Lithium Battery Life Prediction for Electric Vehicles Using Enhanced TCN and SVN Quantile Regression
The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast's precision and resilience about lithium batteries' remaining life, this study implements quantile regression with in support vector networ...
Saved in:
Published in | IEEE access Vol. 13; pp. 12581 - 12595 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast's precision and resilience about lithium batteries' remaining life, this study implements quantile regression with in support vector networks to evaluate battery health conditions. Furthermore, it proceeds to integrate self-coding neural networks with temporal convolutional networks for the purpose of processing and extracting battery life data, and finally proposes a novel prediction model. The outcomes of the experiment demonstrate that when the width parameter is 0.75 and the penalty coefficient is 1, the battery health prediction accuracy of this new model is up to 88%, the remaining life prediction accuracy is up to 95.41%, and the number of battery capacity degradation times is up to 340, which is up to 45 times more than the number of the same type of model. In addition, the minimum difference in temperature prediction of battery charging under this model is close to 0.2°C, the minimum difference in temperature prediction during discharge is 0.3°C, and the battery capacity fidelity test findings' average value is 91.08%. It is evident that the study's suggested model offers a considerable advantage in estimating lithium battery lifespan for electric vehicles. Additionally, the study's findings provide a quicker, more precise, and more flexible reference for estimating the lithium batteries' condition and remaining life. |
---|---|
AbstractList | The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast’s precision and resilience about lithium batteries’ remaining life, this study implements quantile regression with in support vector networks to evaluate battery health conditions. Furthermore, it proceeds to integrate self-coding neural networks with temporal convolutional networks for the purpose of processing and extracting battery life data, and finally proposes a novel prediction model. The outcomes of the experiment demonstrate that when the width parameter is 0.75 and the penalty coefficient is 1, the battery health prediction accuracy of this new model is up to 88%, the remaining life prediction accuracy is up to 95.41%, and the number of battery capacity degradation times is up to 340, which is up to 45 times more than the number of the same type of model. In addition, the minimum difference in temperature prediction of battery charging under this model is close to 0.2°C, the minimum difference in temperature prediction during discharge is 0.3°C, and the battery capacity fidelity test findings’ average value is 91.08%. It is evident that the study’s suggested model offers a considerable advantage in estimating lithium battery lifespan for electric vehicles. Additionally, the study’s findings provide a quicker, more precise, and more flexible reference for estimating the lithium batteries’ condition and remaining life. |
Author | Li, Xinyue Chu, Jiangwei |
Author_xml | – sequence: 1 givenname: Xinyue orcidid: 0000-0001-6709-648X surname: Li fullname: Li, Xinyue email: 2018020089@nefu.edu.cn organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China – sequence: 2 givenname: Jiangwei orcidid: 0000-0003-4781-5023 surname: Chu fullname: Chu, Jiangwei organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China |
BookMark | eNpNUcFOGzEQtSoqFShf0B4scU5qr-317hFWoSBFtBDganntceIo2GA7B_6-Dosq5jKjp3nvzeidoKMQAyD0g5I5paT_dTEMi9Vq3pBGzJloOkb5F3Tc0LafMcHao0_zN3SW85bU6iok5DGyS182fv-ML3UpkN7w0jvAfxNYb4qPAbuY8GIHpiRv8BNsvNlBxo_ZhzVehI0OBix-GG6xDhavnm7x3V6H4neA72GdIOcq8h19dXqX4eyjn6LHq8XDcD1b_vl9M1wsZ4aJvsyE5MRKNmrQToLTnDgwvBFA29YYYRztWto73Te8_mqcHQl0bQdEED5Cp9kpupl0bdRb9ZL8s05vKmqv3oGY1kqncvhAGZDAOHeOc8OllLraybGzTjgr2DhWrfNJ6yXF1z3korZxn0I9XzEq-mrZN6RusWnLpJhzAvfflRJ1SEdN6ahDOuojncr6ObE8AHxidKyVjLN_SBGNow |
CODEN | IAECCG |
Cites_doi | 10.1109/jas.2022.105779 10.3390/batteries9110544 10.3390/app131910910 10.3390/en15072448 10.3390/su15065014 10.1016/j.joule.2023.07.021 10.1002/er.7548 10.3390/wevj15050177 10.3390/batteries10010012 10.1109/TIA.2022.3210081 10.1093/ce/zkad054 10.3390/electronics11111795 10.1002/er.7834 10.1021/acsomega.4c03524 10.3390/electronics11020181 10.1149/1945-7111/ac5cf2 10.1109/tie.2022.3165295 10.3390/en16248010 10.3390/batteries9020131 10.3390/batteries8100145 10.1177/1748006X221080345 10.1109/TTE.2023.3247614 10.61822/amcs-2024-0008 10.1109/TTE.2022.3209629 10.3390/ma15093331 10.3390/s22239522 10.1109/jas.2022.105599 10.1109/JSEN.2022.3209894 10.3390/batteries8100169 10.3390/en15134556 10.1007/s42835-021-00861-y |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3528314 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 12595 |
ExternalDocumentID | oai_doaj_org_article_ce7e344ff44c4777afa47b8df5fd53bb 10_1109_ACCESS_2025_3528314 10836734 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-5740d73baeaf7efa40fec425e166cc5cf18619fa924025cfdb0e868e0504be8a3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:23:46 EDT 2025 Mon Jun 30 13:06:31 EDT 2025 Tue Jul 01 03:03:05 EDT 2025 Wed Aug 27 01:56:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-5740d73baeaf7efa40fec425e166cc5cf18619fa924025cfdb0e868e0504be8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6709-648X 0000-0003-4781-5023 |
OpenAccessLink | https://doaj.org/article/ce7e344ff44c4777afa47b8df5fd53bb |
PQID | 3159504920 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3528314 ieee_primary_10836734 doaj_primary_oai_doaj_org_article_ce7e344ff44c4777afa47b8df5fd53bb proquest_journals_3159504920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref6 doi: 10.1109/jas.2022.105779 – ident: ref28 doi: 10.3390/batteries9110544 – ident: ref15 doi: 10.3390/app131910910 – ident: ref11 doi: 10.3390/en15072448 – ident: ref18 doi: 10.3390/su15065014 – ident: ref24 doi: 10.1016/j.joule.2023.07.021 – ident: ref25 doi: 10.1002/er.7548 – ident: ref29 doi: 10.3390/wevj15050177 – ident: ref30 doi: 10.3390/batteries10010012 – ident: ref7 doi: 10.1109/TIA.2022.3210081 – ident: ref19 doi: 10.1093/ce/zkad054 – ident: ref23 doi: 10.3390/electronics11111795 – ident: ref17 doi: 10.1002/er.7834 – ident: ref31 doi: 10.1021/acsomega.4c03524 – ident: ref3 doi: 10.3390/electronics11020181 – ident: ref9 doi: 10.1149/1945-7111/ac5cf2 – ident: ref4 doi: 10.1109/tie.2022.3165295 – ident: ref27 doi: 10.3390/en16248010 – ident: ref22 doi: 10.3390/batteries9020131 – ident: ref12 doi: 10.3390/batteries8100145 – ident: ref8 doi: 10.1177/1748006X221080345 – ident: ref10 doi: 10.1109/TTE.2023.3247614 – ident: ref13 doi: 10.61822/amcs-2024-0008 – ident: ref20 doi: 10.1109/TTE.2022.3209629 – ident: ref21 doi: 10.3390/ma15093331 – ident: ref26 doi: 10.3390/s22239522 – ident: ref2 doi: 10.1109/jas.2022.105599 – ident: ref14 doi: 10.1109/JSEN.2022.3209894 – ident: ref1 doi: 10.3390/batteries8100169 – ident: ref16 doi: 10.3390/en15134556 – ident: ref5 doi: 10.1007/s42835-021-00861-y |
SSID | ssj0000816957 |
Score | 2.340778 |
Snippet | The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast's... The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast’s... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 12581 |
SubjectTerms | Accuracy Algorithms Electric vehicles Electrodes Estimation Life assessment Life prediction Lithium Lithium batteries Lithium battery Lithium-ion batteries Neural networks Prediction models Predictive models Protocols quantile regression Quantiles remaining life State of charge state of health support vector network time convolution network Vectors |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwELWAExxKS0HdllY-9NgsTmzH8ZGuFqEKrUoLiJtlO-PuCjVUNDnQr-_YziJKVam3JEoU22_GM2OP3xDyvo6MK6zWGOQoWwg0EIV1HIpGelY6rnwFie1zUZ9eik_X8no8rJ7OwgBASj6DabxMe_ntrR_iUhlqeMNrxcUm2cTILR_WelhQiRUktFQjs1DJ9NHxbIadwBiwktNEYlKKP6xPIukfq6r8NRUn-3KySxbrluW0kpvp0Lup__WEtPG_m_6cPBs9TXqcReMF2YBuj-w84h98SdqzVb9cDd9pZtm8p2erAPTzXdy8iYBR9GjpPBXKWXl6BcuUQ0dTmgGdd8uUPUAvZgtqu5Z-vVrQ8wGRwomGfoFvOcO22yeXJ_OL2Wkxll0oPJe6L6QSrFXcWbBBQbCCBfCo2lDWtffSh7LBqCtYHTdm8LZ1DJq6ASaZcNBYfkC2utsOXhEqXAXeAuMerSDaSmtBiIrVvkQp0NpPyIc1HOZHZtcwKSph2mT0TETPjOhNyMcI2cOrkRo7PcChNqOmGQ8KuBAhCOGFUspiD5Rr2iBDK7lzE7If4Xn0v4zMhByuJcCMevzTcPT2sFu6Yq__8dkbsh2bmFdlDslWfzfAW_RTevcuyedvuHjlAQ priority: 102 providerName: IEEE |
Title | Lithium Battery Life Prediction for Electric Vehicles Using Enhanced TCN and SVN Quantile Regression |
URI | https://ieeexplore.ieee.org/document/10836734 https://www.proquest.com/docview/3159504920 https://doaj.org/article/ce7e344ff44c4777afa47b8df5fd53bb |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQFRSI4yH24JALSgJO_IpLbrUIIbTiLTrLdsbsFhfQslvcv7-xE06LKGgoE0Vx5pt4HpnJN4QcqcS4wpTBJEe7QqCDKJznUNQysNJzHSrIbJ9jdfEgLp_k09Kor9QT1tEDd8CdBtDAhYhRiCC01i46oX3dRBkbyb1P1hd93lIylW1wXSojdU8zVDJzejYcokSYEFbyJDOalOKDK8qM_f2IlU92OTub802y0UeJ9Kx7uh9kBdotsr7EHbhNmqvpfDJd_KEdQ-ZfejWNQK9nqfCSwKYYjdJRHnIzDfQRJrn_jeYWATpqJ7nyT--HY-raht49junNAlFGI0Fv4bnrjm13yMP56H54UfQjE4rApZkXUgvWaO4duKgBoWIRAm5LKJUKQYZY1pgxRWdSUQUPG8-gVjUwyYSH2vFdstq-tLBHqPAVBAeMB_Rg6OecAyEqpkKJGjQmDMjxO3r2tWPGsDmjYMZ2YNsEtu3BHpDfCeH_lyZa63wClW17ZduvlD0gO0k_S-vVXGmONz94V5jt9-Cb5RipoVimYj-_Y-19spbk6T6_HJDV-WwBvzAgmfvD_O4d5n8H_wGHpd2m |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOQAHnkUsFPABbmRxYjtODhzKstWWLise26o3YztjdoVIUZsIlf_CX-G3MXayqwLiWIlbEuXl8ed52ONvCHmSB8YVlpcY5CiTCDQQibEckkI6llquXAaR7XOWTw7E6yN5tEF-rPfCAEBMPoNhOIxr-dWxa8NUGY7wgueKiz6Hch_OvmGEdvpi7xV259Ms2x3PR5OkLyKQOC7LJpFKsEpxa8B4Bd4I5sEhUCHNc-ek82mBMYQ3ZVhmwNPKMijyAphkwkJhOL73ErmMjobMuu1h6ymcULOilKrnMkpZ-XxnNEKxYdSZyWGkTUnFb_YulgXo67j8pfyjRdu9QX6uZNElsnweto0duu9_0ET-t8K6Sa73vjTd6cB_i2xAfZtcO8eweIdU02WzWLZfaMcjekanSw_07UlYngqQpOiz03EsBbR09BAWMUuQxkQKOq4XMT-CzkczauqKfjic0XctYhFVKX0Pn7oc4nqLHFxIM--Szfq4hnuECpuBM8C4QzuP3oAxIETGcpcizsvSDcizVffrrx1_iI5xFyt1hxYd0KJ7tAzIywCR9a2B_DtewK7VvS7RDhRwIbwXwgmllMEWKFtUXvpKcmsHZCvA4dz3OiQMyPYKcbrXVKeaoz-LzSozdv8fjz0mVybzN1M93ZvtPyBXw-92c1DbZLM5aeEhemWNfRTHBiUfLxpfvwDjzUR- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Battery+Life+Prediction+for+Electric+Vehicles+Using+Enhanced+TCN+and+SVN+Quantile+Regression&rft.jtitle=IEEE+access&rft.au=Li%2C+Xinyue&rft.au=Chu%2C+Jiangwei&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=12581&rft.epage=12595&rft_id=info:doi/10.1109%2FACCESS.2025.3528314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3528314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |