Joint Computing and Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System

Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality services for vehicles. However, a variety of vehicular applications and time-varying network status make it challenging for ITS to allocate resour...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 22; no. 8; pp. 5201 - 5212
Main Authors Ning, Zhaolong, Zhang, Kaiyuan, Wang, Xiaojie, Obaidat, Mohammad S., Guo, Lei, Hu, Xiping, Hu, Bin, Guo, Yi, Sadoun, Balqies, Kwok, Ricky Y. K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality services for vehicles. However, a variety of vehicular applications and time-varying network status make it challenging for ITS to allocate resources efficiently. Artificial intelligence algorithms, owning the cognitive capability for diverse and time-varying features of Internet of Connected Vehicles (IoCVs), enable an intent-based networking for ITS to tackle the above-mentioned challenges. In this paper, we develop an intent-based traffic control system by investigating Deep Reinforcement Learning (DRL) for 5G-envisioned IoCVs, which can dynamically orchestrate edge computing and content caching to improve the profits of Mobile Network Operator (MNO). By jointly analyzing MNO's revenue and users' quality of experience, we define a profit function to calculate the MNO's profits. After that, we formulate a joint optimization problem to maximize MNO's profits, and develop an intelligent traffic control scheme by investigating DRL, which can improve system profits of the MNO and allocate network resources effectively. Experimental results based on real traffic data demonstrate our designed system is efficient and well-performed.
AbstractList Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality services for vehicles. However, a variety of vehicular applications and time-varying network status make it challenging for ITS to allocate resources efficiently. Artificial intelligence algorithms, owning the cognitive capability for diverse and time-varying features of Internet of Connected Vehicles (IoCVs), enable an intent-based networking for ITS to tackle the above-mentioned challenges. In this paper, we develop an intent-based traffic control system by investigating Deep Reinforcement Learning (DRL) for 5G-envisioned IoCVs, which can dynamically orchestrate edge computing and content caching to improve the profits of Mobile Network Operator (MNO). By jointly analyzing MNO's revenue and users' quality of experience, we define a profit function to calculate the MNO's profits. After that, we formulate a joint optimization problem to maximize MNO's profits, and develop an intelligent traffic control scheme by investigating DRL, which can improve system profits of the MNO and allocate network resources effectively. Experimental results based on real traffic data demonstrate our designed system is efficient and well-performed.
Author Hu, Xiping
Hu, Bin
Guo, Yi
Guo, Lei
Sadoun, Balqies
Zhang, Kaiyuan
Obaidat, Mohammad S.
Kwok, Ricky Y. K.
Wang, Xiaojie
Ning, Zhaolong
Author_xml – sequence: 1
  givenname: Zhaolong
  orcidid: 0000-0002-7870-5524
  surname: Ning
  fullname: Ning, Zhaolong
  email: z.ning@ieee.org
  organization: Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Kaiyuan
  orcidid: 0000-0001-7197-867X
  surname: Zhang
  fullname: Zhang, Kaiyuan
  email: zky123123@live.com
  organization: School of Software, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Xiaojie
  orcidid: 0000-0003-4098-6399
  surname: Wang
  fullname: Wang, Xiaojie
  email: xiaojie.wang@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong
– sequence: 4
  givenname: Mohammad S.
  orcidid: 0000-0002-1569-9657
  surname: Obaidat
  fullname: Obaidat, Mohammad S.
  email: m.s.obaidat@ieee.org
  organization: College of Computing and Informatics, The University of Sharjah, Sharjah, UAE
– sequence: 5
  givenname: Lei
  orcidid: 0000-0001-5860-0082
  surname: Guo
  fullname: Guo, Lei
  email: guolei@cqupt.edu.cn
  organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 6
  givenname: Xiping
  orcidid: 0000-0002-4952-699X
  surname: Hu
  fullname: Hu, Xiping
  email: xp.hu@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 7
  givenname: Bin
  orcidid: 0000-0003-3514-5413
  surname: Hu
  fullname: Hu, Bin
  email: bh@lzu.edu.cn
  organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 8
  givenname: Yi
  surname: Guo
  fullname: Guo, Yi
  email: xuanyi_guo@163.com
  organization: The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
– sequence: 9
  givenname: Balqies
  surname: Sadoun
  fullname: Sadoun, Balqies
  email: sadounbalqies@gmail.com
  organization: College of Engineering, Al-Balqa' Applied University, Al-Salt, Jordan
– sequence: 10
  givenname: Ricky Y. K.
  surname: Kwok
  fullname: Kwok, Ricky Y. K.
  email: ricky.kwok@hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
BookMark eNp9kE9LAzEQxYMo2KofQLwEPG_NbDb7x1uttVYKglavS5qd1ZQ2qUkq9OB3N0vFgwdPMwzv917y-uTQWIOEnAMbALDqaj6dPw9SlrJBWhUsLfID0gMhyoQxyA-7Pc2Sigl2TPreL-M1EwA98vVgtQl0ZNebbdDmjUrT0JFU792uDRWTZGw-tdcxrqFTE9AZDNS29BXftVqhv6ZDeou4oU-oTWudwjVGxxlKZ6JJciN9JOdOtq1WMcgEZ1f0eecDrk_JUStXHs9-5gl5uRvPR_fJ7HEyHQ1nieKiCongjeK4wApANsBVCXkLOaJcwEJmGWcVsDYrFgyaMuO55KWQDQNoOBSK85KfkMu978bZjy36UC_t1pkYWaciZ8AzkXeqYq9SznrvsK2VDjLo7slSr2pgddd13XVdd13XP11HEv6QG6fX0u3-ZS72jEbEX31ZxR8A49_woowJ
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_pr12020254
crossref_primary_10_1109_JIOT_2021_3101447
crossref_primary_10_3390_rs13081547
crossref_primary_10_1109_TII_2020_3005440
crossref_primary_10_1109_MNET_011_2000558
crossref_primary_10_1155_2020_8856271
crossref_primary_10_1002_dac_5618
crossref_primary_10_1109_JIOT_2022_3178099
crossref_primary_10_1109_TITS_2020_3017474
crossref_primary_10_1016_j_seta_2021_101477
crossref_primary_10_1109_TETCI_2023_3339540
crossref_primary_10_1109_TNSE_2021_3058037
crossref_primary_10_1109_TCSS_2021_3055542
crossref_primary_10_1109_ACCESS_2020_3007917
crossref_primary_10_1016_j_trc_2024_104743
crossref_primary_10_1109_TITS_2020_2994972
crossref_primary_10_1109_JIOT_2024_3452128
crossref_primary_10_1155_2020_8880430
crossref_primary_10_1002_ett_4111
crossref_primary_10_3390_s23104868
crossref_primary_10_1109_TVT_2020_2981657
crossref_primary_10_1109_JSTSP_2022_3221271
crossref_primary_10_1109_JIOT_2021_3084912
crossref_primary_10_1109_ACCESS_2020_3004255
crossref_primary_10_1109_ACCESS_2020_2982652
crossref_primary_10_1109_JSYST_2022_3162724
crossref_primary_10_1109_JSYST_2022_3190926
crossref_primary_10_3390_ijerph19158965
crossref_primary_10_1016_j_displa_2023_102547
crossref_primary_10_1155_2020_6661022
crossref_primary_10_1109_TVT_2024_3408163
crossref_primary_10_3390_su151712720
crossref_primary_10_1007_s00607_020_00883_w
crossref_primary_10_1109_ACCESS_2020_2971654
crossref_primary_10_1109_TITS_2020_2997832
crossref_primary_10_1109_TVT_2024_3378919
crossref_primary_10_3390_electronics12112478
crossref_primary_10_1109_TVT_2024_3429507
crossref_primary_10_1002_spy2_501
crossref_primary_10_1155_2020_8879054
crossref_primary_10_1002_dac_4820
crossref_primary_10_1109_JIOT_2023_3323433
crossref_primary_10_1109_TII_2020_3007644
crossref_primary_10_1109_TITS_2024_3460876
crossref_primary_10_1002_dac_4827
crossref_primary_10_1016_j_cmpb_2023_107884
crossref_primary_10_1016_j_inffus_2023_102050
crossref_primary_10_1109_TCCN_2020_3003036
crossref_primary_10_12677_mos_2024_133334
crossref_primary_10_1109_ACCESS_2020_3033828
crossref_primary_10_3390_math11244908
crossref_primary_10_1109_TITS_2021_3052355
crossref_primary_10_1109_TED_2022_3154668
crossref_primary_10_1109_ACCESS_2020_2995392
crossref_primary_10_1109_TSC_2024_3394689
crossref_primary_10_1002_dac_4793
crossref_primary_10_1109_TCSS_2021_3087197
crossref_primary_10_1109_ACCESS_2020_2998427
crossref_primary_10_1007_s10586_023_04217_1
crossref_primary_10_1109_OJITS_2020_3027518
crossref_primary_10_1109_TITS_2022_3232518
crossref_primary_10_3390_electronics12071647
crossref_primary_10_3390_s23177325
crossref_primary_10_1109_TGCN_2021_3073714
crossref_primary_10_1109_ACCESS_2020_3005400
crossref_primary_10_1109_ACCESS_2020_3026615
crossref_primary_10_1007_s10776_021_00535_6
crossref_primary_10_1108_IJPCC_09_2023_0250
crossref_primary_10_1109_TMC_2020_3025116
crossref_primary_10_1109_ACCESS_2020_2977855
crossref_primary_10_1145_3604933
crossref_primary_10_1109_ACCESS_2020_3002416
crossref_primary_10_1109_JSEN_2023_3272507
crossref_primary_10_1155_2022_4509434
crossref_primary_10_1016_j_compind_2022_103748
crossref_primary_10_3390_electronics12163441
crossref_primary_10_1002_dac_5592
crossref_primary_10_1109_TNNLS_2021_3105905
crossref_primary_10_1186_s13638_023_02310_y
crossref_primary_10_1109_TVT_2021_3099303
crossref_primary_10_1002_dac_5016
crossref_primary_10_1109_TVT_2023_3344934
crossref_primary_10_3390_photonics9030129
crossref_primary_10_1002_dac_5655
crossref_primary_10_3390_make3040043
crossref_primary_10_3390_s23073449
crossref_primary_10_1155_2021_6457099
crossref_primary_10_1109_TITS_2022_3178759
crossref_primary_10_3390_drones7030163
crossref_primary_10_3390_s23198077
crossref_primary_10_1016_j_dsp_2023_104127
crossref_primary_10_1109_ACCESS_2020_2985731
crossref_primary_10_1109_JIOT_2024_3360183
crossref_primary_10_1109_TVT_2022_3226764
crossref_primary_10_1007_s11277_021_09392_1
crossref_primary_10_1007_s10586_022_03817_7
crossref_primary_10_1109_ACCESS_2020_2998363
crossref_primary_10_3390_s23156795
crossref_primary_10_1007_s11227_023_05328_7
crossref_primary_10_1109_TITS_2021_3114507
crossref_primary_10_1002_dac_5389
crossref_primary_10_1109_ACCESS_2020_2997831
crossref_primary_10_1109_MWC_019_2100718
crossref_primary_10_1109_TITS_2022_3147845
crossref_primary_10_1109_ACCESS_2020_3037357
crossref_primary_10_1109_TITS_2023_3312936
crossref_primary_10_1109_TCSS_2020_3041171
crossref_primary_10_3390_su151612516
crossref_primary_10_3390_electronics12183777
crossref_primary_10_1109_TIV_2023_3344478
crossref_primary_10_1109_TCCN_2020_3002253
crossref_primary_10_1145_3579992
crossref_primary_10_1007_s42001_024_00340_0
crossref_primary_10_1109_ACCESS_2022_3165937
crossref_primary_10_1002_dac_5093
crossref_primary_10_1109_ACCESS_2020_3023642
crossref_primary_10_54105_ijef_B2593_04021124
crossref_primary_10_1016_j_comcom_2024_03_005
crossref_primary_10_1016_j_heliyon_2024_e29033
crossref_primary_10_1109_TVT_2023_3328845
crossref_primary_10_1109_TII_2020_3016037
crossref_primary_10_1109_ACCESS_2020_3003808
crossref_primary_10_3390_s23031497
crossref_primary_10_1109_COMST_2023_3338153
crossref_primary_10_1002_dac_4621
crossref_primary_10_1109_ACCESS_2024_3377102
crossref_primary_10_1109_TCSS_2021_3068369
crossref_primary_10_1109_TITS_2023_3297248
crossref_primary_10_3390_rs15010154
crossref_primary_10_1155_2020_8816681
crossref_primary_10_1109_JIOT_2021_3138434
crossref_primary_10_1109_ACCESS_2020_3004228
crossref_primary_10_1109_TSUSC_2020_3003014
crossref_primary_10_1016_j_dcan_2023_05_010
crossref_primary_10_1109_ACCESS_2022_3140719
crossref_primary_10_1109_TCSS_2021_3062053
crossref_primary_10_1016_j_multra_2024_100137
crossref_primary_10_3389_fpubh_2020_584430
crossref_primary_10_1109_TVT_2023_3234336
crossref_primary_10_3390_electronics12051182
crossref_primary_10_1002_dac_5549
crossref_primary_10_1016_j_compeleceng_2025_110082
crossref_primary_10_47134_par_v1i2_2466
crossref_primary_10_1109_TITS_2023_3275741
crossref_primary_10_1016_j_comcom_2024_06_018
crossref_primary_10_1109_COMST_2024_3395414
crossref_primary_10_1016_j_dcan_2023_03_007
crossref_primary_10_1109_TII_2022_3155162
crossref_primary_10_3390_s23104888
crossref_primary_10_1109_ACCESS_2024_3493112
crossref_primary_10_1109_TII_2023_3315744
crossref_primary_10_1155_2020_8891595
crossref_primary_10_1109_ACCESS_2020_2975238
crossref_primary_10_1109_TCSS_2021_3063538
crossref_primary_10_1007_s11276_022_03204_5
crossref_primary_10_1007_s11432_020_3125_y
crossref_primary_10_3390_sym13071197
crossref_primary_10_1109_JIOT_2022_3155667
crossref_primary_10_1109_TNSE_2023_3292570
crossref_primary_10_1016_j_comcom_2020_10_019
crossref_primary_10_1016_j_grets_2022_100002
crossref_primary_10_1002_dac_5432
crossref_primary_10_1155_2020_8818616
crossref_primary_10_3390_electronics13193894
crossref_primary_10_3389_fpubh_2020_584387
crossref_primary_10_23919_cje_2022_00_294
crossref_primary_10_3390_s22239157
crossref_primary_10_3390_app12105171
Cites_doi 10.1109/TVT.2018.2886010
10.1145/3317572
10.1109/TNET.2015.2487344
10.1109/MVT.2018.2882873
10.1109/MNET.2019.1800239
10.1109/TMC.2018.2829874
10.1109/JSAC.2018.2844681
10.1109/TIE.2017.2703673
10.1109/JIOT.2018.2868616
10.1109/MCOM.2017.1601224
10.1109/TCCN.2019.2930521
10.1109/TWC.2016.2633522
10.1109/JIOT.2018.2875917
10.1109/CCNC.2019.8651764
10.1109/JIOT.2018.2883762
10.1109/TMM.2019.2893549
10.1109/TII.2019.2892767
10.1109/TII.2019.2929740
10.1109/TITS.2019.2929825
10.1109/TII.2017.2777139
10.1109/TWC.2018.2821664
10.1126/science.aar6404
10.1109/JSAC.2018.2815360
10.1109/TII.2019.2937079
10.1109/TITS.2017.2709462
10.1109/MWC.2019.1700441
10.1109/MNET.2019.1800309
10.1109/COMST.2018.2846401
10.1109/COMST.2018.2844341
10.1109/EuCNC.2019.8801991
10.1109/MCOM.2018.1700622
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2020.2970276
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 5212
ExternalDocumentID 10_1109_TITS_2020_2970276
8984310
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2018T110210
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61971084; 61771120; 61671092
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT19JC18
  funderid: 10.13039/501100012226
– fundername: Shenzhen Science and Technology planning project
  grantid: JCYJ20170818111012390
  funderid: 10.13039/501100013093
– fundername: open research fund of National Mobile Communications Research Laboratory, Southeast University
  grantid: 2020D05
  funderid: 10.13039/501100008081
– fundername: National Natural Science Foundation of Chongqing
  grantid: cstc2019jcyj-msxmX0208
  funderid: 10.13039/501100005230
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-53dc3ebe911ad13c816f16eeab1ba4430910f47b01d8436a385ad011d317c3383
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 06:19:31 EDT 2025
Tue Jul 01 04:29:03 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Aug 27 02:39:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-53dc3ebe911ad13c816f16eeab1ba4430910f47b01d8436a385ad011d317c3383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7870-5524
0000-0001-7197-867X
0000-0003-4098-6399
0000-0002-4952-699X
0000-0003-3514-5413
0000-0002-1569-9657
0000-0001-5860-0082
PQID 2560134568
PQPubID 75735
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TITS_2020_2970276
ieee_primary_8984310
proquest_journals_2560134568
crossref_primary_10_1109_TITS_2020_2970276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1109/TVT.2018.2886010
– ident: ref28
  doi: 10.1145/3317572
– ident: ref15
  doi: 10.1109/TNET.2015.2487344
– ident: ref5
  doi: 10.1109/MVT.2018.2882873
– ident: ref17
  doi: 10.1109/MNET.2019.1800239
– ident: ref31
  doi: 10.1109/TMC.2018.2829874
– ident: ref19
  doi: 10.1109/JSAC.2018.2844681
– ident: ref23
  doi: 10.1109/TIE.2017.2703673
– ident: ref11
  doi: 10.1109/JIOT.2018.2868616
– ident: ref30
  doi: 10.1109/MCOM.2017.1601224
– ident: ref18
  doi: 10.1109/TCCN.2019.2930521
– ident: ref10
  doi: 10.1109/TWC.2016.2633522
– ident: ref20
  doi: 10.1109/JIOT.2018.2875917
– ident: ref24
  doi: 10.1109/CCNC.2019.8651764
– ident: ref27
  doi: 10.1109/JIOT.2018.2883762
– ident: ref3
  doi: 10.1109/TMM.2019.2893549
– ident: ref1
  doi: 10.1109/TII.2019.2892767
– ident: ref16
  doi: 10.1109/TII.2019.2929740
– ident: ref22
  doi: 10.1109/TITS.2019.2929825
– ident: ref25
  doi: 10.1109/TII.2017.2777139
– ident: ref9
  doi: 10.1109/TWC.2018.2821664
– ident: ref13
  doi: 10.1126/science.aar6404
– ident: ref29
  doi: 10.1109/JSAC.2018.2815360
– ident: ref8
  doi: 10.1109/TII.2019.2937079
– ident: ref14
  doi: 10.1109/TITS.2017.2709462
– ident: ref2
  doi: 10.1109/MWC.2019.1700441
– ident: ref21
  doi: 10.1109/MNET.2019.1800309
– ident: ref26
  doi: 10.1109/COMST.2018.2846401
– ident: ref12
  doi: 10.1109/COMST.2018.2844341
– ident: ref4
  doi: 10.1109/EuCNC.2019.8801991
– ident: ref6
  doi: 10.1109/MCOM.2018.1700622
SSID ssj0014511
Score 2.6578872
Snippet Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5201
SubjectTerms Algorithms
Artificial intelligence
Caching
content caching
Control systems
Deep learning
deep reinforcement learning
Edge computing
Intelligent transportation systems
Internet of connected vehicles
Internet of Vehicles
Machine learning
Optimization
Quality of experience
Resource management
Servers
Task analysis
Traffic control
traffic control system
Traffic information
Transportation networks
User experience
Vehicles
Wireless networks
Title Joint Computing and Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System
URI https://ieeexplore.ieee.org/document/8984310
https://www.proquest.com/docview/2560134568
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3CghYLYfqA5cKrIrh3H2bi3dqGUlbYH2EW9RbE9bitQtoLspRL_nbGdXfElxC2KbMnRTGbm2c9vGHuV-8q73BjCJooAirQiM4Jjxin0IZeq9LF92-yyvFgU0yt1tcVeb-7CIGIkn-EwPMazfLe0q7BVNqp0RfmOAPoDAm7prtbmxCDobEVt1LzINFfrE0zB9Wj-fv6RkGDOh7keEwwrf8lBsanKH5E4ppfzHTZbLyyxSj4PV50Z2vvfNBv_d-W77HFfZ8JpcownbAvbp-zRT-qDe-z7dHnbdpD6OtAbaFoHk0SuhNsW1LssNCCIHXgcpK1D7GDp4RPeRDbdCZzCG8Q7-IBRgNXGvUboNVuvszNKkQ4oHQadCpgkVjwkkfRnbHH-dj65yPpuDJmVSneZks5KMjlFx8YJaStRelEiNkaYpihkKDx8MTZcOPrWspGVahxFD0cVig1A-DnbbmnBLxi43GlvPQax92LsVaNMw4XXVFtWVaFxwPjaPrXtpcpDx4wvdYQsXNfBpHUwad2bdMCON1Pukk7HvwbvBRNtBvbWGbDDtRPU_Z_8rY6QVVKZWe3_fdYBe5gHnkskBR6y7e7rCo-oUOnMy-ihPwAED-OJ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcigcgFJQFwqdAydEtnYcZ2NuZaHdlm4PsEW9RbE9bitQtoLsBYn_ztjOrvioUG9RZEuOZjIzz35-w9jL3Ffe5cYQNlEEUKQVmREcM06hD7lUpY_t26an5eSsOD5X52vs9eouDCJG8hkOw2M8y3dzuwhbZXuVrijfEUC_Q3lfiXRba3VmEJS2ojpqXmSaq-UZpuB6b3Y0-0RYMOfDXI8IiJV_ZKHYVuWfWBwTzMEDNl0uLfFKvgwXnRnaH3-pNt527Q_Z_b7ShP3kGptsDdtH7N5v-oNb7Ofx_KrtIHV2oDfQtA7GiV4JVy2owyy0IIg9eBykzUPsYO7hM15GPt0b2Id3iNfwEaMEq427jdCrtl5kbylJOqCEGJQqYJx48ZBk0h-zs4P3s_Ek6_sxZFYq3WVKOivJ6BQfGyekrUTpRYnYGGGaopCh9PDFyHDh6FvLRlaqcRQ_HNUoNkDhJ2y9pQVvM3C50956DHLvxcirRpmGC6-puqyqQuOA8aV9atuLlYeeGV_rCFq4roNJ62DSujfpgL1aTblOSh3_G7wVTLQa2FtnwHaWTlD3__L3OoJWSYVm9fTmWbtsYzKbntQnR6cfnrG7eWC9RIrgDlvvvi3wOZUtnXkRvfUXCdPm0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Computing+and+Caching+in+5G-Envisioned+Internet+of+Vehicles%3A+A+Deep+Reinforcement+Learning-Based+Traffic+Control+System&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Ning%2C+Zhaolong&rft.au=Zhang%2C+Kaiyuan&rft.au=Wang%2C+Xiaojie&rft.au=Obaidat%2C+Mohammad+S.&rft.date=2021-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=8&rft.spage=5201&rft.epage=5212&rft_id=info:doi/10.1109%2FTITS.2020.2970276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2020_2970276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon