First-order chemical reaction networks I: theoretical considerations

Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical r...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical chemistry Vol. 54; no. 9; pp. 1863 - 1878
Main Authors Tóbiás, Roland, Stacho, László L., Tasi, Gyula
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks ( FCRN s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009 ). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRN s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN . Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution.
AbstractList Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks ( FCRN s) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009 ). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRN s, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN . Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution.
Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016) is continued, where a simple algebraic solution was given to the kinetic problem of triangle, quadrangle and pentangle reactions. In the present work, after defining chemical reaction networks and their connectedness, first-order chemical reaction networks (FCRNs) are studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60, 2009). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility of subconservative networks. For conservative FCRNs, the so-called marker network is introduced, which is linearly conjugate to the original one, to describe the zero eigenvalue associated to the coefficient matrix of an FCRN. Instead of using graph-theoretical concepts, simple algebraic tools are applied to present and solve these problems. As an illustration, an industrially important ten-component (formal) FCRN is presented which has algebraically exact solution.
Author Tóbiás, Roland
Stacho, László L.
Tasi, Gyula
Author_xml – sequence: 1
  givenname: Roland
  surname: Tóbiás
  fullname: Tóbiás, Roland
  organization: Department of Applied and Environmental Chemistry, University of Szeged
– sequence: 2
  givenname: László L.
  surname: Stacho
  fullname: Stacho, László L.
  organization: Bolyai Institute, University of Szeged
– sequence: 3
  givenname: Gyula
  surname: Tasi
  fullname: Tasi, Gyula
  email: tasi@chem.u-szeged.hu
  organization: Department of Applied and Environmental Chemistry, University of Szeged
BookMark eNp1kD1PwzAQQC1UJNrCD2CLxGw4O3Fss6FCoVIlFpgt4w-a0trFToX493UJAwvTLe_dnd4EjUIMDqFLAtcEgN9kApIABtJiaBnD9ASNCeMUCyH5CI2BMokll-QMTXJeA4AUrRij-3mXco9jsi5VZuW2ndGbKjlt-i6GKrj-K6aPXC1uq37lYnL9D2BiyF1R9JHK5-jU6012F79zil7nDy-zJ7x8flzM7pbY1Ez2uAVjidAN574Rzujyp6WstVZrWdfyzXsnbd0Yw6RvqGm09ZwxyamuG-2B1VN0Nezdpfi5d7lX67hPoZxURAgQhW6bQpGBMinmnJxXu9RtdfpWBNQxlhpiqRJLHWMpWhw6OLmw4d2lP5v_lQ56eW7e
CitedBy_id crossref_primary_10_1007_s10910_021_01265_z
crossref_primary_10_1002_aisy_202000086
crossref_primary_10_1007_s10910_016_0712_x
crossref_primary_10_1002_jcc_25130
Cites_doi 10.1007/BF01165164
10.1080/00207177808922437
10.1137/050634177
10.1515/9781400831470
10.1063/1.4758458
10.1016/0025-5564(85)90102-6
10.1016/0025-5564(75)90096-6
10.1016/0025-5564(84)90007-5
10.1007/BF02476377
10.1007/s10910-011-9911-7
10.1137/S0036139904440278
10.1016/0009-2509(87)80099-4
10.1007/BF00251225
10.1109/TBME.1978.326344
10.1016/j.nonrwa.2004.01.006
10.1007/978-3-319-15482-4
10.1007/s11538-013-9884-8
10.1115/1.2836448
10.1007/BF00250853
10.1126/science.1183372
10.1007/s10910-015-0550-2
10.1007/BF00251866
10.1007/BF01192571
10.1515/9781400833344
10.1109/MCS.2009.932926
10.1007/s10910-011-9817-4
10.1007/s10910-007-9307-x
10.1145/98267.98287
10.1016/0025-5564(79)90026-9
10.1016/j.mbs.2007.07.003
10.1016/S0043-1354(98)00273-5
10.1111/j.1749-6632.1963.tb13364.x
10.1021/i160024a008
10.2307/2305561
10.1070/SM1972v017n04ABEH001603
10.1016/0025-5564(76)90013-4
10.1137/110840509
ContentType Journal Article
Copyright Springer International Publishing Switzerland 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s10910-016-0655-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Mathematics
EISSN 1572-8897
EndPage 1878
ExternalDocumentID 10_1007_s10910_016_0655_2
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z83
ZMTXR
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053
IEDL.DBID AGYKE
ISSN 0259-9791
IngestDate Thu Oct 10 16:24:29 EDT 2024
Thu Sep 12 16:34:28 EDT 2024
Sat Dec 16 11:59:29 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Network decomposition
Multiplicity of the zero eigenvalue
First-order reaction network
Algebraic model
Mass incompatibility
Marker network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-60cd18a477f48eca655d256ddaa9339bffe9d34cc59f42c4adf755972a34af053
OpenAccessLink https://publicatio.bibl.u-szeged.hu/7905/1/JMC2.pdf
PQID 1880875564
PQPubID 2043851
PageCount 16
ParticipantIDs proquest_journals_1880875564
crossref_primary_10_1007_s10910_016_0655_2
springer_journals_10_1007_s10910_016_0655_2
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Journal of mathematical chemistry
PublicationTitleAbbrev J Math Chem
PublicationYear 2016
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References HornFJacksonRArch. Ration. Mech. Anal.1972478110.1007/BF00251225
EykholtGRWater Res.1999338141:CAS:528:DyaK1MXot1Knsg%3D%3D10.1016/S0043-1354(98)00273-5
BernsteinDSBhatSPJ. Mech. Des.199511714510.1115/1.2836448
BulloFCortésJDistributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms2009PrincetonPrinceton University Press10.1515/9781400831470
LaddeGMath. Biosci.197630110.1016/0025-5564(76)90013-4
McWilliamsJGAndersonDHMath. Biosci.19857728710.1016/0025-5564(85)90102-6
BernsteinDSMatrix Mathematics: Theory, Facts, and Formulas2009PrincetonPrinceton University Press10.1515/9781400833344
FeinbergMHornFJArch. Ration. Mech. Anal.1977668310.1007/BF00250853
PontryaginLSOrdinary Differential Equations. Translated from the Russian by Leonas Kacinskas and Walter B. Counts1962ReadingAddison-Wesley Publishing Company
LenteGDeterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks2015BerlinSpringer10.1007/978-3-319-15482-4
PoglianiLBerberan-SantosMNMartinhoJMJ. Math. Chem.1996201931:CAS:528:DyaK2sXhs1Grsw%3D%3D10.1007/BF01165164
JohnstonMDSiegelDJ. Math. Chem.20114912631:CAS:528:DC%2BC3MXovVOhsLc%3D10.1007/s10910-011-9817-4
CraciunGFeinbergMSIAM J. Appl. Math.20066613211:CAS:528:DC%2BD28XotlKntro%3D10.1137/050634177
HawkinsTMathematics of Frobenius in Context2015BerlinSpringer
CraciunGFeinbergMSIAM J. Appl. Math.20056515261:CAS:528:DC%2BD2MXhtFKqt7vE10.1137/S0036139904440278
HaddadWMChellaboinaVNonlinear Anal. Real World Appl.200563510.1016/j.nonrwa.2004.01.006
JohnstonMDSiegelDSzederkényiGJ. Math. Chem.2012502741:CAS:528:DC%2BC38XnvFKr10.1007/s10910-011-9911-7
ÉrdiPTóthJMathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models1989ManchesterManchester University Press
TausskyOAm. Math. Mon.19495667210.2307/2305561
MilaneseMSorrentinoNInt. J. Control1978287110.1080/00207177808922437
AndersonDHMath. Biosci.19847110510.1016/0025-5564(84)90007-5
G. Craciun, Toric Differential Inclusions and a Proof of the Global Attractor Conjecture, arXiv:1501.02860. Accessed 02 Feb 2016
ShinarGFeinbergMScience201032713891:CAS:528:DC%2BC3cXivFensr0%3D10.1126/science.1183372
CobelliCLepschyAJacurGRMath. Biosci.197944110.1016/0025-5564(79)90026-9
HearonJZAnn. N. Y. Acad. Sci.1963108361:CAS:528:DyaF2cXislCisw%3D%3D10.1111/j.1749-6632.1963.tb13364.x
PothenAFanCJACMT Math. Softw.19901630310.1145/98267.98287
SchusterSSchusterRJ. Math. Chem.19916171:CAS:528:DyaK3MXlsVeksb8%3D10.1007/BF01192571
TóbiásRTasiGJ. Math. Chem.2016548510.1007/s10910-015-0550-2
HearonJZBull. Math. Biophys.1953151211:CAS:528:DyaG2cXit1U%3D10.1007/BF02476377
KailathTLinear Systems1980Englewood CliffsPrentice-Hall
LenteGJ. Chem. Phys.201213716410110.1063/1.4758458
CraciunGPanteaCJ. Math. Chem.2008442441:CAS:528:DC%2BD1cXlsV2nsbc%3D10.1007/s10910-007-9307-x
FeinbergMChem. Eng. Sci.19874222291:CAS:528:DyaL1cXnvF2r10.1016/0009-2509(87)80099-4
HimmelblauDJonesCBischoffKInd. Eng. Chem. Fund.196765391:CAS:528:DyaF2sXltFWkurs%3D10.1021/i160024a008
D.S. Bernstein, S.P. Bhat, Proceedings of the 38th IEEE Conference on Decision and Control, Arizona, 2206 (1999)
FeinbergMArch. Ration. Mech. Anal.197246110.1007/BF00251866
MirzaevIGunawardenaJBull. Math. Biol.201375211810.1007/s11538-013-9884-8
PanteaCSIAM J. Math. Anal.201244163610.1137/110840509
AngeliDDe LeenheerPSontagEDMath. Biosci.20072105981:CAS:528:DC%2BD2sXhtlGiu7fP10.1016/j.mbs.2007.07.003
ChellaboinaVBhatSPHaddadWMBernsteinDSControl Syst.2009296010.1109/MCS.2009.932926
LutherURostKElectron. Trans. Numer. Anal.20041891
VolpertAIMath. USSR Sb. (English)19721757110.1070/SM1972v017n04ABEH001603
CobelliCRescignoAIEEE T. Bio-Med. Eng.1978329410.1109/TBME.1978.326344
FosterDMJacquezJAMath. Biosci.1975268910.1016/0025-5564(75)90096-6
T Kailath (655_CR28) 1980
JZ Hearon (655_CR23) 1963; 108
MD Johnston (655_CR26) 2011; 49
S Schuster (655_CR40) 1991; 6
L Pogliani (655_CR37) 1996; 20
T Hawkins (655_CR21) 2015
F Bullo (655_CR6) 2009
JG McWilliams (655_CR33) 1985; 77
I Mirzaev (655_CR35) 2013; 75
D Himmelblau (655_CR24) 1967; 6
M Milanese (655_CR34) 1978; 28
JZ Hearon (655_CR22) 1953; 15
V Chellaboina (655_CR7) 2009; 29
DS Bernstein (655_CR3) 2009
C Cobelli (655_CR8) 1979; 44
G Lente (655_CR31) 2015
C Cobelli (655_CR9) 1978; 3
655_CR10
C Pantea (655_CR36) 2012; 44
655_CR5
P Érdi (655_CR14) 1989
AI Volpert (655_CR44) 1972; 17
D Angeli (655_CR2) 2007; 210
U Luther (655_CR32) 2004; 18
R Tóbiás (655_CR43) 2016; 54
GR Eykholt (655_CR15) 1999; 33
M Feinberg (655_CR18) 1977; 66
G Ladde (655_CR29) 1976; 30
F Horn (655_CR25) 1972; 47
G Craciun (655_CR11) 2005; 65
G Craciun (655_CR13) 2008; 44
M Feinberg (655_CR17) 1987; 42
DM Foster (655_CR19) 1975; 26
WM Haddad (655_CR20) 2005; 6
M Feinberg (655_CR16) 1972; 46
DS Bernstein (655_CR4) 1995; 117
G Shinar (655_CR41) 2010; 327
G Craciun (655_CR12) 2006; 66
G Lente (655_CR30) 2012; 137
DH Anderson (655_CR1) 1984; 71
A Pothen (655_CR39) 1990; 16
LS Pontryagin (655_CR38) 1962
O Taussky (655_CR42) 1949; 56
MD Johnston (655_CR27) 2012; 50
References_xml – volume-title: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models
  year: 1989
  ident: 655_CR14
  contributor:
    fullname: P Érdi
– volume: 20
  start-page: 193
  year: 1996
  ident: 655_CR37
  publication-title: J. Math. Chem.
  doi: 10.1007/BF01165164
  contributor:
    fullname: L Pogliani
– volume: 28
  start-page: 71
  year: 1978
  ident: 655_CR34
  publication-title: Int. J. Control
  doi: 10.1080/00207177808922437
  contributor:
    fullname: M Milanese
– volume: 66
  start-page: 1321
  year: 2006
  ident: 655_CR12
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/050634177
  contributor:
    fullname: G Craciun
– volume-title: Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms
  year: 2009
  ident: 655_CR6
  doi: 10.1515/9781400831470
  contributor:
    fullname: F Bullo
– volume: 137
  start-page: 164101
  year: 2012
  ident: 655_CR30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4758458
  contributor:
    fullname: G Lente
– volume: 77
  start-page: 287
  year: 1985
  ident: 655_CR33
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(85)90102-6
  contributor:
    fullname: JG McWilliams
– volume: 26
  start-page: 89
  year: 1975
  ident: 655_CR19
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(75)90096-6
  contributor:
    fullname: DM Foster
– volume: 71
  start-page: 105
  year: 1984
  ident: 655_CR1
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(84)90007-5
  contributor:
    fullname: DH Anderson
– volume: 15
  start-page: 121
  year: 1953
  ident: 655_CR22
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02476377
  contributor:
    fullname: JZ Hearon
– volume: 50
  start-page: 274
  year: 2012
  ident: 655_CR27
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-011-9911-7
  contributor:
    fullname: MD Johnston
– volume: 65
  start-page: 1526
  year: 2005
  ident: 655_CR11
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139904440278
  contributor:
    fullname: G Craciun
– volume-title: Ordinary Differential Equations. Translated from the Russian by Leonas Kacinskas and Walter B. Counts
  year: 1962
  ident: 655_CR38
  contributor:
    fullname: LS Pontryagin
– volume-title: Linear Systems
  year: 1980
  ident: 655_CR28
  contributor:
    fullname: T Kailath
– ident: 655_CR5
– ident: 655_CR10
– volume: 42
  start-page: 2229
  year: 1987
  ident: 655_CR17
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(87)80099-4
  contributor:
    fullname: M Feinberg
– volume: 47
  start-page: 81
  year: 1972
  ident: 655_CR25
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251225
  contributor:
    fullname: F Horn
– volume: 3
  start-page: 294
  year: 1978
  ident: 655_CR9
  publication-title: IEEE T. Bio-Med. Eng.
  doi: 10.1109/TBME.1978.326344
  contributor:
    fullname: C Cobelli
– volume: 6
  start-page: 35
  year: 2005
  ident: 655_CR20
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2004.01.006
  contributor:
    fullname: WM Haddad
– volume: 18
  start-page: 91
  year: 2004
  ident: 655_CR32
  publication-title: Electron. Trans. Numer. Anal.
  contributor:
    fullname: U Luther
– volume-title: Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks
  year: 2015
  ident: 655_CR31
  doi: 10.1007/978-3-319-15482-4
  contributor:
    fullname: G Lente
– volume: 75
  start-page: 2118
  year: 2013
  ident: 655_CR35
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-013-9884-8
  contributor:
    fullname: I Mirzaev
– volume: 117
  start-page: 145
  year: 1995
  ident: 655_CR4
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2836448
  contributor:
    fullname: DS Bernstein
– volume: 66
  start-page: 83
  year: 1977
  ident: 655_CR18
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00250853
  contributor:
    fullname: M Feinberg
– volume-title: Mathematics of Frobenius in Context
  year: 2015
  ident: 655_CR21
  contributor:
    fullname: T Hawkins
– volume: 327
  start-page: 1389
  year: 2010
  ident: 655_CR41
  publication-title: Science
  doi: 10.1126/science.1183372
  contributor:
    fullname: G Shinar
– volume: 54
  start-page: 85
  year: 2016
  ident: 655_CR43
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-015-0550-2
  contributor:
    fullname: R Tóbiás
– volume: 46
  start-page: 1
  year: 1972
  ident: 655_CR16
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251866
  contributor:
    fullname: M Feinberg
– volume: 6
  start-page: 17
  year: 1991
  ident: 655_CR40
  publication-title: J. Math. Chem.
  doi: 10.1007/BF01192571
  contributor:
    fullname: S Schuster
– volume-title: Matrix Mathematics: Theory, Facts, and Formulas
  year: 2009
  ident: 655_CR3
  doi: 10.1515/9781400833344
  contributor:
    fullname: DS Bernstein
– volume: 29
  start-page: 60
  year: 2009
  ident: 655_CR7
  publication-title: Control Syst.
  doi: 10.1109/MCS.2009.932926
  contributor:
    fullname: V Chellaboina
– volume: 49
  start-page: 1263
  year: 2011
  ident: 655_CR26
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-011-9817-4
  contributor:
    fullname: MD Johnston
– volume: 44
  start-page: 244
  year: 2008
  ident: 655_CR13
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-007-9307-x
  contributor:
    fullname: G Craciun
– volume: 16
  start-page: 303
  year: 1990
  ident: 655_CR39
  publication-title: ACMT Math. Softw.
  doi: 10.1145/98267.98287
  contributor:
    fullname: A Pothen
– volume: 44
  start-page: 1
  year: 1979
  ident: 655_CR8
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(79)90026-9
  contributor:
    fullname: C Cobelli
– volume: 210
  start-page: 598
  year: 2007
  ident: 655_CR2
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2007.07.003
  contributor:
    fullname: D Angeli
– volume: 33
  start-page: 814
  year: 1999
  ident: 655_CR15
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00273-5
  contributor:
    fullname: GR Eykholt
– volume: 108
  start-page: 36
  year: 1963
  ident: 655_CR23
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1963.tb13364.x
  contributor:
    fullname: JZ Hearon
– volume: 6
  start-page: 539
  year: 1967
  ident: 655_CR24
  publication-title: Ind. Eng. Chem. Fund.
  doi: 10.1021/i160024a008
  contributor:
    fullname: D Himmelblau
– volume: 56
  start-page: 672
  year: 1949
  ident: 655_CR42
  publication-title: Am. Math. Mon.
  doi: 10.2307/2305561
  contributor:
    fullname: O Taussky
– volume: 17
  start-page: 571
  year: 1972
  ident: 655_CR44
  publication-title: Math. USSR Sb. (English)
  doi: 10.1070/SM1972v017n04ABEH001603
  contributor:
    fullname: AI Volpert
– volume: 30
  start-page: 1
  year: 1976
  ident: 655_CR29
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(76)90013-4
  contributor:
    fullname: G Ladde
– volume: 44
  start-page: 1636
  year: 2012
  ident: 655_CR36
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/110840509
  contributor:
    fullname: C Pantea
SSID ssj0009868
Score 2.1662958
Snippet Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016 ) is continued, where a simple algebraic solution was given to the kinetic problem of triangle,...
Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016) is continued, where a simple algebraic solution was given to the kinetic problem of triangle,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1863
SubjectTerms Algebra
Chemical reactions
Chemistry
Chemistry and Materials Science
Eigenvalues
Exact solutions
Incompatibility
Math. Applications in Chemistry
Networks
Original Paper
Physical Chemistry
Theoretical and Computational Chemistry
Title First-order chemical reaction networks I: theoretical considerations
URI https://link.springer.com/article/10.1007/s10910-016-0655-2
https://www.proquest.com/docview/1880875564
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADjwKiUKoMTCBXjeM8zNaWhgJqJyqVKXIcW0KVAiLpwq_HdpK2vIbOiazk7uz7znf3HcBVTAVh1GcaucWIUBmgADMbxTyhAbOlzc0UhfHEG03J48ydbQFeXl2k806VkTQH9VqvGzU1VCoA9lwXqWO3Xvad1nv3L0_DFdVuYBrglDOniPrUrnKZfy3y3RutIOaPrKhxNuFB0QCYGY5CXWMy7yzyuMM_fzM4bvAfh7BfYk-rVxjLEWyJtAE7g2rkWwP2xksS1-wY7sJXBQ2RIee0eEksYCmQaVohrLQoIM-sh1trrR3S4uUI0OIq8ASm4fB5MELl0AXEHZfmyOvyxA4Y8X1JAsGZ-sZEwaIkYYw6Do2lFDRxCOculQRzwhLp66gEM4cwqbb0KdTSt1ScgeXbRA8zFxJ3BREBpkJhCccPmAJFvmPbTbiuhB-9F9wa0YpFWYsp0vVnWkwRbkKrUk9UbrMs0mRyKuByPdKEm0rca4__W-x8o7cvYBdrfRm1taCWfyzEpYIiedxWthf2-5N2aYNt2J7i3hcvJdXk
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2xTsMwED2hMhQGBAVEoYAHJpCl2nFim60qVC20nVqpW-Q4tsQSECn_j-0ktCAYmBNZ8l3se5e79w7gJpOGKcmVR24ZZtIKLKgiONO5FIpYosMUhdk8GS_Z0ype1Tzusul2b0qS4abeIrvJ0ETlMuAkjrG7d3e9vLoXzF_SwUZpVwT-m4vlEksuSVPK_G2J78FogzB_FEVDrBkdwkENEtGg8uoR7JiiA-1hM5utA_uzL7XV8hgeRi8Ow-Ggool0rQCAHBoMnAVUVJ3eJZrcoy3eItL1rM7qn90JLEePi-EY19MRsI5iucZJX-dEKMa5ZcJo5TaUO_yS50rJKJKZtUbmEdM6lpZRzVRuuU8fqIqYsu7snUKreC3MGSBOmJ86biztG2YElcYF_YgL5dALjwjpwm1jpvStEsFIN3LH3qapbxTzNk1pF3qNIdP6PJSpV31zmVGcsC7cNcbdevzXYuf_evsa2uPFbJpOJ_PnC9ij3tHB3z1ord8_zKXDD-vsKnwvn6rFupg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hVuIx8CggCgUyMIHc1onzMFtVGlpKKwYqlSk4ji0hpFCRdOHXY-dBSwUDYk5kOXe277v47vsALkIqCKMu08gtRIRKD3kmwyjkEfUYlphnKgqjsdOfkLupPS10TpOy2r28ksx7GjRLU5y2ZpFsLTW-0aygSmXDjm0jdQZXiSZGqkC1c_s07C14d72sG05FdoqoS3F5sfnTIN9D0wJvrlyRZpHH34Hncs55wclrc56GTf6xQuf4j4_ahe0ClRqdfBntwZqIa7DRLcXgarA1-qJ3Tfbhxn9RoBFltJ0GLygHDAU_syYJI85LyxNjcG0sNUoavBAHzX8SHsDE7z12-6iQY0DcsmmKnDaPsMeI60riCc7UHCMFmKKIMWpZNJRS0MginNtUEpMTFklX5ysmswiTarMfQiV-i8URGC4mWuZcSLMtiPBMKhTKsFyPKbjkWhjX4bL0RDDLWTeCBb-yNlOgK9O0mQKzDo3SV0GxAZNA08ypVMx2SB2uStMvPf5tsOM_vX0O6w83fnA_GA9PYNPUrss82IBK-j4XpwqvpOFZsSY_AYCU4Dc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-order+chemical+reaction+networks+I%3A+theoretical+considerations&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=T%C3%B3bi%C3%A1s%2C+Roland&rft.au=Stacho%2C+L%C3%A1szl%C3%B3+L&rft.au=Tasi%2C+Gyula&rft.date=2016-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=54&rft.issue=9&rft.spage=1863&rft.epage=1878&rft_id=info:doi/10.1007%2Fs10910-016-0655-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon