First-order chemical reaction networks I: theoretical considerations
Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical r...
Saved in:
Published in | Journal of mathematical chemistry Vol. 54; no. 9; pp. 1863 - 1878 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Our former study Tóbiás and Tasi (J Math Chem 54:85,
2016
) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (
FCRN
s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60,
2009
). First, it is proved that an
FCRN
is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative
FCRN
s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an
FCRN
. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal)
FCRN
is presented which has algebraically exact solution. |
---|---|
AbstractList | Our former study Tóbiás and Tasi (J Math Chem 54:85,
2016
) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (
FCRN
s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60,
2009
). First, it is proved that an
FCRN
is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative
FCRN
s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an
FCRN
. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal)
FCRN
is presented which has algebraically exact solution. Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (FCRNs) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRNs, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution. |
Author | Tóbiás, Roland Stacho, László L. Tasi, Gyula |
Author_xml | – sequence: 1 givenname: Roland surname: Tóbiás fullname: Tóbiás, Roland organization: Department of Applied and Environmental Chemistry, University of Szeged – sequence: 2 givenname: László L. surname: Stacho fullname: Stacho, László L. organization: Bolyai Institute, University of Szeged – sequence: 3 givenname: Gyula surname: Tasi fullname: Tasi, Gyula email: tasi@chem.u-szeged.hu organization: Department of Applied and Environmental Chemistry, University of Szeged |
BookMark | eNp1kD1PwzAQQC1UJNrCD2CLxGw4O3Fss6FCoVIlFpgt4w-a0trFToX493UJAwvTLe_dnd4EjUIMDqFLAtcEgN9kApIABtJiaBnD9ASNCeMUCyH5CI2BMokll-QMTXJeA4AUrRij-3mXco9jsi5VZuW2ndGbKjlt-i6GKrj-K6aPXC1uq37lYnL9D2BiyF1R9JHK5-jU6012F79zil7nDy-zJ7x8flzM7pbY1Ez2uAVjidAN574Rzujyp6WstVZrWdfyzXsnbd0Yw6RvqGm09ZwxyamuG-2B1VN0Nezdpfi5d7lX67hPoZxURAgQhW6bQpGBMinmnJxXu9RtdfpWBNQxlhpiqRJLHWMpWhw6OLmw4d2lP5v_lQ56eW7e |
CitedBy_id | crossref_primary_10_1007_s10910_021_01265_z crossref_primary_10_1002_aisy_202000086 crossref_primary_10_1007_s10910_016_0712_x crossref_primary_10_1002_jcc_25130 |
Cites_doi | 10.1007/BF01165164 10.1080/00207177808922437 10.1137/050634177 10.1515/9781400831470 10.1063/1.4758458 10.1016/0025-5564(85)90102-6 10.1016/0025-5564(75)90096-6 10.1016/0025-5564(84)90007-5 10.1007/BF02476377 10.1007/s10910-011-9911-7 10.1137/S0036139904440278 10.1016/0009-2509(87)80099-4 10.1007/BF00251225 10.1109/TBME.1978.326344 10.1016/j.nonrwa.2004.01.006 10.1007/978-3-319-15482-4 10.1007/s11538-013-9884-8 10.1115/1.2836448 10.1007/BF00250853 10.1126/science.1183372 10.1007/s10910-015-0550-2 10.1007/BF00251866 10.1007/BF01192571 10.1515/9781400833344 10.1109/MCS.2009.932926 10.1007/s10910-011-9817-4 10.1007/s10910-007-9307-x 10.1145/98267.98287 10.1016/0025-5564(79)90026-9 10.1016/j.mbs.2007.07.003 10.1016/S0043-1354(98)00273-5 10.1111/j.1749-6632.1963.tb13364.x 10.1021/i160024a008 10.2307/2305561 10.1070/SM1972v017n04ABEH001603 10.1016/0025-5564(76)90013-4 10.1137/110840509 |
ContentType | Journal Article |
Copyright | Springer International Publishing Switzerland 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2016 – notice: Copyright Springer Science & Business Media 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10910-016-0655-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Mathematics |
EISSN | 1572-8897 |
EndPage | 1878 |
ExternalDocumentID | 10_1007_s10910_016_0655_2 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- ML- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z83 ZMTXR ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053 |
IEDL.DBID | AGYKE |
ISSN | 0259-9791 |
IngestDate | Thu Oct 10 16:24:29 EDT 2024 Thu Sep 12 16:34:28 EDT 2024 Sat Dec 16 11:59:29 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Network decomposition Multiplicity of the zero eigenvalue First-order reaction network Algebraic model Mass incompatibility Marker network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053 |
OpenAccessLink | https://publicatio.bibl.u-szeged.hu/7905/1/JMC2.pdf |
PQID | 1880875564 |
PQPubID | 2043851 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1880875564 crossref_primary_10_1007_s10910_016_0655_2 springer_journals_10_1007_s10910_016_0655_2 |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationTitle | Journal of mathematical chemistry |
PublicationTitleAbbrev | J Math Chem |
PublicationYear | 2016 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | HornFJacksonRArch. Ration. Mech. Anal.1972478110.1007/BF00251225 EykholtGRWater Res.1999338141:CAS:528:DyaK1MXot1Knsg%3D%3D10.1016/S0043-1354(98)00273-5 BernsteinDSBhatSPJ. Mech. Des.199511714510.1115/1.2836448 BulloFCortésJDistributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms2009PrincetonPrinceton University Press10.1515/9781400831470 LaddeGMath. Biosci.197630110.1016/0025-5564(76)90013-4 McWilliamsJGAndersonDHMath. Biosci.19857728710.1016/0025-5564(85)90102-6 BernsteinDSMatrix Mathematics: Theory, Facts, and Formulas2009PrincetonPrinceton University Press10.1515/9781400833344 FeinbergMHornFJArch. Ration. Mech. Anal.1977668310.1007/BF00250853 PontryaginLSOrdinary Differential Equations. Translated from the Russian by Leonas Kacinskas and Walter B. Counts1962ReadingAddison-Wesley Publishing Company LenteGDeterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks2015BerlinSpringer10.1007/978-3-319-15482-4 PoglianiLBerberan-SantosMNMartinhoJMJ. Math. Chem.1996201931:CAS:528:DyaK2sXhs1Grsw%3D%3D10.1007/BF01165164 JohnstonMDSiegelDJ. Math. Chem.20114912631:CAS:528:DC%2BC3MXovVOhsLc%3D10.1007/s10910-011-9817-4 CraciunGFeinbergMSIAM J. Appl. Math.20066613211:CAS:528:DC%2BD28XotlKntro%3D10.1137/050634177 HawkinsTMathematics of Frobenius in Context2015BerlinSpringer CraciunGFeinbergMSIAM J. Appl. Math.20056515261:CAS:528:DC%2BD2MXhtFKqt7vE10.1137/S0036139904440278 HaddadWMChellaboinaVNonlinear Anal. Real World Appl.200563510.1016/j.nonrwa.2004.01.006 JohnstonMDSiegelDSzederkényiGJ. Math. Chem.2012502741:CAS:528:DC%2BC38XnvFKr10.1007/s10910-011-9911-7 ÉrdiPTóthJMathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models1989ManchesterManchester University Press TausskyOAm. Math. Mon.19495667210.2307/2305561 MilaneseMSorrentinoNInt. J. Control1978287110.1080/00207177808922437 AndersonDHMath. Biosci.19847110510.1016/0025-5564(84)90007-5 G. Craciun, Toric Differential Inclusions and a Proof of the Global Attractor Conjecture, arXiv:1501.02860. Accessed 02 Feb 2016 ShinarGFeinbergMScience201032713891:CAS:528:DC%2BC3cXivFensr0%3D10.1126/science.1183372 CobelliCLepschyAJacurGRMath. Biosci.197944110.1016/0025-5564(79)90026-9 HearonJZAnn. N. Y. Acad. Sci.1963108361:CAS:528:DyaF2cXislCisw%3D%3D10.1111/j.1749-6632.1963.tb13364.x PothenAFanCJACMT Math. Softw.19901630310.1145/98267.98287 SchusterSSchusterRJ. Math. Chem.19916171:CAS:528:DyaK3MXlsVeksb8%3D10.1007/BF01192571 TóbiásRTasiGJ. Math. Chem.2016548510.1007/s10910-015-0550-2 HearonJZBull. Math. Biophys.1953151211:CAS:528:DyaG2cXit1U%3D10.1007/BF02476377 KailathTLinear Systems1980Englewood CliffsPrentice-Hall LenteGJ. Chem. Phys.201213716410110.1063/1.4758458 CraciunGPanteaCJ. Math. Chem.2008442441:CAS:528:DC%2BD1cXlsV2nsbc%3D10.1007/s10910-007-9307-x FeinbergMChem. Eng. Sci.19874222291:CAS:528:DyaL1cXnvF2r10.1016/0009-2509(87)80099-4 HimmelblauDJonesCBischoffKInd. Eng. Chem. Fund.196765391:CAS:528:DyaF2sXltFWkurs%3D10.1021/i160024a008 D.S. Bernstein, S.P. Bhat, Proceedings of the 38th IEEE Conference on Decision and Control, Arizona, 2206 (1999) FeinbergMArch. Ration. Mech. Anal.197246110.1007/BF00251866 MirzaevIGunawardenaJBull. Math. Biol.201375211810.1007/s11538-013-9884-8 PanteaCSIAM J. Math. Anal.201244163610.1137/110840509 AngeliDDe LeenheerPSontagEDMath. Biosci.20072105981:CAS:528:DC%2BD2sXhtlGiu7fP10.1016/j.mbs.2007.07.003 ChellaboinaVBhatSPHaddadWMBernsteinDSControl Syst.2009296010.1109/MCS.2009.932926 LutherURostKElectron. Trans. Numer. Anal.20041891 VolpertAIMath. USSR Sb. (English)19721757110.1070/SM1972v017n04ABEH001603 CobelliCRescignoAIEEE T. Bio-Med. Eng.1978329410.1109/TBME.1978.326344 FosterDMJacquezJAMath. Biosci.1975268910.1016/0025-5564(75)90096-6 T Kailath (655_CR28) 1980 JZ Hearon (655_CR23) 1963; 108 MD Johnston (655_CR26) 2011; 49 S Schuster (655_CR40) 1991; 6 L Pogliani (655_CR37) 1996; 20 T Hawkins (655_CR21) 2015 F Bullo (655_CR6) 2009 JG McWilliams (655_CR33) 1985; 77 I Mirzaev (655_CR35) 2013; 75 D Himmelblau (655_CR24) 1967; 6 M Milanese (655_CR34) 1978; 28 JZ Hearon (655_CR22) 1953; 15 V Chellaboina (655_CR7) 2009; 29 DS Bernstein (655_CR3) 2009 C Cobelli (655_CR8) 1979; 44 G Lente (655_CR31) 2015 C Cobelli (655_CR9) 1978; 3 655_CR10 C Pantea (655_CR36) 2012; 44 655_CR5 P Érdi (655_CR14) 1989 AI Volpert (655_CR44) 1972; 17 D Angeli (655_CR2) 2007; 210 U Luther (655_CR32) 2004; 18 R Tóbiás (655_CR43) 2016; 54 GR Eykholt (655_CR15) 1999; 33 M Feinberg (655_CR18) 1977; 66 G Ladde (655_CR29) 1976; 30 F Horn (655_CR25) 1972; 47 G Craciun (655_CR11) 2005; 65 G Craciun (655_CR13) 2008; 44 M Feinberg (655_CR17) 1987; 42 DM Foster (655_CR19) 1975; 26 WM Haddad (655_CR20) 2005; 6 M Feinberg (655_CR16) 1972; 46 DS Bernstein (655_CR4) 1995; 117 G Shinar (655_CR41) 2010; 327 G Craciun (655_CR12) 2006; 66 G Lente (655_CR30) 2012; 137 DH Anderson (655_CR1) 1984; 71 A Pothen (655_CR39) 1990; 16 LS Pontryagin (655_CR38) 1962 O Taussky (655_CR42) 1949; 56 MD Johnston (655_CR27) 2012; 50 |
References_xml | – volume-title: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models year: 1989 ident: 655_CR14 contributor: fullname: P Érdi – volume: 20 start-page: 193 year: 1996 ident: 655_CR37 publication-title: J. Math. Chem. doi: 10.1007/BF01165164 contributor: fullname: L Pogliani – volume: 28 start-page: 71 year: 1978 ident: 655_CR34 publication-title: Int. J. Control doi: 10.1080/00207177808922437 contributor: fullname: M Milanese – volume: 66 start-page: 1321 year: 2006 ident: 655_CR12 publication-title: SIAM J. Appl. Math. doi: 10.1137/050634177 contributor: fullname: G Craciun – volume-title: Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms year: 2009 ident: 655_CR6 doi: 10.1515/9781400831470 contributor: fullname: F Bullo – volume: 137 start-page: 164101 year: 2012 ident: 655_CR30 publication-title: J. Chem. Phys. doi: 10.1063/1.4758458 contributor: fullname: G Lente – volume: 77 start-page: 287 year: 1985 ident: 655_CR33 publication-title: Math. Biosci. doi: 10.1016/0025-5564(85)90102-6 contributor: fullname: JG McWilliams – volume: 26 start-page: 89 year: 1975 ident: 655_CR19 publication-title: Math. Biosci. doi: 10.1016/0025-5564(75)90096-6 contributor: fullname: DM Foster – volume: 71 start-page: 105 year: 1984 ident: 655_CR1 publication-title: Math. Biosci. doi: 10.1016/0025-5564(84)90007-5 contributor: fullname: DH Anderson – volume: 15 start-page: 121 year: 1953 ident: 655_CR22 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02476377 contributor: fullname: JZ Hearon – volume: 50 start-page: 274 year: 2012 ident: 655_CR27 publication-title: J. Math. Chem. doi: 10.1007/s10910-011-9911-7 contributor: fullname: MD Johnston – volume: 65 start-page: 1526 year: 2005 ident: 655_CR11 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139904440278 contributor: fullname: G Craciun – volume-title: Ordinary Differential Equations. Translated from the Russian by Leonas Kacinskas and Walter B. Counts year: 1962 ident: 655_CR38 contributor: fullname: LS Pontryagin – volume-title: Linear Systems year: 1980 ident: 655_CR28 contributor: fullname: T Kailath – ident: 655_CR5 – ident: 655_CR10 – volume: 42 start-page: 2229 year: 1987 ident: 655_CR17 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(87)80099-4 contributor: fullname: M Feinberg – volume: 47 start-page: 81 year: 1972 ident: 655_CR25 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251225 contributor: fullname: F Horn – volume: 3 start-page: 294 year: 1978 ident: 655_CR9 publication-title: IEEE T. Bio-Med. Eng. doi: 10.1109/TBME.1978.326344 contributor: fullname: C Cobelli – volume: 6 start-page: 35 year: 2005 ident: 655_CR20 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2004.01.006 contributor: fullname: WM Haddad – volume: 18 start-page: 91 year: 2004 ident: 655_CR32 publication-title: Electron. Trans. Numer. Anal. contributor: fullname: U Luther – volume-title: Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks year: 2015 ident: 655_CR31 doi: 10.1007/978-3-319-15482-4 contributor: fullname: G Lente – volume: 75 start-page: 2118 year: 2013 ident: 655_CR35 publication-title: Bull. Math. Biol. doi: 10.1007/s11538-013-9884-8 contributor: fullname: I Mirzaev – volume: 117 start-page: 145 year: 1995 ident: 655_CR4 publication-title: J. Mech. Des. doi: 10.1115/1.2836448 contributor: fullname: DS Bernstein – volume: 66 start-page: 83 year: 1977 ident: 655_CR18 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00250853 contributor: fullname: M Feinberg – volume-title: Mathematics of Frobenius in Context year: 2015 ident: 655_CR21 contributor: fullname: T Hawkins – volume: 327 start-page: 1389 year: 2010 ident: 655_CR41 publication-title: Science doi: 10.1126/science.1183372 contributor: fullname: G Shinar – volume: 54 start-page: 85 year: 2016 ident: 655_CR43 publication-title: J. Math. Chem. doi: 10.1007/s10910-015-0550-2 contributor: fullname: R Tóbiás – volume: 46 start-page: 1 year: 1972 ident: 655_CR16 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251866 contributor: fullname: M Feinberg – volume: 6 start-page: 17 year: 1991 ident: 655_CR40 publication-title: J. Math. Chem. doi: 10.1007/BF01192571 contributor: fullname: S Schuster – volume-title: Matrix Mathematics: Theory, Facts, and Formulas year: 2009 ident: 655_CR3 doi: 10.1515/9781400833344 contributor: fullname: DS Bernstein – volume: 29 start-page: 60 year: 2009 ident: 655_CR7 publication-title: Control Syst. doi: 10.1109/MCS.2009.932926 contributor: fullname: V Chellaboina – volume: 49 start-page: 1263 year: 2011 ident: 655_CR26 publication-title: J. Math. Chem. doi: 10.1007/s10910-011-9817-4 contributor: fullname: MD Johnston – volume: 44 start-page: 244 year: 2008 ident: 655_CR13 publication-title: J. Math. Chem. doi: 10.1007/s10910-007-9307-x contributor: fullname: G Craciun – volume: 16 start-page: 303 year: 1990 ident: 655_CR39 publication-title: ACMT Math. Softw. doi: 10.1145/98267.98287 contributor: fullname: A Pothen – volume: 44 start-page: 1 year: 1979 ident: 655_CR8 publication-title: Math. Biosci. doi: 10.1016/0025-5564(79)90026-9 contributor: fullname: C Cobelli – volume: 210 start-page: 598 year: 2007 ident: 655_CR2 publication-title: Math. Biosci. doi: 10.1016/j.mbs.2007.07.003 contributor: fullname: D Angeli – volume: 33 start-page: 814 year: 1999 ident: 655_CR15 publication-title: Water Res. doi: 10.1016/S0043-1354(98)00273-5 contributor: fullname: GR Eykholt – volume: 108 start-page: 36 year: 1963 ident: 655_CR23 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1963.tb13364.x contributor: fullname: JZ Hearon – volume: 6 start-page: 539 year: 1967 ident: 655_CR24 publication-title: Ind. Eng. Chem. Fund. doi: 10.1021/i160024a008 contributor: fullname: D Himmelblau – volume: 56 start-page: 672 year: 1949 ident: 655_CR42 publication-title: Am. Math. Mon. doi: 10.2307/2305561 contributor: fullname: O Taussky – volume: 17 start-page: 571 year: 1972 ident: 655_CR44 publication-title: Math. USSR Sb. (English) doi: 10.1070/SM1972v017n04ABEH001603 contributor: fullname: AI Volpert – volume: 30 start-page: 1 year: 1976 ident: 655_CR29 publication-title: Math. Biosci. doi: 10.1016/0025-5564(76)90013-4 contributor: fullname: G Ladde – volume: 44 start-page: 1636 year: 2012 ident: 655_CR36 publication-title: SIAM J. Math. Anal. doi: 10.1137/110840509 contributor: fullname: C Pantea |
SSID | ssj0009868 |
Score | 2.1662958 |
Snippet | Our former study Tóbiás and Tasi (J Math Chem 54:85,
2016
) is continued, where a simple algebraic solution was given to the kinetic problem of triangle,... Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016) is continued, where a simple algebraic solution was given to the kinetic problem of triangle,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1863 |
SubjectTerms | Algebra Chemical reactions Chemistry Chemistry and Materials Science Eigenvalues Exact solutions Incompatibility Math. Applications in Chemistry Networks Original Paper Physical Chemistry Theoretical and Computational Chemistry |
Title | First-order chemical reaction networks I: theoretical considerations |
URI | https://link.springer.com/article/10.1007/s10910-016-0655-2 https://www.proquest.com/docview/1880875564 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADjwKiUKoMTCBXjeM8zNaWhgJqJyqVKXIcW0KVAiLpwq_HdpK2vIbOiazk7uz7znf3HcBVTAVh1GcaucWIUBmgADMbxTyhAbOlzc0UhfHEG03J48ydbQFeXl2k806VkTQH9VqvGzU1VCoA9lwXqWO3Xvad1nv3L0_DFdVuYBrglDOniPrUrnKZfy3y3RutIOaPrKhxNuFB0QCYGY5CXWMy7yzyuMM_fzM4bvAfh7BfYk-rVxjLEWyJtAE7g2rkWwP2xksS1-wY7sJXBQ2RIee0eEksYCmQaVohrLQoIM-sh1trrR3S4uUI0OIq8ASm4fB5MELl0AXEHZfmyOvyxA4Y8X1JAsGZ-sZEwaIkYYw6Do2lFDRxCOculQRzwhLp66gEM4cwqbb0KdTSt1ScgeXbRA8zFxJ3BREBpkJhCccPmAJFvmPbTbiuhB-9F9wa0YpFWYsp0vVnWkwRbkKrUk9UbrMs0mRyKuByPdKEm0rca4__W-x8o7cvYBdrfRm1taCWfyzEpYIiedxWthf2-5N2aYNt2J7i3hcvJdXk |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2xTsMwED2hMhQGBAVEoYAHJpCl2nFim60qVC20nVqpW-Q4tsQSECn_j-0ktCAYmBNZ8l3se5e79w7gJpOGKcmVR24ZZtIKLKgiONO5FIpYosMUhdk8GS_Z0ype1Tzusul2b0qS4abeIrvJ0ETlMuAkjrG7d3e9vLoXzF_SwUZpVwT-m4vlEksuSVPK_G2J78FogzB_FEVDrBkdwkENEtGg8uoR7JiiA-1hM5utA_uzL7XV8hgeRi8Ow-Ggool0rQCAHBoMnAVUVJ3eJZrcoy3eItL1rM7qn90JLEePi-EY19MRsI5iucZJX-dEKMa5ZcJo5TaUO_yS50rJKJKZtUbmEdM6lpZRzVRuuU8fqIqYsu7snUKreC3MGSBOmJ86biztG2YElcYF_YgL5dALjwjpwm1jpvStEsFIN3LH3qapbxTzNk1pF3qNIdP6PJSpV31zmVGcsC7cNcbdevzXYuf_evsa2uPFbJpOJ_PnC9ij3tHB3z1ord8_zKXDD-vsKnwvn6rFupg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hVuIx8CggCgUyMIHc1onzMFtVGlpKKwYqlSk4ji0hpFCRdOHXY-dBSwUDYk5kOXe277v47vsALkIqCKMu08gtRIRKD3kmwyjkEfUYlphnKgqjsdOfkLupPS10TpOy2r28ksx7GjRLU5y2ZpFsLTW-0aygSmXDjm0jdQZXiSZGqkC1c_s07C14d72sG05FdoqoS3F5sfnTIN9D0wJvrlyRZpHH34Hncs55wclrc56GTf6xQuf4j4_ahe0ClRqdfBntwZqIa7DRLcXgarA1-qJ3Tfbhxn9RoBFltJ0GLygHDAU_syYJI85LyxNjcG0sNUoavBAHzX8SHsDE7z12-6iQY0DcsmmKnDaPsMeI60riCc7UHCMFmKKIMWpZNJRS0MginNtUEpMTFklX5ysmswiTarMfQiV-i8URGC4mWuZcSLMtiPBMKhTKsFyPKbjkWhjX4bL0RDDLWTeCBb-yNlOgK9O0mQKzDo3SV0GxAZNA08ypVMx2SB2uStMvPf5tsOM_vX0O6w83fnA_GA9PYNPUrss82IBK-j4XpwqvpOFZsSY_AYCU4Dc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-order+chemical+reaction+networks+I%3A+theoretical+considerations&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=T%C3%B3bi%C3%A1s%2C+Roland&rft.au=Stacho%2C+L%C3%A1szl%C3%B3+L&rft.au=Tasi%2C+Gyula&rft.date=2016-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=54&rft.issue=9&rft.spage=1863&rft.epage=1878&rft_id=info:doi/10.1007%2Fs10910-016-0655-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon |