Continuous monitoring for changepoints in data streams using adaptive estimation

Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 27; no. 5; pp. 1257 - 1270
Main Authors Bodenham, Dean A., Adams, Niall M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
DOI10.1007/s11222-016-9684-8

Cover

Loading…
Abstract Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as continuous monitoring . Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets.
AbstractList Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as continuous monitoring. Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets.
Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as continuous monitoring . Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets.
Author Adams, Niall M.
Bodenham, Dean A.
Author_xml – sequence: 1
  givenname: Dean A.
  surname: Bodenham
  fullname: Bodenham, Dean A.
  email: d.bodenham10@imperial.ac.uk
  organization: Department of Mathematics, Imperial College London, D-BSSE, ETH Zürich
– sequence: 2
  givenname: Niall M.
  surname: Adams
  fullname: Adams, Niall M.
  organization: Department of Mathematics, Imperial College London, Heilbronn Institute of Mathematics, University of Bristol
BookMark eNp9kLtOwzAUhi1UJNrCA7BFYjb4OHFsj6jiJlWCAWbLdZziqrWD7SDx9iSEASHBdM7wf-fyLdDMB28ROgdyCYTwqwRAKcUEaixrUWFxhObAeImh5GyG5kTWBJfAqxO0SGlHCEBdVnP0tAo-O9-HPhWH4F0O0flt0YZYmFftt7YLzudUOF80Ousi5Wj1IRV9GmO60V1277awKbuDzi74U3Tc6n2yZ991iV5ub55X93j9ePewul5jUzKZMbOblnFet1QaLfmGVA0ThmjRCmKhZMRWVMihJXVVWQo1g4YB5bIFwxpjyiW6mOZ2Mbz1w361C330w0oFQjImaSXEkIIpZWJIKdpWdXE4NH4oIGoUpyZxahCnRnFqZPgvxrj89VuO2u3_JelEpm60aOOPm_6EPgG_CIR1
CitedBy_id crossref_primary_10_34133_research_0174
crossref_primary_10_3233_DS_220057
crossref_primary_10_1007_s10614_021_10210_w
crossref_primary_10_1016_j_cam_2023_115132
crossref_primary_10_1007_s10489_018_1254_7
crossref_primary_10_1007_s10618_021_00747_7
crossref_primary_10_1109_TCYB_2021_3054161
crossref_primary_10_1007_s00521_023_09291_5
crossref_primary_10_1016_j_knosys_2020_105792
crossref_primary_10_1007_s11222_019_09858_0
crossref_primary_10_14778_3648160_3648172
crossref_primary_10_1080_07474946_2023_2272908
crossref_primary_10_1214_20_AOAS1424
crossref_primary_10_1177_1059712320930420
crossref_primary_10_1016_j_ins_2019_02_052
crossref_primary_10_1016_j_epsr_2019_105931
Cites_doi 10.1080/08982110701810444
10.1016/0005-1098(77)90067-X
10.1080/01621459.2012.737745
10.1198/TECH.2011.10069
10.1007/978-3-7908-2380-6_2
10.1080/00224065.2004.11980254
10.1007/978-3-7908-2604-3_15
10.1021/ie050391w
10.1016/j.patcog.2010.07.026
10.1080/00224065.2012.11917902
10.1111/j.1751-5823.2003.tb00205.x
10.1080/07408170801961412
10.1080/00224065.2010.11917812
10.1201/EBK1439826119
10.1080/02664763.2013.800471
10.1080/00401706.1959.10489860
10.1109/JISIC.2014.48
10.1016/0005-1098(73)90073-3
10.1115/1.3662552
10.1214/aoms/1177693055
10.1080/08982119308918986
10.1002/sam.10151
10.1080/00224065.2002.11980158
10.1109/ICDMW.2013.114
10.1080/00401706.1990.10484583
10.1198/004017003000000023
10.1214/13-AOS1094
10.1007/978-0-387-98141-3
10.1198/004017001750386279
10.1080/00224065.1976.11980706
10.2307/2333009
10.1080/00224065.2007.11917678
10.1016/B978-012088469-8.50019-X
10.1080/00224065.2003.11980233
10.1016/0005-1098(81)90070-4
10.1016/0020-0255(83)90008-7
10.1214/aos/1176350164
10.1007/978-93-86279-38-5
10.1080/00224065.2006.11918623
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s11222-016-9684-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 1270
ExternalDocumentID 10_1007_s11222_016_9684_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c359t-5ebf5776f29ca97b04d58c0a8f80e1350e42890e10644e21651d51279f1c5dcc3
IEDL.DBID U2A
ISSN 0960-3174
IngestDate Fri Jul 25 06:19:56 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 02:17:04 EDT 2025
Fri Feb 21 02:34:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sequential analysis
Changepoint detection
Data stream
Adaptive estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-5ebf5776f29ca97b04d58c0a8f80e1350e42890e10644e21651d51279f1c5dcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11222-016-9684-8.pdf
PQID 1895592488
PQPubID 2043829
PageCount 14
ParticipantIDs proquest_journals_1895592488
crossref_primary_10_1007_s11222_016_9684_8
crossref_citationtrail_10_1007_s11222_016_9684_8
springer_journals_10_1007_s11222_016_9684_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GermanRRLeeLMHoranJMMilsteinRLPertowskiCAWallerMNUpdated guidelines for evaluating public health surveillance systemsMorb. Mortal. Wkly. Rep.200150135
Maboudou-TchaoEMHawkinsDMDetection of multiple change-points in multivariate dataJ. Appl. Stat.201340919791995329087610.1080/02664763.2013.800471
AggarwalCCData Streams: Models and Algorithms2006BerlinSpringer1126.68033
Anagnostopoulos, C.: A statistical framework for streaming data analysis. PhD thesis, Imperial College London (2010)
FrakerSEWoodallWHMousaviSPerformance metrics for surveillance schemesQual. Eng.200820445146410.1080/08982110701810444
JonesLAThe statistical design of EWMA control charts with estimated parametersJ. Qual. Technol.2002343277288
Adams, N.M., Tasoulis, D.K., Anagnostopoulos, C., Hand, D.J.: Temporally-adaptive linear classification for handling population drift in credit scoring. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT2010, Proceedings of the 19th International Conference on Computational Statistics, pp 167–176. Springer, Berlin (2010)
HawkinsDMSelf-starting Cusum charts for location and scaleJ. R. Stat. Soc. Ser. D1987364299316
AnagnostopoulosCTasoulisDKAdamsNMPavlidisNGHandDJOnline linear and quadratic discriminant analysis with adaptive forgetting for streaming classificationStat. Anal. Data Mining201252139166291002410.1002/sam.10151
CapizziGMasarottoGSelf-starting CUSCORE control charts for individual multivariate observationsJ. Qual. Technol.2010422136152
AppelUBrandtAVAdaptive sequential segmentation of piecewise stationary time seriesInf. Sci.1983291275610.1016/0020-0255(83)90008-70584.62155
MoustakidesGVOptimal stopping times for detecting changes in distributionsAnn. Stat.19861441379138786830610.1214/aos/11763501640612.62116
JonesLAChampCWRigdonSEThe run length distribution of the CUSUM with estimated parametersJ. Qual. Technol.200436195108
Hawkins, D.M.: Cumulative sum control charting: an underutilized SPC tool. Qual. Eng. 5(3), 463–477 (1993)
LucasJMThe design and use of V-mask control schemesJ. Qual. Technol.19768111
JonesLAChampCWRigdonSEThe performance of exponentially weighted moving average charts with estimated parametersTechnometrics2001432156167195413710.1198/004017001750386279
SullivanJHDetection of multiple change points from clustering individual observationsJ. Qual. Control2002344371383
JensenWAJones-FarmerLAChampCWWoodallWHEffects of parameter estimation on control chart properties: a literature reviewJ. Qual. Technol.2006384349364
BorkarVSStochastic Approximation: A Dynamical Systems Viewpoint2008CambridgeCambridge University Press1159.60002
CapizziGMasarottoGAdaptive generalized likelihood ratio control charts for detecting unknown patterned mean shiftsJ. Qual. Technol.2012444281303
HawkinsDMQiuPChangWKThe changepoint model for statistical process controlJ. Qual. Technol.2003354355366
Bodenham, D.A., Adams, N.M.: Continuous monitoring of a computer network using multivariate adaptive estimation. In: IEEE 13th International Conference on Data Mining Workshops (ICDMW), pp 311–388 (2013)
Bodenham, D.A., Adams, N.M.: Adaptive change detection for relay-like behaviour. In: IEEE Joint Information and Security Informatics Conference (2014)
FrisénMStatistical surveillance. Optimality and methodsInt. Stat. Rev.200371240343410.1111/j.1751-5823.2003.tb00205.x1114.62378
PageEContinuous inspection schemesBiometrika1954411/21001158885010.2307/23330090056.38002
XieYSigmundDSequential multi-sensor change-point detectionAnn. Stat.2013412670692309911710.1214/13-AOS10941267.62084
HaykinSAdaptive Filter Theory2002Upper Saddle RiverPrentice-Hall0723.93070
KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.1960821354510.1115/1.3662552
ChoiSWMartinEBMorrisAJLeeIBAdaptive multivariate statistical process control for monitoring time-varying processesInd. Eng. Chem. Res.20064593108311810.1021/ie050391w
WickhamHggplot2: Elegant Graphics for Data Analysis2009New YorkSpringer10.1007/978-0-387-98141-31170.62004
RossGJAdamsNMTasoulisDKNonparametric monitoring of data streams for changes in location and scaleTechnometrics2011534379389285047010.1198/TECH.2011.10069
GustafssonFAdaptive Filtering and Change Detection2000New YorkWiley
ÅströmKJWittenmarkBOn self tuning regulatorsAutomatica19739218519910.1016/0005-1098(73)90073-30249.93049
KillickREckleyIAChangepoint: An R Package for Changepoint Analysis2011LancasterLancaster University
Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the 13th international conference on Very large data bases-Volume 30, VLDB Endowment, pp. 180–191 (2004)
BassevilleMNikiforovIVDetection of Abrupt Changes: Theory and Application1993Englewood CliffsPrentice Hall
TsungFWangTLenzHAdaptive charting techniques: literature review and extensionsFrontiers in Statistical Quality Control2010BerlinSpringer1935
PavlidisNGTasoulisDKAdamsNMHandDJlambda-perceptron: an adaptive classifier for data streamsPattern Recogn.2011441789610.1016/j.patcog.2010.07.0261211.68134
FortescueTKershenbaumLYdstieBImplementation of self-tuning regulators with variable forgetting factorsAutomatica198117683183510.1016/0005-1098(81)90070-4
RobertsSWControl chart tests based on geometric moving averagesTechnometrics19591323925010.1080/00401706.1959.10489860
CapizziGMasarottoGAn adaptive exponentially weighted moving average control chartTechnometrics2003453199207199920610.1198/004017003000000023
GamaJKnowledge Discovery from Data Streams2010Boca RatonChapman Hall10.1201/EBK14398261191230.68017
LordenGProcedures for reacting to a change in distributionAnn. Math. Stat.1971161897190830925110.1214/aoms/11776930550255.62067
LucasJMSaccucciMSExponentially weighted moving average control schemes: properties and enhancementsTechnometrics1990321112105027710.1080/00401706.1990.10484583
ÅströmKBorissonULjungLWittenmarkBTheory and applications of self-tuning regulatorsAutomatica197713545747610.1016/0005-1098(77)90067-X0374.93024
JiangWShuWApleyDWAdaptive cusum procedures with EWMA-based shift estimatorsIIE Trans.20084010992100310.1080/07408170801961412
KillickRFearnheadPEckleyIAOptimal detection of changepoints with a linear computational costJ. Am. Stat. Assoc.201210750015901598303641810.1080/01621459.2012.7377451258.62091
ApleyDWChinCHAn optimal filter design approach to statistical process controlJ. Qual. Technol.200739293117
JM Lucas (9684_CR38) 1990; 32
R Killick (9684_CR34) 2011
C Anagnostopoulos (9684_CR4) 2012; 5
G Capizzi (9684_CR14) 2010; 42
RE Kalman (9684_CR32) 1960; 82
G Lorden (9684_CR36) 1971; 1
H Wickham (9684_CR47) 2009
VS Borkar (9684_CR12) 2008
S Haykin (9684_CR26) 2002
KJ Åström (9684_CR8) 1973; 9
Y Xie (9684_CR48) 2013; 41
JH Sullivan (9684_CR45) 2002; 34
LA Jones (9684_CR30) 2001; 43
EM Maboudou-Tchao (9684_CR39) 2013; 40
LA Jones (9684_CR29) 2002; 34
RR German (9684_CR21) 2001; 50
LA Jones (9684_CR31) 2004; 36
DW Apley (9684_CR5) 2007; 39
9684_CR11
9684_CR33
9684_CR10
J Gama (9684_CR20) 2010
DM Hawkins (9684_CR23) 1987; 36
GJ Ross (9684_CR44) 2011; 53
G Capizzi (9684_CR15) 2012; 44
U Appel (9684_CR6) 1983; 29
K Åström (9684_CR7) 1977; 13
G Capizzi (9684_CR13) 2003; 45
GV Moustakides (9684_CR40) 1986; 14
DM Hawkins (9684_CR25) 2003; 35
F Tsung (9684_CR46) 2010
R Killick (9684_CR35) 2012; 107
(9684_CR2) 2006
JM Lucas (9684_CR37) 1976; 8
NG Pavlidis (9684_CR42) 2011; 44
E Page (9684_CR41) 1954; 41
9684_CR3
9684_CR1
SW Roberts (9684_CR43) 1959; 1
9684_CR24
WA Jensen (9684_CR27) 2006; 38
M Basseville (9684_CR9) 1993
SE Fraker (9684_CR18) 2008; 20
M Frisén (9684_CR19) 2003; 71
W Jiang (9684_CR28) 2008; 40
SW Choi (9684_CR16) 2006; 45
T Fortescue (9684_CR17) 1981; 17
F Gustafsson (9684_CR22) 2000
References_xml – reference: LordenGProcedures for reacting to a change in distributionAnn. Math. Stat.1971161897190830925110.1214/aoms/11776930550255.62067
– reference: AggarwalCCData Streams: Models and Algorithms2006BerlinSpringer1126.68033
– reference: KillickREckleyIAChangepoint: An R Package for Changepoint Analysis2011LancasterLancaster University
– reference: GustafssonFAdaptive Filtering and Change Detection2000New YorkWiley
– reference: HawkinsDMQiuPChangWKThe changepoint model for statistical process controlJ. Qual. Technol.2003354355366
– reference: AppelUBrandtAVAdaptive sequential segmentation of piecewise stationary time seriesInf. Sci.1983291275610.1016/0020-0255(83)90008-70584.62155
– reference: FrisénMStatistical surveillance. Optimality and methodsInt. Stat. Rev.200371240343410.1111/j.1751-5823.2003.tb00205.x1114.62378
– reference: AnagnostopoulosCTasoulisDKAdamsNMPavlidisNGHandDJOnline linear and quadratic discriminant analysis with adaptive forgetting for streaming classificationStat. Anal. Data Mining201252139166291002410.1002/sam.10151
– reference: Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the 13th international conference on Very large data bases-Volume 30, VLDB Endowment, pp. 180–191 (2004)
– reference: MoustakidesGVOptimal stopping times for detecting changes in distributionsAnn. Stat.19861441379138786830610.1214/aos/11763501640612.62116
– reference: XieYSigmundDSequential multi-sensor change-point detectionAnn. Stat.2013412670692309911710.1214/13-AOS10941267.62084
– reference: PageEContinuous inspection schemesBiometrika1954411/21001158885010.2307/23330090056.38002
– reference: CapizziGMasarottoGAn adaptive exponentially weighted moving average control chartTechnometrics2003453199207199920610.1198/004017003000000023
– reference: FortescueTKershenbaumLYdstieBImplementation of self-tuning regulators with variable forgetting factorsAutomatica198117683183510.1016/0005-1098(81)90070-4
– reference: LucasJMSaccucciMSExponentially weighted moving average control schemes: properties and enhancementsTechnometrics1990321112105027710.1080/00401706.1990.10484583
– reference: WickhamHggplot2: Elegant Graphics for Data Analysis2009New YorkSpringer10.1007/978-0-387-98141-31170.62004
– reference: GermanRRLeeLMHoranJMMilsteinRLPertowskiCAWallerMNUpdated guidelines for evaluating public health surveillance systemsMorb. Mortal. Wkly. Rep.200150135
– reference: HawkinsDMSelf-starting Cusum charts for location and scaleJ. R. Stat. Soc. Ser. D1987364299316
– reference: ÅströmKBorissonULjungLWittenmarkBTheory and applications of self-tuning regulatorsAutomatica197713545747610.1016/0005-1098(77)90067-X0374.93024
– reference: Adams, N.M., Tasoulis, D.K., Anagnostopoulos, C., Hand, D.J.: Temporally-adaptive linear classification for handling population drift in credit scoring. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT2010, Proceedings of the 19th International Conference on Computational Statistics, pp 167–176. Springer, Berlin (2010)
– reference: JiangWShuWApleyDWAdaptive cusum procedures with EWMA-based shift estimatorsIIE Trans.20084010992100310.1080/07408170801961412
– reference: ApleyDWChinCHAn optimal filter design approach to statistical process controlJ. Qual. Technol.200739293117
– reference: TsungFWangTLenzHAdaptive charting techniques: literature review and extensionsFrontiers in Statistical Quality Control2010BerlinSpringer1935
– reference: Maboudou-TchaoEMHawkinsDMDetection of multiple change-points in multivariate dataJ. Appl. Stat.201340919791995329087610.1080/02664763.2013.800471
– reference: JensenWAJones-FarmerLAChampCWWoodallWHEffects of parameter estimation on control chart properties: a literature reviewJ. Qual. Technol.2006384349364
– reference: RossGJAdamsNMTasoulisDKNonparametric monitoring of data streams for changes in location and scaleTechnometrics2011534379389285047010.1198/TECH.2011.10069
– reference: ÅströmKJWittenmarkBOn self tuning regulatorsAutomatica19739218519910.1016/0005-1098(73)90073-30249.93049
– reference: Bodenham, D.A., Adams, N.M.: Adaptive change detection for relay-like behaviour. In: IEEE Joint Information and Security Informatics Conference (2014)
– reference: JonesLAThe statistical design of EWMA control charts with estimated parametersJ. Qual. Technol.2002343277288
– reference: KillickRFearnheadPEckleyIAOptimal detection of changepoints with a linear computational costJ. Am. Stat. Assoc.201210750015901598303641810.1080/01621459.2012.7377451258.62091
– reference: ChoiSWMartinEBMorrisAJLeeIBAdaptive multivariate statistical process control for monitoring time-varying processesInd. Eng. Chem. Res.20064593108311810.1021/ie050391w
– reference: LucasJMThe design and use of V-mask control schemesJ. Qual. Technol.19768111
– reference: BassevilleMNikiforovIVDetection of Abrupt Changes: Theory and Application1993Englewood CliffsPrentice Hall
– reference: RobertsSWControl chart tests based on geometric moving averagesTechnometrics19591323925010.1080/00401706.1959.10489860
– reference: GamaJKnowledge Discovery from Data Streams2010Boca RatonChapman Hall10.1201/EBK14398261191230.68017
– reference: JonesLAChampCWRigdonSEThe performance of exponentially weighted moving average charts with estimated parametersTechnometrics2001432156167195413710.1198/004017001750386279
– reference: Anagnostopoulos, C.: A statistical framework for streaming data analysis. PhD thesis, Imperial College London (2010)
– reference: SullivanJHDetection of multiple change points from clustering individual observationsJ. Qual. Control2002344371383
– reference: JonesLAChampCWRigdonSEThe run length distribution of the CUSUM with estimated parametersJ. Qual. Technol.200436195108
– reference: PavlidisNGTasoulisDKAdamsNMHandDJlambda-perceptron: an adaptive classifier for data streamsPattern Recogn.2011441789610.1016/j.patcog.2010.07.0261211.68134
– reference: FrakerSEWoodallWHMousaviSPerformance metrics for surveillance schemesQual. Eng.200820445146410.1080/08982110701810444
– reference: Hawkins, D.M.: Cumulative sum control charting: an underutilized SPC tool. Qual. Eng. 5(3), 463–477 (1993)
– reference: KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.1960821354510.1115/1.3662552
– reference: HaykinSAdaptive Filter Theory2002Upper Saddle RiverPrentice-Hall0723.93070
– reference: BorkarVSStochastic Approximation: A Dynamical Systems Viewpoint2008CambridgeCambridge University Press1159.60002
– reference: CapizziGMasarottoGSelf-starting CUSCORE control charts for individual multivariate observationsJ. Qual. Technol.2010422136152
– reference: CapizziGMasarottoGAdaptive generalized likelihood ratio control charts for detecting unknown patterned mean shiftsJ. Qual. Technol.2012444281303
– reference: Bodenham, D.A., Adams, N.M.: Continuous monitoring of a computer network using multivariate adaptive estimation. In: IEEE 13th International Conference on Data Mining Workshops (ICDMW), pp 311–388 (2013)
– volume: 20
  start-page: 451
  issue: 4
  year: 2008
  ident: 9684_CR18
  publication-title: Qual. Eng.
  doi: 10.1080/08982110701810444
– volume: 13
  start-page: 457
  issue: 5
  year: 1977
  ident: 9684_CR7
  publication-title: Automatica
  doi: 10.1016/0005-1098(77)90067-X
– volume: 107
  start-page: 1590
  issue: 500
  year: 2012
  ident: 9684_CR35
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.737745
– volume: 53
  start-page: 379
  issue: 4
  year: 2011
  ident: 9684_CR44
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.10069
– start-page: 19
  volume-title: Frontiers in Statistical Quality Control
  year: 2010
  ident: 9684_CR46
  doi: 10.1007/978-3-7908-2380-6_2
– volume: 36
  start-page: 95
  issue: 1
  year: 2004
  ident: 9684_CR31
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2004.11980254
– volume-title: Data Streams: Models and Algorithms
  year: 2006
  ident: 9684_CR2
– ident: 9684_CR1
  doi: 10.1007/978-3-7908-2604-3_15
– volume: 45
  start-page: 3108
  issue: 9
  year: 2006
  ident: 9684_CR16
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050391w
– volume: 44
  start-page: 78
  issue: 1
  year: 2011
  ident: 9684_CR42
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2010.07.026
– volume: 44
  start-page: 281
  issue: 4
  year: 2012
  ident: 9684_CR15
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2012.11917902
– volume: 71
  start-page: 403
  issue: 2
  year: 2003
  ident: 9684_CR19
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2003.tb00205.x
– volume: 40
  start-page: 992
  issue: 10
  year: 2008
  ident: 9684_CR28
  publication-title: IIE Trans.
  doi: 10.1080/07408170801961412
– volume: 42
  start-page: 136
  issue: 2
  year: 2010
  ident: 9684_CR14
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2010.11917812
– volume-title: Knowledge Discovery from Data Streams
  year: 2010
  ident: 9684_CR20
  doi: 10.1201/EBK1439826119
– volume-title: Adaptive Filter Theory
  year: 2002
  ident: 9684_CR26
– volume: 40
  start-page: 1979
  issue: 9
  year: 2013
  ident: 9684_CR39
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2013.800471
– volume: 1
  start-page: 239
  issue: 3
  year: 1959
  ident: 9684_CR43
  publication-title: Technometrics
  doi: 10.1080/00401706.1959.10489860
– ident: 9684_CR11
  doi: 10.1109/JISIC.2014.48
– volume: 50
  start-page: 1
  year: 2001
  ident: 9684_CR21
  publication-title: Morb. Mortal. Wkly. Rep.
– volume: 9
  start-page: 185
  issue: 2
  year: 1973
  ident: 9684_CR8
  publication-title: Automatica
  doi: 10.1016/0005-1098(73)90073-3
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 9684_CR32
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume-title: Adaptive Filtering and Change Detection
  year: 2000
  ident: 9684_CR22
– volume: 34
  start-page: 371
  issue: 4
  year: 2002
  ident: 9684_CR45
  publication-title: J. Qual. Control
– volume: 1
  start-page: 1897
  issue: 6
  year: 1971
  ident: 9684_CR36
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177693055
– ident: 9684_CR24
  doi: 10.1080/08982119308918986
– volume: 5
  start-page: 139
  issue: 2
  year: 2012
  ident: 9684_CR4
  publication-title: Stat. Anal. Data Mining
  doi: 10.1002/sam.10151
– volume: 34
  start-page: 277
  issue: 3
  year: 2002
  ident: 9684_CR29
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2002.11980158
– ident: 9684_CR10
  doi: 10.1109/ICDMW.2013.114
– ident: 9684_CR3
– volume: 32
  start-page: 1
  issue: 1
  year: 1990
  ident: 9684_CR38
  publication-title: Technometrics
  doi: 10.1080/00401706.1990.10484583
– volume: 45
  start-page: 199
  issue: 3
  year: 2003
  ident: 9684_CR13
  publication-title: Technometrics
  doi: 10.1198/004017003000000023
– volume: 41
  start-page: 670
  issue: 2
  year: 2013
  ident: 9684_CR48
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1094
– volume-title: Changepoint: An R Package for Changepoint Analysis
  year: 2011
  ident: 9684_CR34
– volume-title: Detection of Abrupt Changes: Theory and Application
  year: 1993
  ident: 9684_CR9
– volume-title: ggplot2: Elegant Graphics for Data Analysis
  year: 2009
  ident: 9684_CR47
  doi: 10.1007/978-0-387-98141-3
– volume: 43
  start-page: 156
  issue: 2
  year: 2001
  ident: 9684_CR30
  publication-title: Technometrics
  doi: 10.1198/004017001750386279
– volume: 8
  start-page: 1
  year: 1976
  ident: 9684_CR37
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.1976.11980706
– volume: 41
  start-page: 100
  issue: 1/2
  year: 1954
  ident: 9684_CR41
  publication-title: Biometrika
  doi: 10.2307/2333009
– volume: 39
  start-page: 93
  issue: 2
  year: 2007
  ident: 9684_CR5
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2007.11917678
– ident: 9684_CR33
  doi: 10.1016/B978-012088469-8.50019-X
– volume: 35
  start-page: 355
  issue: 4
  year: 2003
  ident: 9684_CR25
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2003.11980233
– volume: 36
  start-page: 299
  issue: 4
  year: 1987
  ident: 9684_CR23
  publication-title: J. R. Stat. Soc. Ser. D
– volume: 17
  start-page: 831
  issue: 6
  year: 1981
  ident: 9684_CR17
  publication-title: Automatica
  doi: 10.1016/0005-1098(81)90070-4
– volume: 29
  start-page: 27
  issue: 1
  year: 1983
  ident: 9684_CR6
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(83)90008-7
– volume: 14
  start-page: 1379
  issue: 4
  year: 1986
  ident: 9684_CR40
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176350164
– volume-title: Stochastic Approximation: A Dynamical Systems Viewpoint
  year: 2008
  ident: 9684_CR12
  doi: 10.1007/978-93-86279-38-5
– volume: 38
  start-page: 349
  issue: 4
  year: 2006
  ident: 9684_CR27
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2006.11918623
SSID ssj0011634
Score 2.320965
Snippet Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1257
SubjectTerms Adaptive control
Artificial Intelligence
Change detection
Computer simulation
Data transmission
Mathematics and Statistics
Monitoring
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title Continuous monitoring for changepoints in data streams using adaptive estimation
URI https://link.springer.com/article/10.1007/s11222-016-9684-8
https://www.proquest.com/docview/1895592488
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XNaDj1XxueTgSQk0bdMmx0VcF2XFgwt6KmmayoJbF7v-f2f62FVRwXOTFJJ5fMPMfANw5ozSGLD53KRBwFEoUm5MnHFErrFWIgj9jALF0V00HIc3j_Kx6eMu22r3NiVZWepls5tAX4ahb8R1pEKuVmFdUuiOQjz2-4vUAQKMijMKoTkamDhsU5k_HfHVGS0R5rekaOVrBtuw2YBE1q9fdQdWXNGFrXYAA2v0sQsbowXpatmFDgHHmnd5F-6JdmpSvGNgz6aV3tKvGEJUVvf6zl4nxbxkk4JRkSijnhEzLRnVwT8zk5kZ2UFGHBx1c-MejAdXD5dD3kxP4DaQes6lS3MZx1Hua2t0nHphJpX1jMqV50QgPRdSktFhTBiGzheRFBl6_1jnwsrM2mAf1orXwh0AMyI3ysTCZhKXerm2iJqIu93PtUKVPwSvvcbENtTiNOHiJVmSItPNJ1RORjef4JbzxZZZzavx1-KT9m2SRsXKRCgiz_PRAB3CRftenz7_dtjRv1YfQ8cnR15VlZ3A2vzt3Z0iDJmnPVjvXz_dXvUq8fsAzbzUXg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiPHPgBIrUtE2bHBECjccQByZxq9I0RZNYmej4_9h9bIAAiXOTVLJj-7NsfwE4cUZpTNh8btIg4HgpUm5MnHFErrFWIgj9jBLFwX3UH4Y3T_KpmeMu2273tiRZeer5sJvAWIapb8R1pEKuFmEJsYCiPq6hfz4rHSDAqDijEJqjg4nDtpT50xFfg9EcYX4rilax5moD1hqQyM5rrW7Cgiu6sN4-wMAae-zC6mBGulp2YYWAY827vAUPRDs1Kt4xsWfjym7pVwwhKqtnfSevo2JaslHBqEmU0cyIGZeM-uCfmcnMhPwgIw6OerhxG4ZXl48Xfd68nsBtIPWUS5fmMo6j3NfW6Dj1wkwq6xmVK8-JQHoupCKjw5wwDJ0vIikyjP6xzoWVmbXBDnSK18LtAjMiN8rEwmYSl3q5toiaiLvdz7VCk--B14oxsQ21OL1w8ZLMSZFJ8gm1k5HkE9xyOtsyqXk1_lp80OomaUysTIQi8jwfHVAPzlp9ffr822F7_1p9DMv9x8Fdcnd9f7sPKz4F9arD7AA607d3d4iQZJoeVVfwA0oP1b0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOjBx6r4NgdPSrBpmzY5irr4xoML3kqaprKgdbH1_zvTx66KCp6bpJDM4xtm5huAA2eUxoDN5yYNAo5CkXJj4owjco21EkHoZxQo3t5FF4Pw6lE-tnNOy67avUtJNj0NxNJUVMejLD-eNL4J9GsYBkdcRyrkahpm0RoLEuuBfzJOIyDYqPmjEKajsYnDLq350xFfHdMEbX5LkNZ-p78Miy1gZCfNC6_AlCt6sNQNY2CtbvZg4XZMwFr2YJ5AZMPBvAr3REE1LN4xyGcvtQ7TrxjCVdb0_Y5eh0VVsmHBqGCUUf-IeSkZ1cQ_MZOZEdlERnwcTaPjGgz65w-nF7ydpMBtIHXFpUtzGcdR7mtrdJx6YSaV9YzKledEID0XUsLRYXwYhs4XkRQZIoFY58LKzNpgHWaK18JtADMiN8rEwmYSl3q5toigiMfdz7VC9d8Er7vGxLY04zTt4jmZECTTzSdUWkY3n-CWw_GWUcOx8dfine5tklbdykQoItLz0RhtwlH3Xp8-_3bY1r9W78Pc_Vk_ubm8u96GeZ_8e11stgMz1du720V0UqV7tQR-ANO22fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+monitoring+for+changepoints+in+data+streams+using+adaptive+estimation&rft.jtitle=Statistics+and+computing&rft.au=Bodenham%2C+Dean+A.&rft.au=Adams%2C+Niall+M.&rft.date=2017-09-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=27&rft.issue=5&rft.spage=1257&rft.epage=1270&rft_id=info:doi/10.1007%2Fs11222-016-9684-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_016_9684_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon