Self-assembled α-MnO2 urchin-like microspheres as a high-performance cathode for aqueous Zn-ion batteries

Aqueous Zn-ion batteries (AZIBs) are one of the promising battery technologies for the green energy storage and electric vehicles. As one attractive cathode material for AZIBs, α-MnO 2 materials exhibit superior electrochemical properties. However, their long-term reversibility is still in great sus...

Full description

Saved in:
Bibliographic Details
Published inScience China materials Vol. 63; no. 7; pp. 1196 - 1204
Main Authors Wu, Yunzhao, Tao, Ye, Zhang, Xianfu, Zhang, Kai, Chen, Shengbin, Liu, Yu, Ding, Yong, Cai, Molang, Liu, Xuepeng, Dai, Songyuan
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-8226
2199-4501
DOI10.1007/s40843-020-1293-8

Cover

Loading…
Abstract Aqueous Zn-ion batteries (AZIBs) are one of the promising battery technologies for the green energy storage and electric vehicles. As one attractive cathode material for AZIBs, α-MnO 2 materials exhibit superior electrochemical properties. However, their long-term reversibility is still in great suspense. Considering the decisive effect of the structure and morphology on the α-MnO 2 materials, hierarchical α-MnO 2 materials would be promising to improve the cycle performance of AZIB. Here, we synthesized the α-MnO 2 urchin-like microspheres (AUM) via a self-assembled method. The porous microspheres composed of one-dimensional α-MnO 2 nanofibers with high crystallinity, which improved the surface area and active sites for Zn 2+ intercalation. The AUM-based AZIB realized a high initial capacity of 308.0 mA h g −1 and the highest energy density was 396.7 W h kg −1 The kinetics investigation confirmed the high capacitive contribution and fast ion diffusion of the AUM. Ex-situ XRD measurement further verified the synergistic insertion/extraction of H + and Zn 2+ ions during the charge/discharge process. The superiority of the AUM guaranteed good electrochemical performance and reversible phase evolution, and this application would promote the follow-up research on the advanced AZIB.
AbstractList Aqueous Zn-ion batteries (AZIBs) are one of the promising battery technologies for the green energy storage and electric vehicles. As one attractive cathode material for AZIBs, α-MnO 2 materials exhibit superior electrochemical properties. However, their long-term reversibility is still in great suspense. Considering the decisive effect of the structure and morphology on the α-MnO 2 materials, hierarchical α-MnO 2 materials would be promising to improve the cycle performance of AZIB. Here, we synthesized the α-MnO 2 urchin-like microspheres (AUM) via a self-assembled method. The porous microspheres composed of one-dimensional α-MnO 2 nanofibers with high crystallinity, which improved the surface area and active sites for Zn 2+ intercalation. The AUM-based AZIB realized a high initial capacity of 308.0 mA h g −1 and the highest energy density was 396.7 W h kg −1 The kinetics investigation confirmed the high capacitive contribution and fast ion diffusion of the AUM. Ex-situ XRD measurement further verified the synergistic insertion/extraction of H + and Zn 2+ ions during the charge/discharge process. The superiority of the AUM guaranteed good electrochemical performance and reversible phase evolution, and this application would promote the follow-up research on the advanced AZIB.
Aqueous Zn-ion batteries (AZIBs) are one of the promising battery technologies for the green energy storage and electric vehicles. As one attractive cathode material for AZIBs, α-MnO2 materials exhibit superior electrochemical properties. However, their long-term reversibility is still in great suspense. Considering the decisive effect of the structure and morphology on the α-MnO2 materials, hierarchical α-MnO2 materials would be promising to improve the cycle performance of AZIB. Here, we synthesized the α-MnO2 urchin-like microspheres (AUM) via a self-assembled method. The porous microspheres composed of one-dimensional α-MnO2 nanofibers with high crystallinity, which improved the surface area and active sites for Zn2+ intercalation. The AUM-based AZIB realized a high initial capacity of 308.0 mA h g−1 and the highest energy density was 396.7 W h kg−1 The kinetics investigation confirmed the high capacitive contribution and fast ion diffusion of the AUM. Ex-situ XRD measurement further verified the synergistic insertion/extraction of H+ and Zn2+ ions during the charge/discharge process. The superiority of the AUM guaranteed good electrochemical performance and reversible phase evolution, and this application would promote the follow-up research on the advanced AZIB.
Author Tao, Ye
Chen, Shengbin
Cai, Molang
Liu, Yu
Wu, Yunzhao
Zhang, Xianfu
Ding, Yong
Liu, Xuepeng
Dai, Songyuan
Zhang, Kai
Author_xml – sequence: 1
  givenname: Yunzhao
  surname: Wu
  fullname: Wu, Yunzhao
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 2
  givenname: Ye
  surname: Tao
  fullname: Tao, Ye
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 3
  givenname: Xianfu
  surname: Zhang
  fullname: Zhang, Xianfu
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 4
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 5
  givenname: Shengbin
  surname: Chen
  fullname: Chen, Shengbin
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 6
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 7
  givenname: Yong
  surname: Ding
  fullname: Ding, Yong
  email: dingy@ncepu.edu.cn
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 8
  givenname: Molang
  surname: Cai
  fullname: Cai, Molang
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 9
  givenname: Xuepeng
  surname: Liu
  fullname: Liu, Xuepeng
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
– sequence: 10
  givenname: Songyuan
  surname: Dai
  fullname: Dai, Songyuan
  email: sydai@ncepu.edu.cn
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University
BookMark eNp9kM9KxDAQxoMouK77AN4CnqNJmrbJURb_wcoe1IuXkKbTbdZuuibtwcfyRXwms6wgCAoDMwzzm2_mO0GHvveA0BmjF4zS8jIKKkVGKKeEcZUReYAmnClFRE7ZYaqpyonkvDhGsxjXlFJW5IwpOUHrR-gaYmKETdVBjT8_yINfcjwG2zpPOvcKeONs6OO2hQARmxS4dauWbCE0fdgYbwFbM7R9DTg1sHkboR8jfvHE9R5XZhggOIin6KgxXYTZd56i55vrp_kdWSxv7-dXC2KzXA0kL2ypDGRglLRQqYpamgnDOK9zU4iaNaIGJUrLOa84A8FFwTJoRCmbrCiqbIrO93u3oU-nxEGv-zH4JKm5YKWUuVR5mmL7qd1vMUCjt8FtTHjXjOqdq3rvqk6u6p2rWiam_MVYN5ghfTkE47p_Sb4nY1LxKwg_N_0NfQHcfY5s
CitedBy_id crossref_primary_10_1016_j_mtchem_2022_101294
crossref_primary_10_1021_acsnano_1c01389
crossref_primary_10_3390_nano12152514
crossref_primary_10_1016_j_jechem_2021_04_046
crossref_primary_10_1002_batt_202300099
crossref_primary_10_1021_acsaem_2c03360
crossref_primary_10_1002_cssc_202401606
crossref_primary_10_1039_D2DT03652E
crossref_primary_10_1002_cssc_202002493
crossref_primary_10_1021_acsaem_1c02064
crossref_primary_10_1149_1945_7111_ac89b7
crossref_primary_10_1007_s40843_021_1987_4
crossref_primary_10_2139_ssrn_4123914
crossref_primary_10_1007_s10008_023_05555_1
crossref_primary_10_1016_j_ijoes_2024_100663
crossref_primary_10_1016_j_jmst_2021_10_040
crossref_primary_10_1016_j_jpowsour_2023_232854
crossref_primary_10_1002_chem_202403903
crossref_primary_10_1002_tcr_202300212
crossref_primary_10_1016_j_ensm_2020_10_011
crossref_primary_10_1002_slct_202200962
crossref_primary_10_1149_1945_7111_ace659
crossref_primary_10_1016_S1003_6326_24_66634_3
crossref_primary_10_1021_acs_nanolett_1c03409
crossref_primary_10_1002_smll_202100318
crossref_primary_10_1016_j_scriptamat_2023_115893
crossref_primary_10_1007_s40843_021_2006_y
crossref_primary_10_1021_acsami_2c06368
crossref_primary_10_1016_j_apsusc_2022_153890
crossref_primary_10_1016_j_jwpe_2022_103071
crossref_primary_10_1016_j_mcat_2023_113814
crossref_primary_10_1088_1361_6528_ac15cb
crossref_primary_10_1007_s10008_022_05160_8
crossref_primary_10_1016_j_ensm_2022_03_024
crossref_primary_10_1002_batt_202100313
crossref_primary_10_1002_smtd_202100578
crossref_primary_10_1002_sstr_202200316
crossref_primary_10_1007_s40843_021_1974_7
crossref_primary_10_1007_s40843_022_2179_7
crossref_primary_10_1016_j_cej_2022_136008
crossref_primary_10_1002_sstr_202300136
crossref_primary_10_1016_j_cej_2023_147197
crossref_primary_10_1021_acsaem_2c00252
crossref_primary_10_1021_acsaenm_3c00438
crossref_primary_10_1016_j_ceramint_2022_11_199
crossref_primary_10_1002_adfm_202103070
Cites_doi 10.1002/smll.201703850
10.1103/PhysRevB.65.113102
10.1002/aenm.201803815
10.1016/j.jallcom.2019.02.107
10.1021/acsenergylett.8b01426
10.1021/ic0606274
10.1021/acsami.9b04583
10.1002/adfm.201907120
10.1002/adma.201904948
10.1021/acs.chemmater.8b05093
10.1021/acsenergylett.8b01552
10.1021/acsami.8b08297
10.1002/anie.201106307
10.1016/j.electacta.2019.03.087
10.1007/s40843-019-1190-3
10.1002/adfm.201802564
10.1039/C8EE01651H
10.1002/anie.201904174
10.1039/B414204G
10.1038/s41467-017-00467-x
10.1002/adma.201802569
10.1007/s40843-017-9139-8
10.1002/adfm.201808375
10.1039/C7EE03232C
10.1016/j.nanoen.2019.04.038
10.1016/j.apsusc.2018.07.147
10.1002/adma.201901521
10.1007/s40843-018-9359-7
10.1002/adfm.201901336
10.1016/j.pmatsci.2019.100620
10.1002/adfm.201807331
10.1039/C9EE02526J
10.1039/C7TA07170A
10.1149/2.0801914jes
10.1016/j.ensm.2018.12.019
10.1021/acsaem.9b01554
10.1016/j.jechem.2017.04.002
10.1002/smll.201905842
10.1016/j.electacta.2019.05.147
10.1038/s41467-018-04949-4
10.1016/j.electacta.2018.04.012
10.1002/anie.201903941
10.1021/acsenergylett.8b02053
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s40843-020-1293-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL 自组装α-MnO2海胆状微米球应用于水系锌离子 电池的高性能阴极
EISSN 2199-4501
EndPage 1204
ExternalDocumentID 10_1007_s40843_020_1293_8
GroupedDBID -EM
-SB
-S~
0R~
4.4
406
5VR
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAXDM
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BAPOH
BGNMA
CAJEB
CCEZO
CDRFL
CJPJV
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FA0
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HVGLF
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
Q--
RIG
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
U1G
U5L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7V
Z7X
ZMTXR
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c359t-56c79ae3ea98ceb9b0c034a122d5a64d1f4de947c222b21e424613ef478f366b3
IEDL.DBID AGYKE
ISSN 2095-8226
IngestDate Wed Aug 13 23:46:16 EDT 2025
Tue Jul 01 01:00:52 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Fri Feb 21 02:28:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Zn
reversible phase evolution
α-MnO
synergistic H
urchin-like microspheres
insertion/extraction
aqueous Zn-ion batteries
fast ion diffusion coefficients
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-56c79ae3ea98ceb9b0c034a122d5a64d1f4de947c222b21e424613ef478f366b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s40843-020-1293-8.pdf
PQID 2417885895
PQPubID 2044436
PageCount 9
ParticipantIDs proquest_journals_2417885895
crossref_primary_10_1007_s40843_020_1293_8
crossref_citationtrail_10_1007_s40843_020_1293_8
springer_journals_10_1007_s40843_020_1293_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China materials
PublicationTitleAbbrev Sci. China Mater
PublicationYear 2020
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Galakhov, Demeter, Bartkowski (CR26) 2002; 65
Qiu, Chen, Yang (CR37) 2018; 272
Wu, Zhang, Yan (CR10) 2018; 14
Hu, Wu, Wang (CR6) 2018; 30
Wu, Ding, Hayat (CR19) 2018; 459
Fang, Zhu, Chen (CR25) 2019; 29
Zhang, Liu, Fang (CR18) 2019; 31
Chen, Yang, Qin (CR34) 2019; 317
Yang, Tang, Fang (CR39) 2018; 11
Gou, Xue, Mou (CR14) 2019; 166
Xiong, Yu, Wu (CR24) 2019; 9
Du, Yu, Wang (CR22) 2020; 63
Li, Ding, Xiong (CR20) 2005; 7
Wan, Niu (CR2) 2019; 58
Yuan, Zhang, Pu (CR36) 2018; 10
Li, Wang, Salvador (CR42) 2019; 31
Islam, Alfaruqi, Song (CR13) 2017; 26
Hao, Peng, Qin (CR23) 2017; 60
Li, Han, Huang (CR30) 2018; 11
Zhang, Wang, Liu (CR35) 2019; 21
Chao, Zhou, Ye (CR41) 2019; 58
Liu, Wang, Liu (CR17) 2018; 62
Huang, Wang, Hou (CR43) 2018; 9
Song, Tan, Chao (CR1) 2018; 28
Song, Lee, Song (CR3) 2019; 4
Tang, Shan, Liang (CR4) 2019; 12
Wu, Wang, Tao (CR8) 2020; 30
Li, Rong, Xie (CR21) 2006; 45
Islam, Alfaruqi, Mathew (CR31) 2017; 5
Ding, Xu, Chen (CR16) 2019; 787
Ding, Yang, Li (CR15) 2020; 109
Fang, Zhou, Pan (CR11) 2018; 3
Zhang, Cheng, Liu (CR27) 2017; 8
Yang, Mo, Liu (CR40) 2019; 31
Wu, Zhang, Chen (CR9) 2019; 3
Gao, Wu, Li (CR29) 2020; 16
Lian, Sun, Xu (CR12) 2019; 62
Xu, Li, Du (CR5) 2012; 51
Zhang, Jia, Dong (CR28) 2019; 29
Luo, Xie, Han (CR33) 2019; 29
Qin, Chen, Wang (CR38) 2019; 306
Konarov, Voronina, Jo (CR7) 2018; 3
Liu, Zhou, Liu (CR32) 2019; 11
Y Ding (1293_CR15) 2020; 109
B Wu (1293_CR10) 2018; 14
B Li (1293_CR21) 2006; 45
G Fang (1293_CR25) 2019; 29
Y Wu (1293_CR8) 2020; 30
X Gao (1293_CR29) 2020; 16
M Song (1293_CR1) 2018; 28
L Gou (1293_CR14) 2019; 166
T Xiong (1293_CR24) 2019; 9
H Zhang (1293_CR35) 2019; 21
J Huang (1293_CR43) 2018; 9
T Yuan (1293_CR36) 2018; 10
Q Yang (1293_CR40) 2019; 31
Z Du (1293_CR22) 2020; 63
D Chao (1293_CR41) 2019; 58
Y Liu (1293_CR32) 2019; 11
S Islam (1293_CR13) 2017; 26
S Islam (1293_CR31) 2017; 5
S Luo (1293_CR33) 2019; 29
J Hao (1293_CR23) 2017; 60
N Zhang (1293_CR27) 2017; 8
Y Yang (1293_CR39) 2018; 11
H Zhang (1293_CR18) 2019; 31
VR Galakhov (1293_CR26) 2002; 65
H Li (1293_CR30) 2018; 11
L Chen (1293_CR34) 2019; 317
Z Li (1293_CR20) 2005; 7
N Zhang (1293_CR28) 2019; 29
A Konarov (1293_CR7) 2018; 3
Y Wu (1293_CR9) 2019; 3
S Lian (1293_CR12) 2019; 62
C Xu (1293_CR5) 2012; 51
Q Liu (1293_CR17) 2018; 62
YZ Wu (1293_CR19) 2018; 459
Y Hu (1293_CR6) 2018; 30
H Qin (1293_CR38) 2019; 306
B Tang (1293_CR4) 2019; 12
G Fang (1293_CR11) 2018; 3
Y Li (1293_CR42) 2019; 31
F Wan (1293_CR2) 2019; 58
WJ Song (1293_CR3) 2019; 4
Y Ding (1293_CR16) 2019; 787
N Qiu (1293_CR37) 2018; 272
References_xml – volume: 11
  start-page: 941
  year: 2018
  end-page: 951
  ident: CR30
  article-title: An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte
  publication-title: Energy Environ Sci
– volume: 109
  start-page: 100620
  year: 2020
  ident: CR15
  article-title: Nanoporous TiO spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications
  publication-title: Prog Mater Sci
– volume: 21
  start-page: 154
  year: 2019
  end-page: 161
  ident: CR35
  article-title: Extracting oxygen anions from ZnMn O : Robust cathode for flexible all-solid-state Zn-ion batteries
  publication-title: Energy Storage Mater
– volume: 11
  start-page: 3157
  year: 2018
  end-page: 3162
  ident: CR39
  article-title: Li+ intercalated V O · H O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode
  publication-title: Energy Environ Sci
– volume: 29
  start-page: 1901336
  year: 2019
  ident: CR33
  article-title: Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery
  publication-title: Adv Funct Mater
– volume: 272
  start-page: 154
  year: 2018
  end-page: 160
  ident: CR37
  article-title: Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries
  publication-title: Electrochim Acta
– volume: 29
  start-page: 1808375
  year: 2019
  ident: CR25
  article-title: Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 34108
  year: 2018
  end-page: 34115
  ident: CR36
  article-title: Novel alkaline Zn/Na MnO dualion battery with a high capacity and long cycle lifespan
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 405
  year: 2017
  ident: CR27
  article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
  publication-title: Nat Commun
– volume: 58
  start-page: 7823
  year: 2019
  end-page: 7828
  ident: CR41
  article-title: An electrolytic Zn-MnO battery for high-voltage and scalable energy storage
  publication-title: Angew Chem Int Ed
– volume: 459
  start-page: 430
  year: 2018
  end-page: 437
  ident: CR19
  article-title: Enlarged working potential window for MnO supercapacitors with neutral aqueous electrolytes
  publication-title: Appl Surf Sci
– volume: 9
  start-page: 1803815
  year: 2019
  ident: CR24
  article-title: Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery
  publication-title: Adv Energy Mater
– volume: 9
  start-page: 2906
  year: 2018
  ident: CR43
  article-title: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery
  publication-title: Nat Commun
– volume: 166
  start-page: A3362
  year: 2019
  end-page: A3368
  ident: CR14
  article-title: α-MnO @In O nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance
  publication-title: J Electrochem Soc
– volume: 4
  start-page: 177
  year: 2019
  end-page: 186
  ident: CR3
  article-title: Stretchable aqueous batteries: Progress and prospects
  publication-title: ACS Energy Lett
– volume: 51
  start-page: 933
  year: 2012
  end-page: 935
  ident: CR5
  article-title: Energetic zinc ion chemistry: The rechargeable zinc ion battery
  publication-title: Angew Chem Int Ed
– volume: 787
  start-page: 779
  year: 2019
  end-page: 785
  ident: CR16
  article-title: Pierced ZnO nanosheets a template-free photopolymerization in microemulsion
  publication-title: J Alloys Compd
– volume: 28
  start-page: 1802564
  year: 2018
  ident: CR1
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv Funct Mater
– volume: 5
  start-page: 23299
  year: 2017
  end-page: 23309
  ident: CR31
  article-title: Facile synthesis and the exploration of the zinc storage mechanism of β-MnO nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries
  publication-title: J Mater Chem A
– volume: 3
  start-page: 2620
  year: 2018
  end-page: 2640
  ident: CR7
  article-title: Present and future perspective on electrode materials for rechargeable zinc-ion batteries
  publication-title: ACS Energy Lett
– volume: 317
  start-page: 155
  year: 2019
  end-page: 163
  ident: CR34
  article-title: Graphene-wrapped hollow ZnMn O microspheres for high-performance cathode materials of aqueous zinc ion batteries
  publication-title: Electrochim Acta
– volume: 58
  start-page: 16358
  year: 2019
  end-page: 16367
  ident: CR2
  article-title: Design strategies for vanadium-based aqueous zinc-ion batteries
  publication-title: Angew Chem Int Ed
– volume: 7
  start-page: 918
  year: 2005
  end-page: 920
  ident: CR20
  article-title: One-step solution-based catalytic route to fabricate novel α-MnO hierarchical structures on a large scale
  publication-title: Chem Commun
– volume: 60
  start-page: 1168
  year: 2017
  end-page: 1178
  ident: CR23
  article-title: Fabrication of hybrid Co O /NiCo O nanosheets sandwiched by nanoneedles for high-performance supercapacitors using a novel electrochemical ion exchange
  publication-title: Sci China Mater
– volume: 3
  start-page: 319
  year: 2019
  end-page: 327
  ident: CR9
  article-title: Proton inserted manganese dioxides as a reversible cathode for aqueous Zn-ion batteries
  publication-title: ACS Appl Energy Mater
– volume: 63
  start-page: 327
  year: 2020
  end-page: 338
  ident: CR22
  article-title: Cubic imidazolate frameworks-derived CoFe alloy nanoparticles-embedded N-doped graphitic carbon for discharging reaction of Zn-air battery
  publication-title: Sci China Mater
– volume: 16
  start-page: 1905842
  year: 2020
  ident: CR29
  article-title: H -insertion boosted α-MnO for an aqueous Zn-ion battery
  publication-title: Small
– volume: 12
  start-page: 3288
  year: 2019
  end-page: 3304
  ident: CR4
  article-title: Issues and opportunities facing aqueous zinc-ion batteries
  publication-title: Energy Environ Sci
– volume: 26
  start-page: 815
  year: 2017
  end-page: 819
  ident: CR13
  article-title: Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications
  publication-title: J Energy Chem
– volume: 31
  start-page: 1901521
  year: 2019
  ident: CR40
  article-title: Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10 000-cycle lifespan and superior rate capability
  publication-title: Adv Mater
– volume: 62
  start-page: 79
  year: 2019
  end-page: 84
  ident: CR12
  article-title: Built-in oriented electric field facilitating durable Zn-MnO battery
  publication-title: Nano Energy
– volume: 29
  start-page: 1807331
  year: 2019
  ident: CR28
  article-title: Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries
  publication-title: Adv Funct Mater
– volume: 30
  start-page: 1907120
  year: 2020
  ident: CR8
  article-title: Electrochemically derived graphene-like carbon film as a superb substrate for high-performance aqueous Zn-ion batteries
  publication-title: Adv Funct Mater
– volume: 30
  start-page: 1802569
  year: 2018
  ident: CR6
  article-title: Manganese-oxide-based electrode materials for energy storage applications: How close are we to the theoretical capacitance?
  publication-title: Adv Mater
– volume: 62
  start-page: 624
  year: 2018
  end-page: 632
  ident: CR17
  article-title: N-doped carbon-coated Co O nanosheet array/carbon cloth for stable rechargeable Zn-air batteries
  publication-title: Sci China Mater
– volume: 65
  start-page: 113102
  year: 2002
  ident: CR26
  article-title: Mn 3s exchange splitting in mixed-valence manganites
  publication-title: Phys Rev B
– volume: 31
  start-page: 2036
  year: 2019
  end-page: 2047
  ident: CR42
  article-title: Reaction mechanisms for long-life rechargeable Zn/MnO batteries
  publication-title: Chem Mater
– volume: 14
  start-page: 1703850
  year: 2018
  ident: CR10
  article-title: Graphene scroll-coated α-MnO nanowires as high-performance cathode materials for aqueous Zn-ion battery
  publication-title: Small
– volume: 31
  start-page: 1904948
  year: 2019
  ident: CR18
  article-title: Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption
  publication-title: Adv Mater
– volume: 306
  start-page: 307
  year: 2019
  end-page: 316
  ident: CR38
  article-title: V O hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries
  publication-title: Electrochim Acta
– volume: 45
  start-page: 6404
  year: 2006
  end-page: 6410
  ident: CR21
  article-title: Low-temperature synthesis of α-MnO hollow urchins and their application in rechargeable Li batteries
  publication-title: Inorg Chem
– volume: 3
  start-page: 2480
  year: 2018
  end-page: 2501
  ident: CR11
  article-title: Recent advances in aqueous zinc-ion batteries
  publication-title: ACS Energy Lett
– volume: 11
  start-page: 19191
  year: 2019
  end-page: 19199
  ident: CR32
  article-title: Tailoring three-dimensional composite architecture for advanced zinc-ion batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 14
  start-page: 1703850
  year: 2018
  ident: 1293_CR10
  publication-title: Small
  doi: 10.1002/smll.201703850
– volume: 65
  start-page: 113102
  year: 2002
  ident: 1293_CR26
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.65.113102
– volume: 9
  start-page: 1803815
  year: 2019
  ident: 1293_CR24
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201803815
– volume: 787
  start-page: 779
  year: 2019
  ident: 1293_CR16
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.02.107
– volume: 3
  start-page: 2480
  year: 2018
  ident: 1293_CR11
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b01426
– volume: 45
  start-page: 6404
  year: 2006
  ident: 1293_CR21
  publication-title: Inorg Chem
  doi: 10.1021/ic0606274
– volume: 11
  start-page: 19191
  year: 2019
  ident: 1293_CR32
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b04583
– volume: 30
  start-page: 1907120
  year: 2020
  ident: 1293_CR8
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201907120
– volume: 31
  start-page: 1904948
  year: 2019
  ident: 1293_CR18
  publication-title: Adv Mater
  doi: 10.1002/adma.201904948
– volume: 31
  start-page: 2036
  year: 2019
  ident: 1293_CR42
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.8b05093
– volume: 3
  start-page: 2620
  year: 2018
  ident: 1293_CR7
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b01552
– volume: 10
  start-page: 34108
  year: 2018
  ident: 1293_CR36
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b08297
– volume: 51
  start-page: 933
  year: 2012
  ident: 1293_CR5
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201106307
– volume: 306
  start-page: 307
  year: 2019
  ident: 1293_CR38
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.03.087
– volume: 63
  start-page: 327
  year: 2020
  ident: 1293_CR22
  publication-title: Sci China Mater
  doi: 10.1007/s40843-019-1190-3
– volume: 28
  start-page: 1802564
  year: 2018
  ident: 1293_CR1
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201802564
– volume: 11
  start-page: 3157
  year: 2018
  ident: 1293_CR39
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE01651H
– volume: 58
  start-page: 7823
  year: 2019
  ident: 1293_CR41
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201904174
– volume: 7
  start-page: 918
  year: 2005
  ident: 1293_CR20
  publication-title: Chem Commun
  doi: 10.1039/B414204G
– volume: 8
  start-page: 405
  year: 2017
  ident: 1293_CR27
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00467-x
– volume: 30
  start-page: 1802569
  year: 2018
  ident: 1293_CR6
  publication-title: Adv Mater
  doi: 10.1002/adma.201802569
– volume: 60
  start-page: 1168
  year: 2017
  ident: 1293_CR23
  publication-title: Sci China Mater
  doi: 10.1007/s40843-017-9139-8
– volume: 29
  start-page: 1808375
  year: 2019
  ident: 1293_CR25
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201808375
– volume: 11
  start-page: 941
  year: 2018
  ident: 1293_CR30
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03232C
– volume: 62
  start-page: 79
  year: 2019
  ident: 1293_CR12
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.038
– volume: 459
  start-page: 430
  year: 2018
  ident: 1293_CR19
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.07.147
– volume: 31
  start-page: 1901521
  year: 2019
  ident: 1293_CR40
  publication-title: Adv Mater
  doi: 10.1002/adma.201901521
– volume: 62
  start-page: 624
  year: 2018
  ident: 1293_CR17
  publication-title: Sci China Mater
  doi: 10.1007/s40843-018-9359-7
– volume: 29
  start-page: 1901336
  year: 2019
  ident: 1293_CR33
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201901336
– volume: 109
  start-page: 100620
  year: 2020
  ident: 1293_CR15
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2019.100620
– volume: 29
  start-page: 1807331
  year: 2019
  ident: 1293_CR28
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201807331
– volume: 12
  start-page: 3288
  year: 2019
  ident: 1293_CR4
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE02526J
– volume: 5
  start-page: 23299
  year: 2017
  ident: 1293_CR31
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA07170A
– volume: 166
  start-page: A3362
  year: 2019
  ident: 1293_CR14
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0801914jes
– volume: 21
  start-page: 154
  year: 2019
  ident: 1293_CR35
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.12.019
– volume: 3
  start-page: 319
  year: 2019
  ident: 1293_CR9
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.9b01554
– volume: 26
  start-page: 815
  year: 2017
  ident: 1293_CR13
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.04.002
– volume: 16
  start-page: 1905842
  year: 2020
  ident: 1293_CR29
  publication-title: Small
  doi: 10.1002/smll.201905842
– volume: 317
  start-page: 155
  year: 2019
  ident: 1293_CR34
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.05.147
– volume: 9
  start-page: 2906
  year: 2018
  ident: 1293_CR43
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04949-4
– volume: 272
  start-page: 154
  year: 2018
  ident: 1293_CR37
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.04.012
– volume: 58
  start-page: 16358
  year: 2019
  ident: 1293_CR2
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201903941
– volume: 4
  start-page: 177
  year: 2019
  ident: 1293_CR3
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b02053
SSID ssj0001651198
Score 2.360852
Snippet Aqueous Zn-ion batteries (AZIBs) are one of the promising battery technologies for the green energy storage and electric vehicles. As one attractive cathode...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1196
SubjectTerms Cathodes
Chemistry and Materials Science
Chemistry/Food Science
Clean energy
Diffusion rate
Electric vehicles
Electrochemical analysis
Electrode materials
Energy storage
Flux density
Ion diffusion
Lithium
Manganese dioxide
Materials Science
Microspheres
Morphology
Nanofibers
Rechargeable batteries
Self-assembly
Title Self-assembled α-MnO2 urchin-like microspheres as a high-performance cathode for aqueous Zn-ion batteries
URI https://link.springer.com/article/10.1007/s40843-020-1293-8
https://www.proquest.com/docview/2417885895
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEB7RcGkP_LVVA6HaQ09Fixzven-OUdUQFUEPBYn2Yu3aEwkwDqqTC2_Fi_SZOuvYSYhaJCSf7PXaOzPe_dYz8w3AJ6e9CQmepAEZc2md5T4ROQ9U4ajRWe1qts9zNbqU366SqyaPu2qj3VuXZD1TL5LdZGRk8DmGaAIruHkFmwQ_ItmBzcHJz9OVXysqOMfqWnQEIOixsWr9mf_q5-mKtISZa57ResEZbsNF-6rzOJPb49nUH2cPayyOLxzLDmw1AJQN5hazCxtY7sGbFVrCt3DzA4sxJ1SNd77AnP155Gfl95iFulHXJS-ub5HdhUC-KnASYMUcHSwQH_P7ZR4CC4ywkxwZnWCORjuZVexXyckQmK9ZPWmT_g4uh18vvox4U5OBZyKxU56oTFuHgrRoMvTWR1kkpOvHcZ44JfP-WOZopc4Id_i4jzLw1QkcS23GQikv3kOnnJT4ARj2CRxIZaSxTurIexTOW5vF2iiagbELUauXNGsIy0PdjCJdUC3XYkxJjGkQY2q68Hlxy_2creO5xr1W2Wnz4VYpARptTGJs0oWjVnfLy__tbP9FrQ_gdRyUX4f99qAz_T3DQwI3U_-xMea_ogfuUA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VOACH0vJQl1d94AQyysaOH0eEgKU8emCRKJfITmYlypJFZPfCv-of6W_qOJvsUtQiIeWUOE48M7E_Z2a-Adhx2puQ4EkakDGX1lnuE5HzQBWOGp3VrmL7vFSda_ntJrmp87jLJtq9cUlWM_Uk2U1GRgafY4gmsIKbGZiTtAUns547OPlx9uLXigrOsaoWHQEIemysGn_mv_r5e0WawsxXntFqwTlegm7zquM4k_v90dDvZ8-vWBzfOZZP8LEGoOxgbDGf4QMWy7D4gpZwBX5eYb_HCVXjg-9jzn7_4hfF95iFulF3Be_f3SN7CIF8ZeAkwJI5OlggPuaP0zwEFhhhBzkyOsEcjXYwKtltwckQmK9YPWmTvgrXx0fdww6vazLwTCR2yBOVaetQkBZNht76KIuEdO04zhOnZN7uyRyt1BnhDh-3UQa-OoE9qU1PKOXFGswWgwK_AMM2gQOpjDTWSR15j8J5a7NYG0UzMLYgavSSZjVheaib0U8nVMuVGFMSYxrEmJoW7E5ueRyzdbzVeLNRdlp_uGVKgEYbkxibtGCv0d308n87W39X668w3-lenKfnp5dnG7AQB0OoQoA3YXb4NMItAjpDv10b9h_8mPE_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHdJGq9sCjLWLLoz5wamXIxo4fxxXtQnkViSJBL8FOJhJlN7tqshf-FX-kv6l2NtkFVCpVSDkljmV7JvEkM_MNwJaRVvkETycBHlKujaY2Yin1qHCUaLQ0Fe3zROyf84OL6KKuc1o00e6NS3KS0-ApTXm5M0qznWniGw8U9_5HH1mgGVUvYJ57tF0L5rt7l4f3frMI7yir6tI5Y8INIRSNb_Nv_TzcnWYm5yMvabX59Bbhqhn2JObkZntc2u3k9hHR8RnzWoKF2jAl3YkmLcMc5m_g9T1c4Vv4eYb9jDprGwe2jyn5fUeP828h8fWkrnPav75BMvABfoVnFWBBjDuIByLT0Sw_gXhS7DBF4k4Q42Y-HBfkR06dghBb0T7dx_s7OO99-b67T-taDTRhkS5pJBKpDTInXZWg1TZIAsZNJwzTyAiedjKeouYycfaIDTvIPceOYcalypgQlq1AKx_muAoEO85o4EJxpQ2XgbXIjNU6CaUS7s2MbQgaGcVJDTL39TT68RTBXC1j7JYx9ssYqzZ8nN4ymlA8_tV4vRF8XD_QRewMHalUpHTUhk-NHGeXn-zs_X-1_gAvTz_34qOvJ4dr8Cr0elBFBq9Dq_w1xg1n_5R2s9bxPxb4-iM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+%CE%B1-MnO2+urchin-like+microspheres+as+a+high-performance+cathode+for+aqueous+Zn-ion+batteries&rft.jtitle=Science+China+materials&rft.au=Wu%2C+Yunzhao&rft.au=Tao%2C+Ye&rft.au=Zhang%2C+Xianfu&rft.au=Zhang%2C+Kai&rft.date=2020-07-01&rft.pub=Science+China+Press&rft.issn=2095-8226&rft.eissn=2199-4501&rft.volume=63&rft.issue=7&rft.spage=1196&rft.epage=1204&rft_id=info:doi/10.1007%2Fs40843-020-1293-8&rft.externalDocID=10_1007_s40843_020_1293_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8226&client=summon