A Marked Point Process Approach for Continuous Valence Estimation Using Respiration Activity
In this study, we present a method for continuously estimating emotional valence levels using a marked point process representation of features extracted from respiration amplitude signals. The amplitude of the breath, time of inhalation, and inhalation rate are used to label individuals breaths as...
Saved in:
Published in | IEEE access Vol. 13; pp. 4067 - 4080 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3521339 |
Cover
Loading…
Abstract | In this study, we present a method for continuously estimating emotional valence levels using a marked point process representation of features extracted from respiration amplitude signals. The amplitude of the breath, time of inhalation, and inhalation rate are used to label individuals breaths as potential pleasant or unpleasant valence events using an unsupervised k-means clustering algorithm. We generate two marked point processes consisting of both location and magnitude of inferred valence events corresponding to pleasant and unpleasant (high and low) changes in valence. A state-space model is then used to model high and low valence states based on the occurrence of events indicative of either state in each marked point process. The resulting high valence and low valence states are combined to yield a single estimate of valence level. The algorithm is tested on a dataset containing 23 participants viewing emotion-eliciting video clips. The estimation results for high and low periods, as identified by self-reported ratings, are then compared using a Wilcoxon signed rank test, showing that the method is capable of distinguishing high and low valence periods. The estimated valence level is generally able to capture the trends of the self-reported ratings for most subjects, but fails to fully capture rapid and drastic changes in valence. Continuously estimating valence levels can have applications in the monitoring of patients with mental disorders, such as clinical depression, or multimedia recommendation to identify trends and better develop control strategies to regulate emotions. |
---|---|
AbstractList | In this study, we present a method for continuously estimating emotional valence levels using a marked point process representation of features extracted from respiration amplitude signals. The amplitude of the breath, time of inhalation, and inhalation rate are used to label individuals breaths as potential pleasant or unpleasant valence events using an unsupervised k-means clustering algorithm. We generate two marked point processes consisting of both location and magnitude of inferred valence events corresponding to pleasant and unpleasant (high and low) changes in valence. A state-space model is then used to model high and low valence states based on the occurrence of events indicative of either state in each marked point process. The resulting high valence and low valence states are combined to yield a single estimate of valence level. The algorithm is tested on a dataset containing 23 participants viewing emotion-eliciting video clips. The estimation results for high and low periods, as identified by self-reported ratings, are then compared using a Wilcoxon signed rank test, showing that the method is capable of distinguishing high and low valence periods. The estimated valence level is generally able to capture the trends of the self-reported ratings for most subjects, but fails to fully capture rapid and drastic changes in valence. Continuously estimating valence levels can have applications in the monitoring of patients with mental disorders, such as clinical depression, or multimedia recommendation to identify trends and better develop control strategies to regulate emotions. |
Author | Reddy, Revanth Faghih, Rose T. |
Author_xml | – sequence: 1 givenname: Revanth orcidid: 0009-0005-7289-2727 surname: Reddy fullname: Reddy, Revanth organization: Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, USA – sequence: 2 givenname: Rose T. orcidid: 0000-0001-5117-2628 surname: Faghih fullname: Faghih, Rose T. email: rfaghih@nyu.edu organization: Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, USA |
BookMark | eNpNUV1PHCEUJY1N_PwF9oGkz7udCwMMj5PJWk1sNFp9MiEMA5Z1hS2wTfz3YscY78u9ObnncLjnEO2FGCxCp9AsARr5ox-G1e3tkjSkXVJGgFL5BR0Q4HJBGeV7n-Z9dJLzuqnVVYiJA_TQ4186PdkJX0cfCr5O0diccb_dpqjNH-xiwkMMxYdd3GV8rzc2GItXufhnXXwM-C778IhvbN76NCO9Kf6fLy_H6KvTm2xP3vsRujtb_R7OF5dXPy-G_nJhKJNlwRsAIblw0onqixDHDUym4yCcGblmQozSdbShZnJOM9lxBmZsW84dExOhR-hi1p2iXqttqs7Si4raq_9ATI9Kp-LNxiqiRSuNsSNo3VLLtWk7QVo5sk6DaEXV-j5r1f__3dlc1DruUqj2FQVGJUC9W92i85ZJMedk3cer0Ki3VNScinpLRb2nUlnfZpa31n5idACdJPQV_ROJ1Q |
CODEN | IAECCG |
Cites_doi | 10.1016/j.entcs.2019.04.009 10.1109/EMBC40787.2023.10339976 10.4018/JOEUC.2021010102 10.1111/psyp.12396 10.1088/1361-6579/ab299e 10.1109/IEEECONF44664.2019.9048990 10.1038/ncomms4237 10.1152/jappl.1996.80.4.1079 10.1523/JNEUROSCI.18-01-00411.1998 10.1016/j.cpr.2021.101980 10.3389/fpsyg.2020.01980 10.1109/T-AFFC.2011.15 10.1109/ICBME.2018.8703559 10.1016/j.biopsycho.2020.107974 10.3109/03091902.2011.638965 10.1109/IEEECONF44664.2019.9048868 10.1109/TBME.2019.2945579 10.1109/TNSRE.2021.3113888 10.1037/h0077714 10.1016/j.bspc.2019.101646 10.1109/TBME.2020.2978801 10.1001/jama.2013.166723 10.2307/2984875 10.1038/nn.3250 10.1109/EMBC46164.2021.9629764 10.1109/T-AFFC.2011.25 10.3390/electronics10172178 10.1152/jn.91251.2008 10.1016/j.compind.2017.04.005 10.3389/fnins.2021.737737 10.1109/IEEECONF44664.2019.9049057 10.1016/j.bspc.2018.01.015 10.1016/j.mpaic.2014.08.010 10.1097/00004311-197715020-00003 10.1016/j.inffus.2020.01.011 10.3389/fncom.2022.747735 10.1523/JNEUROSCI.2908-03.2004 10.1109/ACCESS.2020.2984508 10.3389/fnins.2019.00780 10.1371/journal.pcbi.1010275 10.1111/psyp.12778 10.1016/j.neunet.2005.03.007 10.1523/JNEUROSCI.18-18-07411.1998 10.1016/j.conb.2004.03.015 10.1037/1528-3542.1.4.413 10.1177/0145445501254003 10.3390/s20030592 10.3390/sym12010021 10.1093/acprof:oso/9780195393798.003.0001 10.1109/EMBC.2018.8512928 10.1152/jn.00765.2004 10.1007/s12264-023-01070-5 10.1113/expphysiol.2008.042424 10.1109/EMBC.2019.8857917 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3521339 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 4080 |
ExternalDocumentID | oai_doaj_org_article_2a749cceb1aa43e6ac487249b58a1747 10_1109_ACCESS_2024_3521339 10811892 |
Genre | orig-research |
GrantInformation_xml | – fundername: New York University (NYU) start-up funds funderid: 10.13039/100006732 – fundername: NSF CAREER: MINDWATCH: Multimodal Intelligent Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures grantid: 2226123 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-60117967f9f781622f6c1dc8617fcb6a577b9f8303cdffa598651cb4466f57d23 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:19:11 EDT 2025 Mon Jun 30 13:06:43 EDT 2025 Tue Jul 01 03:03:02 EDT 2025 Wed Aug 27 01:58:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-60117967f9f781622f6c1dc8617fcb6a577b9f8303cdffa598651cb4466f57d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5117-2628 0009-0005-7289-2727 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10811892 |
PQID | 3153911957 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3521339 ieee_primary_10811892 proquest_journals_3153911957 doaj_primary_oai_doaj_org_article_2a749cceb1aa43e6ac487249b58a1747 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Tortora (ref8) 2018 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Mendel (ref52) 1995 ref2 ref39 ref38 Payne (ref1) 2003 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref12 doi: 10.1016/j.entcs.2019.04.009 – ident: ref26 doi: 10.1109/EMBC40787.2023.10339976 – ident: ref25 doi: 10.4018/JOEUC.2021010102 – ident: ref7 doi: 10.1111/psyp.12396 – ident: ref24 doi: 10.1088/1361-6579/ab299e – ident: ref31 doi: 10.1109/IEEECONF44664.2019.9048990 – ident: ref43 doi: 10.1038/ncomms4237 – ident: ref48 doi: 10.1152/jappl.1996.80.4.1079 – ident: ref5 doi: 10.1523/JNEUROSCI.18-01-00411.1998 – ident: ref15 doi: 10.1016/j.cpr.2021.101980 – ident: ref49 doi: 10.3389/fpsyg.2020.01980 – ident: ref17 doi: 10.1109/T-AFFC.2011.15 – ident: ref20 doi: 10.1109/ICBME.2018.8703559 – ident: ref47 doi: 10.1016/j.biopsycho.2020.107974 – ident: ref56 doi: 10.3109/03091902.2011.638965 – ident: ref30 doi: 10.1109/IEEECONF44664.2019.9048868 – ident: ref32 doi: 10.1109/TBME.2019.2945579 – ident: ref42 doi: 10.1109/TNSRE.2021.3113888 – ident: ref3 doi: 10.1037/h0077714 – ident: ref21 doi: 10.1016/j.bspc.2019.101646 – ident: ref29 doi: 10.1109/TBME.2020.2978801 – volume-title: Lessons in Estimation Theory for Signal Processing, Communications, and Control year: 1995 ident: ref52 – ident: ref50 doi: 10.1001/jama.2013.166723 – ident: ref54 doi: 10.2307/2984875 – ident: ref39 doi: 10.1038/nn.3250 – ident: ref44 doi: 10.1109/EMBC46164.2021.9629764 – ident: ref16 doi: 10.1109/T-AFFC.2011.25 – ident: ref13 doi: 10.3390/electronics10172178 – ident: ref51 doi: 10.1152/jn.91251.2008 – ident: ref19 doi: 10.1016/j.compind.2017.04.005 – ident: ref41 doi: 10.3389/fnins.2021.737737 – ident: ref40 doi: 10.1109/IEEECONF44664.2019.9049057 – ident: ref23 doi: 10.1016/j.bspc.2018.01.015 – ident: ref14 doi: 10.1016/j.mpaic.2014.08.010 – volume-title: Emotions at Work: Theory, Research and Applications for Management year: 2003 ident: ref1 – ident: ref9 doi: 10.1097/00004311-197715020-00003 – ident: ref22 doi: 10.1016/j.inffus.2020.01.011 – ident: ref28 doi: 10.3389/fncom.2022.747735 – ident: ref36 doi: 10.1523/JNEUROSCI.2908-03.2004 – ident: ref45 doi: 10.1109/ACCESS.2020.2984508 – ident: ref34 doi: 10.3389/fnins.2019.00780 – ident: ref27 doi: 10.1371/journal.pcbi.1010275 – ident: ref46 doi: 10.1111/psyp.12778 – ident: ref57 doi: 10.1016/j.neunet.2005.03.007 – ident: ref53 doi: 10.1523/JNEUROSCI.18-18-07411.1998 – ident: ref6 doi: 10.1016/j.conb.2004.03.015 – ident: ref4 doi: 10.1037/1528-3542.1.4.413 – ident: ref11 doi: 10.1177/0145445501254003 – ident: ref2 doi: 10.3390/s20030592 – volume-title: Principles of Anatomy and Physiology year: 2018 ident: ref8 – ident: ref18 doi: 10.3390/sym12010021 – ident: ref38 doi: 10.1093/acprof:oso/9780195393798.003.0001 – ident: ref35 doi: 10.1109/EMBC.2018.8512928 – ident: ref37 doi: 10.1152/jn.00765.2004 – ident: ref55 doi: 10.1007/s12264-023-01070-5 – ident: ref10 doi: 10.1113/expphysiol.2008.042424 – ident: ref33 doi: 10.1109/EMBC.2019.8857917 |
SSID | ssj0000816957 |
Score | 2.3339663 |
Snippet | In this study, we present a method for continuously estimating emotional valence levels using a marked point process representation of features extracted from... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 4067 |
SubjectTerms | Affective computing Algorithms Amplitudes Atmospheric measurements Biomedical monitoring biomedical signal processing Cluster analysis Clustering Electroencephalography emotion recognition Emotional responses Emotions Estimation Feature extraction Frequency measurement Mental disorders Noise Particle measurements Rank tests Ratings Recording Respiration state estimation State space models state-space modeling Temperature measurement Trends Valence Vector quantization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EHxOrU3LwaN2aNr-OdTiGoIg42UEISZrCLp1o9__7kmZS8eDFa2lJ817z3vc1ed9D6CrLtF9CJnVAvdLCOJYaI2yqAYsXuWCWhXZvD49svijul3TZa_Xlz4R18sCd4cZE80JaCyFF6yJ3TFuA2MAZDBUa0HSoI4ec1yNTIQaLjEnKo8xQNpHjcjqFGQEhJMUNgA6gZvJHKgqK_bHFyq-4HJLN7ADtR5SIy-7tDtGOa47QXk878Bi9ldjX2bgKP61XTYvjiX9cRpFwDGgUe-2pVbMBdo9fdSgvwnewprtyRRyOC-DnuNnur5S2ayYxRIvZ3ct0nsZWCanNqWxTFqTdGK9lzWHqhNTMZpUVgE9qa5imnBtZC8hXtqpr7UXZaWaN38ytKa9IfoIGzbpxpwhzohklwkhuRaHZBKyuGXHSZfCkcSJB11urqfdOEUMFJjGRqjOy8kZW0cgJuvWW_b7Vy1mHC-BkFZ2s_nJygobeL73xBBAjSRI02jpKxbX3qXII4tIr2fGz_xj7HO0S3_M3_HYZoUH7sXEXAERacxm-uS9MH9fb priority: 102 providerName: Directory of Open Access Journals |
Title | A Marked Point Process Approach for Continuous Valence Estimation Using Respiration Activity |
URI | https://ieeexplore.ieee.org/document/10811892 https://www.proquest.com/docview/3153911957 https://doaj.org/article/2a749cceb1aa43e6ac487249b58a1747 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ8-V6yukoNHu27TNo9jXXYRQRFR2YMQkjQFEVpx24u_3kmaFR8I3kpoSJsvycyXZL5B6DRJlJtCOrZAveJMWxprzU2swBfPUk4N9enerm_o5UN2Nc_nIVjdx8JYa_3lMztyj_4sv2xM57bKYIZz8IcFrLirwNz6YK3PDRWXQULkLCgLJWNxXkwm8BPAAUk2Aj8D2Jj4Zn28SH_IqvJrKfb2ZbaFbpZf1l8reRl1rR6Z9x-ijf_-9G20GTxNXPRDYwet2HoXbXzRH9xDTwV2sTq2xLfNc93iEDWAiyA0jsGjxU6_6rnumm6BH5UPUcJTWBf6kEfsrxzgu3Bg70oK0yekGKCH2fR-chmHdAuxSXPRxtTLw1FWiYpBXxJSUZOUhoOPUxlNVc6YFhUHm2fKqlJO2D1PjHYHwlXOSpLuo7W6qe0BwowomhOuBTM8U3SsslRRYoVNoKa2PEJnSxjka6-qIT0bGQvZoyYdajKgFqELB9Xnq04S2xdAF8swwyRRLBPGgO1R0JylygAXA3Kpc66AdrEIDRwsX9rrEYnQcIm8DPN3IVMwBMKp4bHDP6odoXXiUgH73ZghWmvfOnsM_kmrTzyvP_Gj8wP1ceLE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5V9ND2QGmh6lLa-tAjWTZO_DqGFWjbLiuEoOJQybIdR1ohZStILvz6jh0vWlohcYusWH58Hs-M7fkG4FuemyBCNvPoemWl9TyzVrrMoC1eFpI7HtO9nS347Kr8cc2uU7B6jIXx3sfHZ34cPuNdfr1yfTgqQwmXaA8r3HFfouJn-RCu9XCkEnJIKCYSt1A-UUfVdIrDQC-QlmO0NNAfU4_0T6TpT3lV_tuMo4Y5fQuLdd-GhyU3476zY3f_D23jszu_A9vJ1iTVsDjewQvfvoc3GwyEu_C7IiFax9fkfLVsO5LiBkiVqMYJ2rQkMFgt237V35FfJgYpkRPcGYagRxIfHZCLdGUfSio3pKTYg6vTk8vpLEsJFzJXMNVlPBLEcdGoRuBcUtpwl9dOopXTOMsNE8KqRqLWc3XTmEDtznJnw5Vww0RNiw-w1a5a_xGIoIYzKq0STpaGT0xZGE698jnWtF6O4HANg_4z8Gro6I9MlB5Q0wE1nVAbwXGA6uHXQIodC3CKdZIxTY0olXOofQw257lx6I2he2mZNOh4iRHsBVg22hsQGcHBGnmdJPhOF6gKVODDE_tPVPsKr2aXZ3M9_774-Qle05AYOJ7NHMBWd9v7z2itdPZLXKN_AZYN5Rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Marked+Point+Process+Approach+for+Continuous+Valence+Estimation+Using+Respiration+Activity&rft.jtitle=IEEE+access&rft.au=Reddy%2C+Revanth&rft.au=Faghih%2C+Rose+T.&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=4067&rft.epage=4080&rft_id=info:doi/10.1109%2FACCESS.2024.3521339&rft.externalDocID=10811892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |