat Commun
  contributor:
    fullname: Schwartz
– volume: 471
  start-page: 2492
  year: 2013
  end-page: 2496
  ident: bib33
  article-title: Joint space predicts THA after hip arthroscopy in patients 50 years and older
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Patterson
– volume: 92
  start-page: 1162
  year: 2010
  end-page: 1169
  ident: bib4
  article-title: Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey
  publication-title: J Bone Joint Surg Am
  contributor:
    fullname: Troelsen
– volume: 2
  start-page: 280
  year: 2015
  end-page: 286
  ident: bib15
  article-title: Discrepancies in measuring acetabular coverage: revisiting the anterior and lateral center edge angles
  publication-title: J Hip Preserv Surg
  contributor:
    fullname: Aoki
– volume: 8
  start-page: 62
  year: 2012
  end-page: 63
  ident: bib21
  article-title: The osteoarthritis initiative: a NIH public-private partnership
  publication-title: HSS J
  contributor:
    fullname: Lester
– volume: 37
  start-page: S400
  year: 2022
  end-page: S407.e1
  ident: bib24
  article-title: John charnley award: deep learning prediction of hip joint center on standard pelvis radiographs
  publication-title: J Arthroplasty
  contributor:
    fullname: Sculco
– volume: 39
  start-page: 745
  year: 2000
  end-page: 748
  ident: bib7
  article-title: Prevalence of hip osteoarthritis and acetabular dysplasia in French and Japanese adults
  publication-title: Rheumatology (Oxford)
  contributor:
    fullname: Hukuda
– start-page: 116
  year: 1987
  end-page: 121
  ident: bib10
  article-title: Congenital dysplasia and dislocation of the hip in children and adults
  contributor:
    fullname: Tonnis
– volume: 95-B
  start-page: 279
  year: 2013
  end-page: 285
  ident: bib6
  article-title: Prevalence of radiographic findings associated with hip dysplasia in a population-based cohort of 2081 19-year-old Norweggians
  publication-title: Bone Joint Lett J
  contributor:
    fullname: Engesaeter
– volume: 44
  start-page: 211
  year: 2005
  end-page: 218
  ident: bib5
  article-title: Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey
  publication-title: Rheumatology
  contributor:
    fullname: Sonne-Holm
– volume: 36
  start-page: 2510
  year: 2021
  end-page: 2517.e6
  ident: bib23
  article-title: A deep learning tool for automated radiographic measurement of acetabular component inclination and version after total hip arthroplasty
  publication-title: J Arthroplasty
  contributor:
    fullname: Cai
– volume: 12
  start-page: 30
  year: 2021
  ident: bib27
  article-title: Improving generalization of deep learning models for diagnostic pathology by increasing variability in training data: experiments on osteosarcoma subtypes
  publication-title: J Pathol Inf
  contributor:
    fullname: Shen
– volume: 467
  start-page: 666
  year: 2009
  end-page: 675
  ident: bib17
  article-title: Radiographic evaluation of the hip has limited reliability
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Morgan
– volume: 51
  start-page: 187
  year: 2010
  end-page: 193
  ident: bib12
  article-title: Assessment of hip dysplasia and osteoarthritis: variability of different methods
  publication-title: Acta Radiologica
  contributor:
    fullname: Søballe
– volume: 72
  start-page: 190
  year: 1990
  end-page: 196
  ident: bib16
  article-title: Acetabular cover in congenital dislocation of the hip
  publication-title: J Bone Joint Surg Br
  contributor:
    fullname: Someya
– volume: 14
  year: 2019
  ident: bib26
  article-title: Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models
  publication-title: PLoS One
  contributor:
    fullname: Sengupta
– volume: 22
  start-page: 612
  year: 2021
  ident: 10.1016/j.artd.2024.101398_bib19
  article-title: Diagnostic performance of a new convolutional neural network algorithm for detecting developmental dysplasia of the hip on anteroposterior radiographs
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2020.0051
  contributor:
    fullname: Park
– volume: 6
  start-page: e2003
  year: 2017
  ident: 10.1016/j.artd.2024.101398_bib22
  article-title: Comprehensive clinical evaluation of femoroacetabular impingement: part 2, plain radiography
  publication-title: Arthrosc Tech
  doi: 10.1016/j.eats.2017.06.011
  contributor:
    fullname: Mannava
– volume: 21
  start-page: 549
  year: 2011
  ident: 10.1016/j.artd.2024.101398_bib3
  article-title: Classic measures of hip dysplasia do not correlate with three-dimensional computer tomographic measures and indices
  publication-title: HIP Int
  doi: 10.5301/HIP.2011.8696
  contributor:
    fullname: Stubbs
– volume: 14
  year: 2019
  ident: 10.1016/j.artd.2024.101398_bib26
  article-title: Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0210706
  contributor:
    fullname: Arunachalam
– volume: 44
  start-page: 211
  year: 2005
  ident: 10.1016/j.artd.2024.101398_bib5
  article-title: Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keh436
  contributor:
    fullname: Jacobsen
– volume: 42
  start-page: e315
  year: 2022
  ident: 10.1016/j.artd.2024.101398_bib28
  article-title: Interobserver variability of hip dysplasia indices on sweep ultrasound for novices, experts, and artificial intelligence
  publication-title: J Pediatr Orthop
  doi: 10.1097/BPO.0000000000002065
  contributor:
    fullname: Ghasseminia
– volume: 467
  start-page: 666
  year: 2009
  ident: 10.1016/j.artd.2024.101398_bib17
  article-title: Radiographic evaluation of the hip has limited reliability
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-008-0626-4
  contributor:
    fullname: Clohisy
– volume: 38
  start-page: 1998
  year: 2023
  ident: 10.1016/j.artd.2024.101398_bib25
  article-title: Artificial intelligence for automated implant identification in total hip arthroplasty: a multicenter external validation study exceeding two million plain radiographs
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2022.03.002
  contributor:
    fullname: Karnuta
– volume: 22
  start-page: 228
  year: 2023
  ident: 10.1016/j.artd.2024.101398_bib14
  article-title: How should the acetabular angle of Sharp be measured on a pelvic radiograph?
  publication-title: J Pediatr Orthop
  doi: 10.1097/01241398-200203000-00020
  contributor:
    fullname: Agus
– volume: 471
  start-page: 2492
  year: 2013
  ident: 10.1016/j.artd.2024.101398_bib33
  article-title: Joint space predicts THA after hip arthroscopy in patients 50 years and older
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-012-2779-4
  contributor:
    fullname: Philippon
– volume: 31
  start-page: 25
  year: 2002
  ident: 10.1016/j.artd.2024.101398_bib32
  article-title: Measurement of center-edge angle in developmental dysplasia of the hip: a comparison of two methods in patients under 20 years of age
  publication-title: Skeletal Radiol
  doi: 10.1007/s002560100402
  contributor:
    fullname: Omeroglu
– volume: 92
  start-page: 1162
  year: 2010
  ident: 10.1016/j.artd.2024.101398_bib4
  article-title: Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.H.01674
  contributor:
    fullname: Gosvig
– volume: 37
  start-page: S400
  year: 2022
  ident: 10.1016/j.artd.2024.101398_bib24
  article-title: John charnley award: deep learning prediction of hip joint center on standard pelvis radiographs
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2022.03.033
  contributor:
    fullname: Jang
– volume: 39
  start-page: 745
  year: 2000
  ident: 10.1016/j.artd.2024.101398_bib7
  article-title: Prevalence of hip osteoarthritis and acetabular dysplasia in French and Japanese adults
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/39.7.745
  contributor:
    fullname: Inoue
– volume: 38
  start-page: S44
  year: 2023
  ident: 10.1016/j.artd.2024.101398_bib31
  article-title: An interpretable machine learning model for predicting 10-year total hip arthroplasty risk
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2023.03.087
  contributor:
    fullname: Jang
– volume: 36
  start-page: 2510
  year: 2021
  ident: 10.1016/j.artd.2024.101398_bib23
  article-title: A deep learning tool for automated radiographic measurement of acetabular component inclination and version after total hip arthroplasty
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2021.02.026
  contributor:
    fullname: Rouzrokh
– volume: 22
  start-page: 538
  year: 2010
  ident: 10.1016/j.artd.2024.101398_bib2
  article-title: Relationship between joint shape and the development of osteoarthritis
  publication-title: Curr Opin Rheumatol
  doi: 10.1097/BOR.0b013e32833d20ae
  contributor:
    fullname: Baker-Lepain
– volume: 12
  start-page: 30
  year: 2021
  ident: 10.1016/j.artd.2024.101398_bib27
  article-title: Improving generalization of deep learning models for diagnostic pathology by increasing variability in training data: experiments on osteosarcoma subtypes
  publication-title: J Pathol Inf
  contributor:
    fullname: Tang
– volume: 12
  start-page: 2597
  year: 2022
  ident: 10.1016/j.artd.2024.101398_bib18
  article-title: A deep learning algorithm for radiographic measurements of the hip in adults-A reliability and agreement study
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12112597
  contributor:
    fullname: Jensen
– year: 2020
  ident: 10.1016/j.artd.2024.101398_bib52
  article-title: fastai: a layered API for deep learning
  publication-title: ArXiv
  contributor:
    fullname: Howard
– volume: 46
  start-page: E671
  issue: 12
  year: 2021
  ident: 10.1016/j.artd.2024.101398_bib54
  article-title: Deep learning automates measurement of spinopelvic parameters on lateral lumbar radiographs
  publication-title: Spine (Phila Pa 1976)
  doi: 10.1097/BRS.0000000000003830
  contributor:
    fullname: Schwartz
– volume: 51
  start-page: 187
  year: 2010
  ident: 10.1016/j.artd.2024.101398_bib12
  article-title: Assessment of hip dysplasia and osteoarthritis: variability of different methods
  publication-title: Acta Radiologica
  doi: 10.3109/02841850903447086
  contributor:
    fullname: Troelsen
– volume: 11
  start-page: 178
  issue: 2
  year: 2004
  ident: 10.1016/j.artd.2024.101398_bib53
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index
  publication-title: Acad Radiol
  doi: 10.1016/S1076-6332(03)00671-8
  contributor:
    fullname: Zou
– start-page: 116
  year: 1987
  ident: 10.1016/j.artd.2024.101398_bib10
  contributor:
    fullname: Tonnis
– volume: 83
  start-page: 1
  year: 1939
  ident: 10.1016/j.artd.2024.101398_bib13
  article-title: Studies on dysplastic acetabula and congenital subluxation of the hip joint: with special reference to the complication of osteoarthritis
  publication-title: Acta Chir Scand
  contributor:
    fullname: Wiberg
– volume: 2
  start-page: 280
  year: 2015
  ident: 10.1016/j.artd.2024.101398_bib15
  article-title: Discrepancies in measuring acetabular coverage: revisiting the anterior and lateral center edge angles
  publication-title: J Hip Preserv Surg
  doi: 10.1093/jhps/hnv041
  contributor:
    fullname: Hanson
– volume: 95-B
  start-page: 279
  year: 2013
  ident: 10.1016/j.artd.2024.101398_bib6
  article-title: Prevalence of radiographic findings associated with hip dysplasia in a population-based cohort of 2081 19-year-old Norweggians
  publication-title: Bone Joint Lett J
  doi: 10.1302/0301-620X.95B2.30744
  contributor:
    fullname: Engesaeter
– volume: 72
  start-page: 190
  year: 1990
  ident: 10.1016/j.artd.2024.101398_bib16
  article-title: Acetabular cover in congenital dislocation of the hip
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.72B2.2312554
  contributor:
    fullname: Ogata
– volume: 43-B
  start-page: 268
  year: 1961
  ident: 10.1016/j.artd.2024.101398_bib9
  article-title: Acetabular dysplasia
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.43B2.268
  contributor:
    fullname: Sharp
– volume: 473
  start-page: 1234
  year: 2015
  ident: 10.1016/j.artd.2024.101398_bib11
  article-title: What are the radiographic reference values for acetabular under- and overcoverage?
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-014-4038-3
  contributor:
    fullname: Tannast
– volume: 38
  start-page: 810
  year: 1965
  ident: 10.1016/j.artd.2024.101398_bib34
  article-title: The aetiology of primary osteoarthritis of the hip
  publication-title: BJR
  doi: 10.1259/0007-1285-38-455-810
  contributor:
    fullname: Murray
– volume: 12
  start-page: 6654
  year: 2021
  ident: 10.1016/j.artd.2024.101398_bib30
  article-title: Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26990-6
  contributor:
    fullname: Lu
– year: 2015
  ident: 10.1016/j.artd.2024.101398_bib51
  contributor:
    fullname: Ronneberger
– volume: 42
  start-page: 925
  year: 2013
  ident: 10.1016/j.artd.2024.101398_bib8
  article-title: Radiographic measurements of hip dysplasia at skeletal maturity--new reference intervals based on 2,038 19-year-old Norwegians
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-013-1574-y
  contributor:
    fullname: Laborie
– volume: 8
  start-page: 62
  year: 2012
  ident: 10.1016/j.artd.2024.101398_bib21
  article-title: The osteoarthritis initiative: a NIH public-private partnership
  publication-title: HSS J
  doi: 10.1007/s11420-011-9235-y
  contributor:
    fullname: Lester
– volume: 393
  start-page: 1745
  year: 2019
  ident: 10.1016/j.artd.2024.101398_bib1
  article-title: Osteoarthritis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)30417-9
  contributor:
    fullname: Hunter
– volume: 10
  start-page: 6371
  year: 2020
  ident: 10.1016/j.artd.2024.101398_bib29
  article-title: Deep learning predicts total knee replacement from magnetic resonance images
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63395-9
  contributor:
    fullname: Tolpadi
– volume: 98
  year: 2019
  ident: 10.1016/j.artd.2024.101398_bib20
  article-title: Auxiliary diagnosis of developmental dysplasia of the hip by automated detection of Sharp's angle on standardized anteroposterior pelvic radiographs
  publication-title: Medicine
  doi: 10.1097/MD.0000000000018500
  contributor:
    fullname: Li
SSID ssj0001600412
Score 2.3196669
Snippet Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA). We validated...
Background: Hip dysplasia is considered one of the leading etiologies contributing to hip degeneration and the eventual need for total hip arthroplasty (THA)....
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 101398
SubjectTerms Artificial intelligence
Deep learning
Hip dysplasia
Original Research
Osteoarthritis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQqHwEKDISNxSRxI4TH4GyWiEtQqgVvVnjZEyNqmzU3R7494ztpGxAggtXJ3LseWN7njN-ZuyVLqG1tnO5bVyRS6ldDo5Yq4RKuNaWysUNt80ntT6XHy_qi4OrvkJOWJIHToZ7U1sBIDvUrm-kal1bdghCYdNZ3dCsEWffojogU3F3RUUhqemUTEroohqDNGglQ4HQ7WIlioL9iwXpz4Dz97zJg4VodZ_dmyJI_ja1_AG7g8MxG79A75P6tO_4ysezKjs-Gx97_tXvL_nGX_V87Ud--mM3xgOU3A9ctErzz0lgdcdjEgEHfoo48kl-9Rvf_NpL5Gfb7dVDdr76cPZ-nU-XKeSdqPU-DzwBodCFIkLRt7KzFbiyJ_pBw7IkTKyzmuKpsrZN5UQvpWs6AVIjAIIE8YgdDdsBnzCOhEnpAAvbSGm1tgpK21cosUGNSmTs9WxYMybNDDMnk303AQYTYDAJhoy9C7a_fTPoXccC8gIzeYH5lxdkrJ6RM1PokEICqsr_9eMvZ5gNjavwswQG3N7sDM19xGSDvmHGHifYb5sYNAmJ2auMtQuHWPRh-WTwl1G7m8JbQbWqp_-j18_Y3dCXlI_4nB3tr2_whGKkvX0Rh8NPKUcTaA
  priority: 102
  providerName: Directory of Open Access Journals
Title Radiographic Findings Associated With Mild Hip Dysplasia in 3869 Patients Using a Deep Learning Measurement Tool
URI https://dx.doi.org/10.1016/j.artd.2024.101398
https://www.ncbi.nlm.nih.gov/pubmed/38993836
https://www.proquest.com/docview/3079173598
https://pubmed.ncbi.nlm.nih.gov/PMC11237356
https://doaj.org/article/5b3aa4ce9fd7468f81cea36e7cb97eac
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXanrggEF8BWhmJG0p3EztOfCwtqxVoUUGt6M2ynXHraptE3e2Bf8_YSUoDEgcuOThxYvvZmRnnzQsh72WmK2OsS03p5inn0qXaYdTKdc5cZTLh4obb6qtYnvPPF8XFDhFjLkwk7VvjD5v1zWHjryK3sruxs5EnNjtdHaOPwEpWiNku2UX7-yBGjzsrIopIDRkyPZkLawdZ0JyHAiariRWKYv0TY_S3s_knZ_KBEVo8IY8H75Ee9a18SnageUa677r2vfK0t3ThY57Kho4DDzX94bdXdOXXNV36jp783HQxeZL6hrJKSHrai6tuaCQQUE1PADo6SK9e0tXvfUR61rbr5-R88enseJkOP1JILSvkNg0xAui5nAsMJuqKW5Nrl9UYeuCSzBAP44xEXyorTJk7VnPuSss0l6A1aK7ZC7LXtA28IhQKwzKnYW5Kzo2URujM1DlwKEGCYAn5MA6s6nq9DDUSya5VgEEFGFQPQ0I-hrG_vzJoXceC9vZSDYgrfKLW3IJ0dclF5arMgmYCSmtkiXYjIcWInBrcht4dwFv5fz783QizwjUVPpToBtq7jcL3HkaxQdswIS972O-bGPQIMaoXCakmE2LSh-kZnMZRt3uctq__v-ob8ij0oGcgviV729s72EevaGsO4m4CHr98qw7igvgFhM4SZg
link.rule.ids 230,314,727,780,784,864,885,2102,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFgXiFp5G4oXQ3sWPHR2hZLdBUFdqK3izbGbeutknU3R7499hOUhqQOHB14vjx2ZkZ55svCL0XmSq1NjbV3M5TSoVNlfVRK1U5saXOmI0HbtURW57Qr6fF6Q5iYy5MJO0b7faa9eVe484jt7K7NLORJzY7rva9j0A4KdjsDrpbEC6yW1F6PFthUUZqyJHp6Vy-fhAGzWkoIKKc2KEo1z8xR3-7m3-yJm-ZocVD9GDwH_HHvp-P0A40j1H3XdWu1552Bi9czFTZ4HHqocY_3PYcV25d46Xr8MHPTRfTJ7FrMCmZwMe9vOoGRwoBVvgAoMOD-OoZrn6fJOJV266foJPF59X-Mh1-pZAaUohtGqIEUHMxZz6cqEtqdK5sVvvgw2_KzCOirRbem8oKzXNLakotN0RRAUqBooo8RbtN28BzhKHQJLMK5ppTqoXQTGW6zoECBwGMJOjDOLGy6xUz5Eglu5ABBhlgkD0MCfoU5v7mzqB2HQvaqzM5YC59i0pRA8LWnLLSlpkBRRhwowX3liNBxYicHByH3iHwj3L_bPzdCLP0uyp8KlENtNcb6d98Po4N6oYJetbDftPFoEjo43qWoHKyICZjmF7xCzkqd48L98X_V32L7i1X1aE8_HL07SW6H0bT8xFfod3t1TW89j7SVr-JG-IXJmYT0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagSIgLArGF1UjcUDqT2HHiI3QYDctUI9SK3izbeW5dTZOomR7493hJSgMSB65O4u17znvP-fwFoXc8k5VS2qSqNPOUUm5SaVzWSmVOTKUyZsKG2_qQrY7pl5PiZGBV9gOtstHK7jfbi_3GngVuZXehZyNPbLZZH7gYgZSkYLOuNrPb6E5BnJXdyNTD_goLUlLDOZlI6XJ1eHHQnPoCwquJLwqS_ROX9HfI-Sdz8oYrWj5A94cYEn-IfX2IbkHzCHXfZW2j_rTVeGnDaZUej9MPNf5hd2d4bbc1XtkOL372XThCiW2DScU43kSJ1R4HGgGWeAHQ4UGA9RSvf-8m4qO23T5Gx8tPRwerdPidQqpJwXepzxRAzvmcuZSirqhWuTRZ7RIQtzAzh4oyiruIKitUmRtSU2pKTSTlICVIKskTtNe0DTxDGApFMiNhrkpKFeeKyUzVOVAogQMjCXo_TqzoomqGGOlk58LDIDwMIsKQoI9-7q_v9IrXoaC9PBUD7sK1KCXVwE1dUlaZKtMgCYNSK14675GgYkRODMFDDApcVfafjb8dYRZuZfnPJbKB9qoX7u3nclmvcJigpxH26y56VUKX27MEVRODmIxhesUZc1DvHo33-f8_-gbd3SyW4tvnw68v0D0_mEhJfIn2dpdX8MqFSTv1OqyHXwcMFOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiographic+Findings+Associated+With+Mild+Hip+Dysplasia+in+3869+Patients+Using+a+Deep+Learning+Measurement+Tool&rft.jtitle=Arthroplasty+today&rft.au=Seong+Jun+Jang%2C+MD&rft.au=Daniel+A.+Driscoll%2C+MD&rft.au=Christopher+G.+Anderson%2C+MD&rft.au=Ruba+Sokrab%2C+MD&rft.date=2024-08-01&rft.pub=Elsevier&rft.eissn=2352-3441&rft.volume=28&rft.spage=101398&rft_id=info:doi/10.1016%2Fj.artd.2024.101398&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b3aa4ce9fd7468f81cea36e7cb97eac
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3441&client=summon