Lithium Battery Life Prediction for Electric Vehicles Using Enhanced TCN and SVN Quantile Regression

The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast's precision and resilience about lithium batteries' remaining life, this study implements quantile regression with in support vector networ...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 12581 - 12595
Main Authors Li, Xinyue, Chu, Jiangwei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast's precision and resilience about lithium batteries' remaining life, this study implements quantile regression with in support vector networks to evaluate battery health conditions. Furthermore, it proceeds to integrate self-coding neural networks with temporal convolutional networks for the purpose of processing and extracting battery life data, and finally proposes a novel prediction model. The outcomes of the experiment demonstrate that when the width parameter is 0.75 and the penalty coefficient is 1, the battery health prediction accuracy of this new model is up to 88%, the remaining life prediction accuracy is up to 95.41%, and the number of battery capacity degradation times is up to 340, which is up to 45 times more than the number of the same type of model. In addition, the minimum difference in temperature prediction of battery charging under this model is close to 0.2°C, the minimum difference in temperature prediction during discharge is 0.3°C, and the battery capacity fidelity test findings' average value is 91.08%. It is evident that the study's suggested model offers a considerable advantage in estimating lithium battery lifespan for electric vehicles. Additionally, the study's findings provide a quicker, more precise, and more flexible reference for estimating the lithium batteries' condition and remaining life.
AbstractList The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast’s precision and resilience about lithium batteries’ remaining life, this study implements quantile regression with in support vector networks to evaluate battery health conditions. Furthermore, it proceeds to integrate self-coding neural networks with temporal convolutional networks for the purpose of processing and extracting battery life data, and finally proposes a novel prediction model. The outcomes of the experiment demonstrate that when the width parameter is 0.75 and the penalty coefficient is 1, the battery health prediction accuracy of this new model is up to 88%, the remaining life prediction accuracy is up to 95.41%, and the number of battery capacity degradation times is up to 340, which is up to 45 times more than the number of the same type of model. In addition, the minimum difference in temperature prediction of battery charging under this model is close to 0.2°C, the minimum difference in temperature prediction during discharge is 0.3°C, and the battery capacity fidelity test findings’ average value is 91.08%. It is evident that the study’s suggested model offers a considerable advantage in estimating lithium battery lifespan for electric vehicles. Additionally, the study’s findings provide a quicker, more precise, and more flexible reference for estimating the lithium batteries’ condition and remaining life.
Author Li, Xinyue
Chu, Jiangwei
Author_xml – sequence: 1
  givenname: Xinyue
  orcidid: 0000-0001-6709-648X
  surname: Li
  fullname: Li, Xinyue
  email: 2018020089@nefu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
– sequence: 2
  givenname: Jiangwei
  orcidid: 0000-0003-4781-5023
  surname: Chu
  fullname: Chu, Jiangwei
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
BookMark eNpNUcFOGzEQtSoqFShf0B4scU5qr-317hFWoSBFtBDganntceIo2GA7B_6-Dosq5jKjp3nvzeidoKMQAyD0g5I5paT_dTEMi9Vq3pBGzJloOkb5F3Tc0LafMcHao0_zN3SW85bU6iok5DGyS182fv-ML3UpkN7w0jvAfxNYb4qPAbuY8GIHpiRv8BNsvNlBxo_ZhzVehI0OBix-GG6xDhavnm7x3V6H4neA72GdIOcq8h19dXqX4eyjn6LHq8XDcD1b_vl9M1wsZ4aJvsyE5MRKNmrQToLTnDgwvBFA29YYYRztWto73Te8_mqcHQl0bQdEED5Cp9kpupl0bdRb9ZL8s05vKmqv3oGY1kqncvhAGZDAOHeOc8OllLraybGzTjgr2DhWrfNJ6yXF1z3korZxn0I9XzEq-mrZN6RusWnLpJhzAvfflRJ1SEdN6ahDOuojncr6ObE8AHxidKyVjLN_SBGNow
CODEN IAECCG
Cites_doi 10.1109/jas.2022.105779
10.3390/batteries9110544
10.3390/app131910910
10.3390/en15072448
10.3390/su15065014
10.1016/j.joule.2023.07.021
10.1002/er.7548
10.3390/wevj15050177
10.3390/batteries10010012
10.1109/TIA.2022.3210081
10.1093/ce/zkad054
10.3390/electronics11111795
10.1002/er.7834
10.1021/acsomega.4c03524
10.3390/electronics11020181
10.1149/1945-7111/ac5cf2
10.1109/tie.2022.3165295
10.3390/en16248010
10.3390/batteries9020131
10.3390/batteries8100145
10.1177/1748006X221080345
10.1109/TTE.2023.3247614
10.61822/amcs-2024-0008
10.1109/TTE.2022.3209629
10.3390/ma15093331
10.3390/s22239522
10.1109/jas.2022.105599
10.1109/JSEN.2022.3209894
10.3390/batteries8100169
10.3390/en15134556
10.1007/s42835-021-00861-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3528314
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 12595
ExternalDocumentID oai_doaj_org_article_ce7e344ff44c4777afa47b8df5fd53bb
10_1109_ACCESS_2025_3528314
10836734
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-5740d73baeaf7efa40fec425e166cc5cf18619fa924025cfdb0e868e0504be8a3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:23:46 EDT 2025
Mon Jun 30 13:06:31 EDT 2025
Tue Jul 01 03:03:05 EDT 2025
Wed Aug 27 01:56:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-5740d73baeaf7efa40fec425e166cc5cf18619fa924025cfdb0e868e0504be8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6709-648X
0000-0003-4781-5023
OpenAccessLink https://doaj.org/article/ce7e344ff44c4777afa47b8df5fd53bb
PQID 3159504920
PQPubID 4845423
PageCount 15
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3528314
ieee_primary_10836734
doaj_primary_oai_doaj_org_article_ce7e344ff44c4777afa47b8df5fd53bb
proquest_journals_3159504920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/jas.2022.105779
– ident: ref28
  doi: 10.3390/batteries9110544
– ident: ref15
  doi: 10.3390/app131910910
– ident: ref11
  doi: 10.3390/en15072448
– ident: ref18
  doi: 10.3390/su15065014
– ident: ref24
  doi: 10.1016/j.joule.2023.07.021
– ident: ref25
  doi: 10.1002/er.7548
– ident: ref29
  doi: 10.3390/wevj15050177
– ident: ref30
  doi: 10.3390/batteries10010012
– ident: ref7
  doi: 10.1109/TIA.2022.3210081
– ident: ref19
  doi: 10.1093/ce/zkad054
– ident: ref23
  doi: 10.3390/electronics11111795
– ident: ref17
  doi: 10.1002/er.7834
– ident: ref31
  doi: 10.1021/acsomega.4c03524
– ident: ref3
  doi: 10.3390/electronics11020181
– ident: ref9
  doi: 10.1149/1945-7111/ac5cf2
– ident: ref4
  doi: 10.1109/tie.2022.3165295
– ident: ref27
  doi: 10.3390/en16248010
– ident: ref22
  doi: 10.3390/batteries9020131
– ident: ref12
  doi: 10.3390/batteries8100145
– ident: ref8
  doi: 10.1177/1748006X221080345
– ident: ref10
  doi: 10.1109/TTE.2023.3247614
– ident: ref13
  doi: 10.61822/amcs-2024-0008
– ident: ref20
  doi: 10.1109/TTE.2022.3209629
– ident: ref21
  doi: 10.3390/ma15093331
– ident: ref26
  doi: 10.3390/s22239522
– ident: ref2
  doi: 10.1109/jas.2022.105599
– ident: ref14
  doi: 10.1109/JSEN.2022.3209894
– ident: ref1
  doi: 10.3390/batteries8100169
– ident: ref16
  doi: 10.3390/en15134556
– ident: ref5
  doi: 10.1007/s42835-021-00861-y
SSID ssj0000816957
Score 2.340778
Snippet The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast's...
The need for lithium battery life forecast algorithms has increased due to the global acceptance of electric vehicles. To further enhance the forecast’s...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 12581
SubjectTerms Accuracy
Algorithms
Electric vehicles
Electrodes
Estimation
Life assessment
Life prediction
Lithium
Lithium batteries
Lithium battery
Lithium-ion batteries
Neural networks
Prediction models
Predictive models
Protocols
quantile regression
Quantiles
remaining life
State of charge
state of health
support vector network
time convolution network
Vectors
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwELWAExxKS0HdllY-9NgsTmzH8ZGuFqEKrUoLiJtlO-PuCjVUNDnQr-_YziJKVam3JEoU22_GM2OP3xDyvo6MK6zWGOQoWwg0EIV1HIpGelY6rnwFie1zUZ9eik_X8no8rJ7OwgBASj6DabxMe_ntrR_iUhlqeMNrxcUm2cTILR_WelhQiRUktFQjs1DJ9NHxbIadwBiwktNEYlKKP6xPIukfq6r8NRUn-3KySxbrluW0kpvp0Lup__WEtPG_m_6cPBs9TXqcReMF2YBuj-w84h98SdqzVb9cDd9pZtm8p2erAPTzXdy8iYBR9GjpPBXKWXl6BcuUQ0dTmgGdd8uUPUAvZgtqu5Z-vVrQ8wGRwomGfoFvOcO22yeXJ_OL2Wkxll0oPJe6L6QSrFXcWbBBQbCCBfCo2lDWtffSh7LBqCtYHTdm8LZ1DJq6ASaZcNBYfkC2utsOXhEqXAXeAuMerSDaSmtBiIrVvkQp0NpPyIc1HOZHZtcwKSph2mT0TETPjOhNyMcI2cOrkRo7PcChNqOmGQ8KuBAhCOGFUspiD5Rr2iBDK7lzE7If4Xn0v4zMhByuJcCMevzTcPT2sFu6Yq__8dkbsh2bmFdlDslWfzfAW_RTevcuyedvuHjlAQ
  priority: 102
  providerName: IEEE
Title Lithium Battery Life Prediction for Electric Vehicles Using Enhanced TCN and SVN Quantile Regression
URI https://ieeexplore.ieee.org/document/10836734
https://www.proquest.com/docview/3159504920
https://doaj.org/article/ce7e344ff44c4777afa47b8df5fd53bb
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQFRSI4yH24JALSgJO_IpLbrUIIbTiLTrLdsbsFhfQslvcv7-xE06LKGgoE0Vx5pt4HpnJN4QcqcS4wpTBJEe7QqCDKJznUNQysNJzHSrIbJ9jdfEgLp_k09Kor9QT1tEDd8CdBtDAhYhRiCC01i46oX3dRBkbyb1P1hd93lIylW1wXSojdU8zVDJzejYcokSYEFbyJDOalOKDK8qM_f2IlU92OTub802y0UeJ9Kx7uh9kBdotsr7EHbhNmqvpfDJd_KEdQ-ZfejWNQK9nqfCSwKYYjdJRHnIzDfQRJrn_jeYWATpqJ7nyT--HY-raht49junNAlFGI0Fv4bnrjm13yMP56H54UfQjE4rApZkXUgvWaO4duKgBoWIRAm5LKJUKQYZY1pgxRWdSUQUPG8-gVjUwyYSH2vFdstq-tLBHqPAVBAeMB_Rg6OecAyEqpkKJGjQmDMjxO3r2tWPGsDmjYMZ2YNsEtu3BHpDfCeH_lyZa63wClW17ZduvlD0gO0k_S-vVXGmONz94V5jt9-Cb5RipoVimYj-_Y-19spbk6T6_HJDV-WwBvzAgmfvD_O4d5n8H_wGHpd2m
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOQAHnkUsFPABbmRxYjtODhzKstWWLise26o3YztjdoVIUZsIlf_CX-G3MXayqwLiWIlbEuXl8ed52ONvCHmSB8YVlpcY5CiTCDQQibEckkI6llquXAaR7XOWTw7E6yN5tEF-rPfCAEBMPoNhOIxr-dWxa8NUGY7wgueKiz6Hch_OvmGEdvpi7xV259Ms2x3PR5OkLyKQOC7LJpFKsEpxa8B4Bd4I5sEhUCHNc-ek82mBMYQ3ZVhmwNPKMijyAphkwkJhOL73ErmMjobMuu1h6ymcULOilKrnMkpZ-XxnNEKxYdSZyWGkTUnFb_YulgXo67j8pfyjRdu9QX6uZNElsnweto0duu9_0ET-t8K6Sa73vjTd6cB_i2xAfZtcO8eweIdU02WzWLZfaMcjekanSw_07UlYngqQpOiz03EsBbR09BAWMUuQxkQKOq4XMT-CzkczauqKfjic0XctYhFVKX0Pn7oc4nqLHFxIM--Szfq4hnuECpuBM8C4QzuP3oAxIETGcpcizsvSDcizVffrrx1_iI5xFyt1hxYd0KJ7tAzIywCR9a2B_DtewK7VvS7RDhRwIbwXwgmllMEWKFtUXvpKcmsHZCvA4dz3OiQMyPYKcbrXVKeaoz-LzSozdv8fjz0mVybzN1M93ZvtPyBXw-92c1DbZLM5aeEhemWNfRTHBiUfLxpfvwDjzUR-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Battery+Life+Prediction+for+Electric+Vehicles+Using+Enhanced+TCN+and+SVN+Quantile+Regression&rft.jtitle=IEEE+access&rft.au=Li%2C+Xinyue&rft.au=Chu%2C+Jiangwei&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=12581&rft.epage=12595&rft_id=info:doi/10.1109%2FACCESS.2025.3528314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3528314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon