Continuous monitoring for changepoints in data streams using adaptive estimation
Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor...
Saved in:
Published in | Statistics and computing Vol. 27; no. 5; pp. 1257 - 1270 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3174 1573-1375 |
DOI | 10.1007/s11222-016-9684-8 |
Cover
Loading…
Abstract | Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as
continuous monitoring
. Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets. |
---|---|
AbstractList | Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as continuous monitoring. Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets. Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as continuous monitoring . Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets. |
Author | Adams, Niall M. Bodenham, Dean A. |
Author_xml | – sequence: 1 givenname: Dean A. surname: Bodenham fullname: Bodenham, Dean A. email: d.bodenham10@imperial.ac.uk organization: Department of Mathematics, Imperial College London, D-BSSE, ETH Zürich – sequence: 2 givenname: Niall M. surname: Adams fullname: Adams, Niall M. organization: Department of Mathematics, Imperial College London, Heilbronn Institute of Mathematics, University of Bristol |
BookMark | eNp9kLtOwzAUhi1UJNrCA7BFYjb4OHFsj6jiJlWCAWbLdZziqrWD7SDx9iSEASHBdM7wf-fyLdDMB28ROgdyCYTwqwRAKcUEaixrUWFxhObAeImh5GyG5kTWBJfAqxO0SGlHCEBdVnP0tAo-O9-HPhWH4F0O0flt0YZYmFftt7YLzudUOF80Ousi5Wj1IRV9GmO60V1277awKbuDzi74U3Tc6n2yZ991iV5ub55X93j9ePewul5jUzKZMbOblnFet1QaLfmGVA0ThmjRCmKhZMRWVMihJXVVWQo1g4YB5bIFwxpjyiW6mOZ2Mbz1w361C330w0oFQjImaSXEkIIpZWJIKdpWdXE4NH4oIGoUpyZxahCnRnFqZPgvxrj89VuO2u3_JelEpm60aOOPm_6EPgG_CIR1 |
CitedBy_id | crossref_primary_10_34133_research_0174 crossref_primary_10_3233_DS_220057 crossref_primary_10_1007_s10614_021_10210_w crossref_primary_10_1016_j_cam_2023_115132 crossref_primary_10_1007_s10489_018_1254_7 crossref_primary_10_1007_s10618_021_00747_7 crossref_primary_10_1109_TCYB_2021_3054161 crossref_primary_10_1007_s00521_023_09291_5 crossref_primary_10_1016_j_knosys_2020_105792 crossref_primary_10_1007_s11222_019_09858_0 crossref_primary_10_14778_3648160_3648172 crossref_primary_10_1080_07474946_2023_2272908 crossref_primary_10_1214_20_AOAS1424 crossref_primary_10_1177_1059712320930420 crossref_primary_10_1016_j_ins_2019_02_052 crossref_primary_10_1016_j_epsr_2019_105931 |
Cites_doi | 10.1080/08982110701810444 10.1016/0005-1098(77)90067-X 10.1080/01621459.2012.737745 10.1198/TECH.2011.10069 10.1007/978-3-7908-2380-6_2 10.1080/00224065.2004.11980254 10.1007/978-3-7908-2604-3_15 10.1021/ie050391w 10.1016/j.patcog.2010.07.026 10.1080/00224065.2012.11917902 10.1111/j.1751-5823.2003.tb00205.x 10.1080/07408170801961412 10.1080/00224065.2010.11917812 10.1201/EBK1439826119 10.1080/02664763.2013.800471 10.1080/00401706.1959.10489860 10.1109/JISIC.2014.48 10.1016/0005-1098(73)90073-3 10.1115/1.3662552 10.1214/aoms/1177693055 10.1080/08982119308918986 10.1002/sam.10151 10.1080/00224065.2002.11980158 10.1109/ICDMW.2013.114 10.1080/00401706.1990.10484583 10.1198/004017003000000023 10.1214/13-AOS1094 10.1007/978-0-387-98141-3 10.1198/004017001750386279 10.1080/00224065.1976.11980706 10.2307/2333009 10.1080/00224065.2007.11917678 10.1016/B978-012088469-8.50019-X 10.1080/00224065.2003.11980233 10.1016/0005-1098(81)90070-4 10.1016/0020-0255(83)90008-7 10.1214/aos/1176350164 10.1007/978-93-86279-38-5 10.1080/00224065.2006.11918623 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11222-016-9684-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1573-1375 |
EndPage | 1270 |
ExternalDocumentID | 10_1007_s11222_016_9684_8 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c359t-5ebf5776f29ca97b04d58c0a8f80e1350e42890e10644e21651d51279f1c5dcc3 |
IEDL.DBID | U2A |
ISSN | 0960-3174 |
IngestDate | Fri Jul 25 06:19:56 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 02:17:04 EDT 2025 Fri Feb 21 02:34:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Sequential analysis Changepoint detection Data stream Adaptive estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-5ebf5776f29ca97b04d58c0a8f80e1350e42890e10644e21651d51279f1c5dcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11222-016-9684-8.pdf |
PQID | 1895592488 |
PQPubID | 2043829 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1895592488 crossref_primary_10_1007_s11222_016_9684_8 crossref_citationtrail_10_1007_s11222_016_9684_8 springer_journals_10_1007_s11222_016_9684_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Statistics and computing |
PublicationTitleAbbrev | Stat Comput |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | GermanRRLeeLMHoranJMMilsteinRLPertowskiCAWallerMNUpdated guidelines for evaluating public health surveillance systemsMorb. Mortal. Wkly. Rep.200150135 Maboudou-TchaoEMHawkinsDMDetection of multiple change-points in multivariate dataJ. Appl. Stat.201340919791995329087610.1080/02664763.2013.800471 AggarwalCCData Streams: Models and Algorithms2006BerlinSpringer1126.68033 Anagnostopoulos, C.: A statistical framework for streaming data analysis. PhD thesis, Imperial College London (2010) FrakerSEWoodallWHMousaviSPerformance metrics for surveillance schemesQual. Eng.200820445146410.1080/08982110701810444 JonesLAThe statistical design of EWMA control charts with estimated parametersJ. Qual. Technol.2002343277288 Adams, N.M., Tasoulis, D.K., Anagnostopoulos, C., Hand, D.J.: Temporally-adaptive linear classification for handling population drift in credit scoring. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT2010, Proceedings of the 19th International Conference on Computational Statistics, pp 167–176. Springer, Berlin (2010) HawkinsDMSelf-starting Cusum charts for location and scaleJ. R. Stat. Soc. Ser. D1987364299316 AnagnostopoulosCTasoulisDKAdamsNMPavlidisNGHandDJOnline linear and quadratic discriminant analysis with adaptive forgetting for streaming classificationStat. Anal. Data Mining201252139166291002410.1002/sam.10151 CapizziGMasarottoGSelf-starting CUSCORE control charts for individual multivariate observationsJ. Qual. Technol.2010422136152 AppelUBrandtAVAdaptive sequential segmentation of piecewise stationary time seriesInf. Sci.1983291275610.1016/0020-0255(83)90008-70584.62155 MoustakidesGVOptimal stopping times for detecting changes in distributionsAnn. Stat.19861441379138786830610.1214/aos/11763501640612.62116 JonesLAChampCWRigdonSEThe run length distribution of the CUSUM with estimated parametersJ. Qual. Technol.200436195108 Hawkins, D.M.: Cumulative sum control charting: an underutilized SPC tool. Qual. Eng. 5(3), 463–477 (1993) LucasJMThe design and use of V-mask control schemesJ. Qual. Technol.19768111 JonesLAChampCWRigdonSEThe performance of exponentially weighted moving average charts with estimated parametersTechnometrics2001432156167195413710.1198/004017001750386279 SullivanJHDetection of multiple change points from clustering individual observationsJ. Qual. Control2002344371383 JensenWAJones-FarmerLAChampCWWoodallWHEffects of parameter estimation on control chart properties: a literature reviewJ. Qual. Technol.2006384349364 BorkarVSStochastic Approximation: A Dynamical Systems Viewpoint2008CambridgeCambridge University Press1159.60002 CapizziGMasarottoGAdaptive generalized likelihood ratio control charts for detecting unknown patterned mean shiftsJ. Qual. Technol.2012444281303 HawkinsDMQiuPChangWKThe changepoint model for statistical process controlJ. Qual. Technol.2003354355366 Bodenham, D.A., Adams, N.M.: Continuous monitoring of a computer network using multivariate adaptive estimation. In: IEEE 13th International Conference on Data Mining Workshops (ICDMW), pp 311–388 (2013) Bodenham, D.A., Adams, N.M.: Adaptive change detection for relay-like behaviour. In: IEEE Joint Information and Security Informatics Conference (2014) FrisénMStatistical surveillance. Optimality and methodsInt. Stat. Rev.200371240343410.1111/j.1751-5823.2003.tb00205.x1114.62378 PageEContinuous inspection schemesBiometrika1954411/21001158885010.2307/23330090056.38002 XieYSigmundDSequential multi-sensor change-point detectionAnn. Stat.2013412670692309911710.1214/13-AOS10941267.62084 HaykinSAdaptive Filter Theory2002Upper Saddle RiverPrentice-Hall0723.93070 KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.1960821354510.1115/1.3662552 ChoiSWMartinEBMorrisAJLeeIBAdaptive multivariate statistical process control for monitoring time-varying processesInd. Eng. Chem. Res.20064593108311810.1021/ie050391w WickhamHggplot2: Elegant Graphics for Data Analysis2009New YorkSpringer10.1007/978-0-387-98141-31170.62004 RossGJAdamsNMTasoulisDKNonparametric monitoring of data streams for changes in location and scaleTechnometrics2011534379389285047010.1198/TECH.2011.10069 GustafssonFAdaptive Filtering and Change Detection2000New YorkWiley ÅströmKJWittenmarkBOn self tuning regulatorsAutomatica19739218519910.1016/0005-1098(73)90073-30249.93049 KillickREckleyIAChangepoint: An R Package for Changepoint Analysis2011LancasterLancaster University Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the 13th international conference on Very large data bases-Volume 30, VLDB Endowment, pp. 180–191 (2004) BassevilleMNikiforovIVDetection of Abrupt Changes: Theory and Application1993Englewood CliffsPrentice Hall TsungFWangTLenzHAdaptive charting techniques: literature review and extensionsFrontiers in Statistical Quality Control2010BerlinSpringer1935 PavlidisNGTasoulisDKAdamsNMHandDJlambda-perceptron: an adaptive classifier for data streamsPattern Recogn.2011441789610.1016/j.patcog.2010.07.0261211.68134 FortescueTKershenbaumLYdstieBImplementation of self-tuning regulators with variable forgetting factorsAutomatica198117683183510.1016/0005-1098(81)90070-4 RobertsSWControl chart tests based on geometric moving averagesTechnometrics19591323925010.1080/00401706.1959.10489860 CapizziGMasarottoGAn adaptive exponentially weighted moving average control chartTechnometrics2003453199207199920610.1198/004017003000000023 GamaJKnowledge Discovery from Data Streams2010Boca RatonChapman Hall10.1201/EBK14398261191230.68017 LordenGProcedures for reacting to a change in distributionAnn. Math. Stat.1971161897190830925110.1214/aoms/11776930550255.62067 LucasJMSaccucciMSExponentially weighted moving average control schemes: properties and enhancementsTechnometrics1990321112105027710.1080/00401706.1990.10484583 ÅströmKBorissonULjungLWittenmarkBTheory and applications of self-tuning regulatorsAutomatica197713545747610.1016/0005-1098(77)90067-X0374.93024 JiangWShuWApleyDWAdaptive cusum procedures with EWMA-based shift estimatorsIIE Trans.20084010992100310.1080/07408170801961412 KillickRFearnheadPEckleyIAOptimal detection of changepoints with a linear computational costJ. Am. Stat. Assoc.201210750015901598303641810.1080/01621459.2012.7377451258.62091 ApleyDWChinCHAn optimal filter design approach to statistical process controlJ. Qual. Technol.200739293117 JM Lucas (9684_CR38) 1990; 32 R Killick (9684_CR34) 2011 C Anagnostopoulos (9684_CR4) 2012; 5 G Capizzi (9684_CR14) 2010; 42 RE Kalman (9684_CR32) 1960; 82 G Lorden (9684_CR36) 1971; 1 H Wickham (9684_CR47) 2009 VS Borkar (9684_CR12) 2008 S Haykin (9684_CR26) 2002 KJ Åström (9684_CR8) 1973; 9 Y Xie (9684_CR48) 2013; 41 JH Sullivan (9684_CR45) 2002; 34 LA Jones (9684_CR30) 2001; 43 EM Maboudou-Tchao (9684_CR39) 2013; 40 LA Jones (9684_CR29) 2002; 34 RR German (9684_CR21) 2001; 50 LA Jones (9684_CR31) 2004; 36 DW Apley (9684_CR5) 2007; 39 9684_CR11 9684_CR33 9684_CR10 J Gama (9684_CR20) 2010 DM Hawkins (9684_CR23) 1987; 36 GJ Ross (9684_CR44) 2011; 53 G Capizzi (9684_CR15) 2012; 44 U Appel (9684_CR6) 1983; 29 K Åström (9684_CR7) 1977; 13 G Capizzi (9684_CR13) 2003; 45 GV Moustakides (9684_CR40) 1986; 14 DM Hawkins (9684_CR25) 2003; 35 F Tsung (9684_CR46) 2010 R Killick (9684_CR35) 2012; 107 (9684_CR2) 2006 JM Lucas (9684_CR37) 1976; 8 NG Pavlidis (9684_CR42) 2011; 44 E Page (9684_CR41) 1954; 41 9684_CR3 9684_CR1 SW Roberts (9684_CR43) 1959; 1 9684_CR24 WA Jensen (9684_CR27) 2006; 38 M Basseville (9684_CR9) 1993 SE Fraker (9684_CR18) 2008; 20 M Frisén (9684_CR19) 2003; 71 W Jiang (9684_CR28) 2008; 40 SW Choi (9684_CR16) 2006; 45 T Fortescue (9684_CR17) 1981; 17 F Gustafsson (9684_CR22) 2000 |
References_xml | – reference: LordenGProcedures for reacting to a change in distributionAnn. Math. Stat.1971161897190830925110.1214/aoms/11776930550255.62067 – reference: AggarwalCCData Streams: Models and Algorithms2006BerlinSpringer1126.68033 – reference: KillickREckleyIAChangepoint: An R Package for Changepoint Analysis2011LancasterLancaster University – reference: GustafssonFAdaptive Filtering and Change Detection2000New YorkWiley – reference: HawkinsDMQiuPChangWKThe changepoint model for statistical process controlJ. Qual. Technol.2003354355366 – reference: AppelUBrandtAVAdaptive sequential segmentation of piecewise stationary time seriesInf. Sci.1983291275610.1016/0020-0255(83)90008-70584.62155 – reference: FrisénMStatistical surveillance. Optimality and methodsInt. Stat. Rev.200371240343410.1111/j.1751-5823.2003.tb00205.x1114.62378 – reference: AnagnostopoulosCTasoulisDKAdamsNMPavlidisNGHandDJOnline linear and quadratic discriminant analysis with adaptive forgetting for streaming classificationStat. Anal. Data Mining201252139166291002410.1002/sam.10151 – reference: Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the 13th international conference on Very large data bases-Volume 30, VLDB Endowment, pp. 180–191 (2004) – reference: MoustakidesGVOptimal stopping times for detecting changes in distributionsAnn. Stat.19861441379138786830610.1214/aos/11763501640612.62116 – reference: XieYSigmundDSequential multi-sensor change-point detectionAnn. Stat.2013412670692309911710.1214/13-AOS10941267.62084 – reference: PageEContinuous inspection schemesBiometrika1954411/21001158885010.2307/23330090056.38002 – reference: CapizziGMasarottoGAn adaptive exponentially weighted moving average control chartTechnometrics2003453199207199920610.1198/004017003000000023 – reference: FortescueTKershenbaumLYdstieBImplementation of self-tuning regulators with variable forgetting factorsAutomatica198117683183510.1016/0005-1098(81)90070-4 – reference: LucasJMSaccucciMSExponentially weighted moving average control schemes: properties and enhancementsTechnometrics1990321112105027710.1080/00401706.1990.10484583 – reference: WickhamHggplot2: Elegant Graphics for Data Analysis2009New YorkSpringer10.1007/978-0-387-98141-31170.62004 – reference: GermanRRLeeLMHoranJMMilsteinRLPertowskiCAWallerMNUpdated guidelines for evaluating public health surveillance systemsMorb. Mortal. Wkly. Rep.200150135 – reference: HawkinsDMSelf-starting Cusum charts for location and scaleJ. R. Stat. Soc. Ser. D1987364299316 – reference: ÅströmKBorissonULjungLWittenmarkBTheory and applications of self-tuning regulatorsAutomatica197713545747610.1016/0005-1098(77)90067-X0374.93024 – reference: Adams, N.M., Tasoulis, D.K., Anagnostopoulos, C., Hand, D.J.: Temporally-adaptive linear classification for handling population drift in credit scoring. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT2010, Proceedings of the 19th International Conference on Computational Statistics, pp 167–176. Springer, Berlin (2010) – reference: JiangWShuWApleyDWAdaptive cusum procedures with EWMA-based shift estimatorsIIE Trans.20084010992100310.1080/07408170801961412 – reference: ApleyDWChinCHAn optimal filter design approach to statistical process controlJ. Qual. Technol.200739293117 – reference: TsungFWangTLenzHAdaptive charting techniques: literature review and extensionsFrontiers in Statistical Quality Control2010BerlinSpringer1935 – reference: Maboudou-TchaoEMHawkinsDMDetection of multiple change-points in multivariate dataJ. Appl. Stat.201340919791995329087610.1080/02664763.2013.800471 – reference: JensenWAJones-FarmerLAChampCWWoodallWHEffects of parameter estimation on control chart properties: a literature reviewJ. Qual. Technol.2006384349364 – reference: RossGJAdamsNMTasoulisDKNonparametric monitoring of data streams for changes in location and scaleTechnometrics2011534379389285047010.1198/TECH.2011.10069 – reference: ÅströmKJWittenmarkBOn self tuning regulatorsAutomatica19739218519910.1016/0005-1098(73)90073-30249.93049 – reference: Bodenham, D.A., Adams, N.M.: Adaptive change detection for relay-like behaviour. In: IEEE Joint Information and Security Informatics Conference (2014) – reference: JonesLAThe statistical design of EWMA control charts with estimated parametersJ. Qual. Technol.2002343277288 – reference: KillickRFearnheadPEckleyIAOptimal detection of changepoints with a linear computational costJ. Am. Stat. Assoc.201210750015901598303641810.1080/01621459.2012.7377451258.62091 – reference: ChoiSWMartinEBMorrisAJLeeIBAdaptive multivariate statistical process control for monitoring time-varying processesInd. Eng. Chem. Res.20064593108311810.1021/ie050391w – reference: LucasJMThe design and use of V-mask control schemesJ. Qual. Technol.19768111 – reference: BassevilleMNikiforovIVDetection of Abrupt Changes: Theory and Application1993Englewood CliffsPrentice Hall – reference: RobertsSWControl chart tests based on geometric moving averagesTechnometrics19591323925010.1080/00401706.1959.10489860 – reference: GamaJKnowledge Discovery from Data Streams2010Boca RatonChapman Hall10.1201/EBK14398261191230.68017 – reference: JonesLAChampCWRigdonSEThe performance of exponentially weighted moving average charts with estimated parametersTechnometrics2001432156167195413710.1198/004017001750386279 – reference: Anagnostopoulos, C.: A statistical framework for streaming data analysis. PhD thesis, Imperial College London (2010) – reference: SullivanJHDetection of multiple change points from clustering individual observationsJ. Qual. Control2002344371383 – reference: JonesLAChampCWRigdonSEThe run length distribution of the CUSUM with estimated parametersJ. Qual. Technol.200436195108 – reference: PavlidisNGTasoulisDKAdamsNMHandDJlambda-perceptron: an adaptive classifier for data streamsPattern Recogn.2011441789610.1016/j.patcog.2010.07.0261211.68134 – reference: FrakerSEWoodallWHMousaviSPerformance metrics for surveillance schemesQual. Eng.200820445146410.1080/08982110701810444 – reference: Hawkins, D.M.: Cumulative sum control charting: an underutilized SPC tool. Qual. Eng. 5(3), 463–477 (1993) – reference: KalmanREA new approach to linear filtering and prediction problemsJ. Basic Eng.1960821354510.1115/1.3662552 – reference: HaykinSAdaptive Filter Theory2002Upper Saddle RiverPrentice-Hall0723.93070 – reference: BorkarVSStochastic Approximation: A Dynamical Systems Viewpoint2008CambridgeCambridge University Press1159.60002 – reference: CapizziGMasarottoGSelf-starting CUSCORE control charts for individual multivariate observationsJ. Qual. Technol.2010422136152 – reference: CapizziGMasarottoGAdaptive generalized likelihood ratio control charts for detecting unknown patterned mean shiftsJ. Qual. Technol.2012444281303 – reference: Bodenham, D.A., Adams, N.M.: Continuous monitoring of a computer network using multivariate adaptive estimation. In: IEEE 13th International Conference on Data Mining Workshops (ICDMW), pp 311–388 (2013) – volume: 20 start-page: 451 issue: 4 year: 2008 ident: 9684_CR18 publication-title: Qual. Eng. doi: 10.1080/08982110701810444 – volume: 13 start-page: 457 issue: 5 year: 1977 ident: 9684_CR7 publication-title: Automatica doi: 10.1016/0005-1098(77)90067-X – volume: 107 start-page: 1590 issue: 500 year: 2012 ident: 9684_CR35 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2012.737745 – volume: 53 start-page: 379 issue: 4 year: 2011 ident: 9684_CR44 publication-title: Technometrics doi: 10.1198/TECH.2011.10069 – start-page: 19 volume-title: Frontiers in Statistical Quality Control year: 2010 ident: 9684_CR46 doi: 10.1007/978-3-7908-2380-6_2 – volume: 36 start-page: 95 issue: 1 year: 2004 ident: 9684_CR31 publication-title: J. Qual. Technol. doi: 10.1080/00224065.2004.11980254 – volume-title: Data Streams: Models and Algorithms year: 2006 ident: 9684_CR2 – ident: 9684_CR1 doi: 10.1007/978-3-7908-2604-3_15 – volume: 45 start-page: 3108 issue: 9 year: 2006 ident: 9684_CR16 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050391w – volume: 44 start-page: 78 issue: 1 year: 2011 ident: 9684_CR42 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2010.07.026 – volume: 44 start-page: 281 issue: 4 year: 2012 ident: 9684_CR15 publication-title: J. Qual. Technol. doi: 10.1080/00224065.2012.11917902 – volume: 71 start-page: 403 issue: 2 year: 2003 ident: 9684_CR19 publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2003.tb00205.x – volume: 40 start-page: 992 issue: 10 year: 2008 ident: 9684_CR28 publication-title: IIE Trans. doi: 10.1080/07408170801961412 – volume: 42 start-page: 136 issue: 2 year: 2010 ident: 9684_CR14 publication-title: J. Qual. Technol. doi: 10.1080/00224065.2010.11917812 – volume-title: Knowledge Discovery from Data Streams year: 2010 ident: 9684_CR20 doi: 10.1201/EBK1439826119 – volume-title: Adaptive Filter Theory year: 2002 ident: 9684_CR26 – volume: 40 start-page: 1979 issue: 9 year: 2013 ident: 9684_CR39 publication-title: J. Appl. Stat. doi: 10.1080/02664763.2013.800471 – volume: 1 start-page: 239 issue: 3 year: 1959 ident: 9684_CR43 publication-title: Technometrics doi: 10.1080/00401706.1959.10489860 – ident: 9684_CR11 doi: 10.1109/JISIC.2014.48 – volume: 50 start-page: 1 year: 2001 ident: 9684_CR21 publication-title: Morb. Mortal. Wkly. Rep. – volume: 9 start-page: 185 issue: 2 year: 1973 ident: 9684_CR8 publication-title: Automatica doi: 10.1016/0005-1098(73)90073-3 – volume: 82 start-page: 35 issue: 1 year: 1960 ident: 9684_CR32 publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume-title: Adaptive Filtering and Change Detection year: 2000 ident: 9684_CR22 – volume: 34 start-page: 371 issue: 4 year: 2002 ident: 9684_CR45 publication-title: J. Qual. Control – volume: 1 start-page: 1897 issue: 6 year: 1971 ident: 9684_CR36 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177693055 – ident: 9684_CR24 doi: 10.1080/08982119308918986 – volume: 5 start-page: 139 issue: 2 year: 2012 ident: 9684_CR4 publication-title: Stat. Anal. Data Mining doi: 10.1002/sam.10151 – volume: 34 start-page: 277 issue: 3 year: 2002 ident: 9684_CR29 publication-title: J. Qual. Technol. doi: 10.1080/00224065.2002.11980158 – ident: 9684_CR10 doi: 10.1109/ICDMW.2013.114 – ident: 9684_CR3 – volume: 32 start-page: 1 issue: 1 year: 1990 ident: 9684_CR38 publication-title: Technometrics doi: 10.1080/00401706.1990.10484583 – volume: 45 start-page: 199 issue: 3 year: 2003 ident: 9684_CR13 publication-title: Technometrics doi: 10.1198/004017003000000023 – volume: 41 start-page: 670 issue: 2 year: 2013 ident: 9684_CR48 publication-title: Ann. Stat. doi: 10.1214/13-AOS1094 – volume-title: Changepoint: An R Package for Changepoint Analysis year: 2011 ident: 9684_CR34 – volume-title: Detection of Abrupt Changes: Theory and Application year: 1993 ident: 9684_CR9 – volume-title: ggplot2: Elegant Graphics for Data Analysis year: 2009 ident: 9684_CR47 doi: 10.1007/978-0-387-98141-3 – volume: 43 start-page: 156 issue: 2 year: 2001 ident: 9684_CR30 publication-title: Technometrics doi: 10.1198/004017001750386279 – volume: 8 start-page: 1 year: 1976 ident: 9684_CR37 publication-title: J. Qual. Technol. doi: 10.1080/00224065.1976.11980706 – volume: 41 start-page: 100 issue: 1/2 year: 1954 ident: 9684_CR41 publication-title: Biometrika doi: 10.2307/2333009 – volume: 39 start-page: 93 issue: 2 year: 2007 ident: 9684_CR5 publication-title: J. Qual. Technol. doi: 10.1080/00224065.2007.11917678 – ident: 9684_CR33 doi: 10.1016/B978-012088469-8.50019-X – volume: 35 start-page: 355 issue: 4 year: 2003 ident: 9684_CR25 publication-title: J. Qual. Technol. doi: 10.1080/00224065.2003.11980233 – volume: 36 start-page: 299 issue: 4 year: 1987 ident: 9684_CR23 publication-title: J. R. Stat. Soc. Ser. D – volume: 17 start-page: 831 issue: 6 year: 1981 ident: 9684_CR17 publication-title: Automatica doi: 10.1016/0005-1098(81)90070-4 – volume: 29 start-page: 27 issue: 1 year: 1983 ident: 9684_CR6 publication-title: Inf. Sci. doi: 10.1016/0020-0255(83)90008-7 – volume: 14 start-page: 1379 issue: 4 year: 1986 ident: 9684_CR40 publication-title: Ann. Stat. doi: 10.1214/aos/1176350164 – volume-title: Stochastic Approximation: A Dynamical Systems Viewpoint year: 2008 ident: 9684_CR12 doi: 10.1007/978-93-86279-38-5 – volume: 38 start-page: 349 issue: 4 year: 2006 ident: 9684_CR27 publication-title: J. Qual. Technol. doi: 10.1080/00224065.2006.11918623 |
SSID | ssj0011634 |
Score | 2.320965 |
Snippet | Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1257 |
SubjectTerms | Adaptive control Artificial Intelligence Change detection Computer simulation Data transmission Mathematics and Statistics Monitoring Probability and Statistics in Computer Science Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
Title | Continuous monitoring for changepoints in data streams using adaptive estimation |
URI | https://link.springer.com/article/10.1007/s11222-016-9684-8 https://www.proquest.com/docview/1895592488 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XNaDj1XxueTgSQk0bdMmx0VcF2XFgwt6KmmayoJbF7v-f2f62FVRwXOTFJJ5fMPMfANw5ozSGLD53KRBwFEoUm5MnHFErrFWIgj9jALF0V00HIc3j_Kx6eMu22r3NiVZWepls5tAX4ahb8R1pEKuVmFdUuiOQjz2-4vUAQKMijMKoTkamDhsU5k_HfHVGS0R5rekaOVrBtuw2YBE1q9fdQdWXNGFrXYAA2v0sQsbowXpatmFDgHHmnd5F-6JdmpSvGNgz6aV3tKvGEJUVvf6zl4nxbxkk4JRkSijnhEzLRnVwT8zk5kZ2UFGHBx1c-MejAdXD5dD3kxP4DaQes6lS3MZx1Hua2t0nHphJpX1jMqV50QgPRdSktFhTBiGzheRFBl6_1jnwsrM2mAf1orXwh0AMyI3ysTCZhKXerm2iJqIu93PtUKVPwSvvcbENtTiNOHiJVmSItPNJ1RORjef4JbzxZZZzavx1-KT9m2SRsXKRCgiz_PRAB3CRftenz7_dtjRv1YfQ8cnR15VlZ3A2vzt3Z0iDJmnPVjvXz_dXvUq8fsAzbzUXg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiPHPgBIrUtE2bHBECjccQByZxq9I0RZNYmej4_9h9bIAAiXOTVLJj-7NsfwE4cUZpTNh8btIg4HgpUm5MnHFErrFWIgj9jBLFwX3UH4Y3T_KpmeMu2273tiRZeer5sJvAWIapb8R1pEKuFmEJsYCiPq6hfz4rHSDAqDijEJqjg4nDtpT50xFfg9EcYX4rilax5moD1hqQyM5rrW7Cgiu6sN4-wMAae-zC6mBGulp2YYWAY827vAUPRDs1Kt4xsWfjym7pVwwhKqtnfSevo2JaslHBqEmU0cyIGZeM-uCfmcnMhPwgIw6OerhxG4ZXl48Xfd68nsBtIPWUS5fmMo6j3NfW6Dj1wkwq6xmVK8-JQHoupCKjw5wwDJ0vIikyjP6xzoWVmbXBDnSK18LtAjMiN8rEwmYSl3q5toiaiLvdz7VCk--B14oxsQ21OL1w8ZLMSZFJ8gm1k5HkE9xyOtsyqXk1_lp80OomaUysTIQi8jwfHVAPzlp9ffr822F7_1p9DMv9x8Fdcnd9f7sPKz4F9arD7AA607d3d4iQZJoeVVfwA0oP1b0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOjBx6r4NgdPSrBpmzY5irr4xoML3kqaprKgdbH1_zvTx66KCp6bpJDM4xtm5huAA2eUxoDN5yYNAo5CkXJj4owjco21EkHoZxQo3t5FF4Pw6lE-tnNOy67avUtJNj0NxNJUVMejLD-eNL4J9GsYBkdcRyrkahpm0RoLEuuBfzJOIyDYqPmjEKajsYnDLq350xFfHdMEbX5LkNZ-p78Miy1gZCfNC6_AlCt6sNQNY2CtbvZg4XZMwFr2YJ5AZMPBvAr3REE1LN4xyGcvtQ7TrxjCVdb0_Y5eh0VVsmHBqGCUUf-IeSkZ1cQ_MZOZEdlERnwcTaPjGgz65w-nF7ydpMBtIHXFpUtzGcdR7mtrdJx6YSaV9YzKledEID0XUsLRYXwYhs4XkRQZIoFY58LKzNpgHWaK18JtADMiN8rEwmYSl3q5toigiMfdz7VC9d8Er7vGxLY04zTt4jmZECTTzSdUWkY3n-CWw_GWUcOx8dfine5tklbdykQoItLz0RhtwlH3Xp8-_3bY1r9W78Pc_Vk_ubm8u96GeZ_8e11stgMz1du720V0UqV7tQR-ANO22fk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+monitoring+for+changepoints+in+data+streams+using+adaptive+estimation&rft.jtitle=Statistics+and+computing&rft.au=Bodenham%2C+Dean+A.&rft.au=Adams%2C+Niall+M.&rft.date=2017-09-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=27&rft.issue=5&rft.spage=1257&rft.epage=1270&rft_id=info:doi/10.1007%2Fs11222-016-9684-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_016_9684_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |