Joint Computing and Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System
Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality services for vehicles. However, a variety of vehicular applications and time-varying network status make it challenging for ITS to allocate resour...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 22; no. 8; pp. 5201 - 5212 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality services for vehicles. However, a variety of vehicular applications and time-varying network status make it challenging for ITS to allocate resources efficiently. Artificial intelligence algorithms, owning the cognitive capability for diverse and time-varying features of Internet of Connected Vehicles (IoCVs), enable an intent-based networking for ITS to tackle the above-mentioned challenges. In this paper, we develop an intent-based traffic control system by investigating Deep Reinforcement Learning (DRL) for 5G-envisioned IoCVs, which can dynamically orchestrate edge computing and content caching to improve the profits of Mobile Network Operator (MNO). By jointly analyzing MNO's revenue and users' quality of experience, we define a profit function to calculate the MNO's profits. After that, we formulate a joint optimization problem to maximize MNO's profits, and develop an intelligent traffic control scheme by investigating DRL, which can improve system profits of the MNO and allocate network resources effectively. Experimental results based on real traffic data demonstrate our designed system is efficient and well-performed. |
---|---|
AbstractList | Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality services for vehicles. However, a variety of vehicular applications and time-varying network status make it challenging for ITS to allocate resources efficiently. Artificial intelligence algorithms, owning the cognitive capability for diverse and time-varying features of Internet of Connected Vehicles (IoCVs), enable an intent-based networking for ITS to tackle the above-mentioned challenges. In this paper, we develop an intent-based traffic control system by investigating Deep Reinforcement Learning (DRL) for 5G-envisioned IoCVs, which can dynamically orchestrate edge computing and content caching to improve the profits of Mobile Network Operator (MNO). By jointly analyzing MNO's revenue and users' quality of experience, we define a profit function to calculate the MNO's profits. After that, we formulate a joint optimization problem to maximize MNO's profits, and develop an intelligent traffic control scheme by investigating DRL, which can improve system profits of the MNO and allocate network resources effectively. Experimental results based on real traffic data demonstrate our designed system is efficient and well-performed. |
Author | Hu, Xiping Hu, Bin Guo, Yi Guo, Lei Sadoun, Balqies Zhang, Kaiyuan Obaidat, Mohammad S. Kwok, Ricky Y. K. Wang, Xiaojie Ning, Zhaolong |
Author_xml | – sequence: 1 givenname: Zhaolong orcidid: 0000-0002-7870-5524 surname: Ning fullname: Ning, Zhaolong email: z.ning@ieee.org organization: Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Kaiyuan orcidid: 0000-0001-7197-867X surname: Zhang fullname: Zhang, Kaiyuan email: zky123123@live.com organization: School of Software, Dalian University of Technology, Dalian, China – sequence: 3 givenname: Xiaojie orcidid: 0000-0003-4098-6399 surname: Wang fullname: Wang, Xiaojie email: xiaojie.wang@polyu.edu.hk organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong – sequence: 4 givenname: Mohammad S. orcidid: 0000-0002-1569-9657 surname: Obaidat fullname: Obaidat, Mohammad S. email: m.s.obaidat@ieee.org organization: College of Computing and Informatics, The University of Sharjah, Sharjah, UAE – sequence: 5 givenname: Lei orcidid: 0000-0001-5860-0082 surname: Guo fullname: Guo, Lei email: guolei@cqupt.edu.cn organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 6 givenname: Xiping orcidid: 0000-0002-4952-699X surname: Hu fullname: Hu, Xiping email: xp.hu@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 7 givenname: Bin orcidid: 0000-0003-3514-5413 surname: Hu fullname: Hu, Bin email: bh@lzu.edu.cn organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 8 givenname: Yi surname: Guo fullname: Guo, Yi email: xuanyi_guo@163.com organization: The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China – sequence: 9 givenname: Balqies surname: Sadoun fullname: Sadoun, Balqies email: sadounbalqies@gmail.com organization: College of Engineering, Al-Balqa' Applied University, Al-Salt, Jordan – sequence: 10 givenname: Ricky Y. K. surname: Kwok fullname: Kwok, Ricky Y. K. email: ricky.kwok@hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong |
BookMark | eNp9kE9LAzEQxYMo2KofQLwEPG_NbDb7x1uttVYKglavS5qd1ZQ2qUkq9OB3N0vFgwdPMwzv917y-uTQWIOEnAMbALDqaj6dPw9SlrJBWhUsLfID0gMhyoQxyA-7Pc2Sigl2TPreL-M1EwA98vVgtQl0ZNebbdDmjUrT0JFU792uDRWTZGw-tdcxrqFTE9AZDNS29BXftVqhv6ZDeou4oU-oTWudwjVGxxlKZ6JJciN9JOdOtq1WMcgEZ1f0eecDrk_JUStXHs9-5gl5uRvPR_fJ7HEyHQ1nieKiCongjeK4wApANsBVCXkLOaJcwEJmGWcVsDYrFgyaMuO55KWQDQNoOBSK85KfkMu978bZjy36UC_t1pkYWaciZ8AzkXeqYq9SznrvsK2VDjLo7slSr2pgddd13XVdd13XP11HEv6QG6fX0u3-ZS72jEbEX31ZxR8A49_woowJ |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_3390_pr12020254 crossref_primary_10_1109_JIOT_2021_3101447 crossref_primary_10_3390_rs13081547 crossref_primary_10_1109_TII_2020_3005440 crossref_primary_10_1109_MNET_011_2000558 crossref_primary_10_1155_2020_8856271 crossref_primary_10_1002_dac_5618 crossref_primary_10_1109_JIOT_2022_3178099 crossref_primary_10_1109_TITS_2020_3017474 crossref_primary_10_1016_j_seta_2021_101477 crossref_primary_10_1109_TETCI_2023_3339540 crossref_primary_10_1109_TNSE_2021_3058037 crossref_primary_10_1109_TCSS_2021_3055542 crossref_primary_10_1109_ACCESS_2020_3007917 crossref_primary_10_1016_j_trc_2024_104743 crossref_primary_10_1109_TITS_2020_2994972 crossref_primary_10_1109_JIOT_2024_3452128 crossref_primary_10_1155_2020_8880430 crossref_primary_10_1002_ett_4111 crossref_primary_10_3390_s23104868 crossref_primary_10_1109_TVT_2020_2981657 crossref_primary_10_1109_JSTSP_2022_3221271 crossref_primary_10_1109_JIOT_2021_3084912 crossref_primary_10_1109_ACCESS_2020_3004255 crossref_primary_10_1109_ACCESS_2020_2982652 crossref_primary_10_1109_JSYST_2022_3162724 crossref_primary_10_1109_JSYST_2022_3190926 crossref_primary_10_3390_ijerph19158965 crossref_primary_10_1016_j_displa_2023_102547 crossref_primary_10_1155_2020_6661022 crossref_primary_10_1109_TVT_2024_3408163 crossref_primary_10_3390_su151712720 crossref_primary_10_1007_s00607_020_00883_w crossref_primary_10_1109_ACCESS_2020_2971654 crossref_primary_10_1109_TITS_2020_2997832 crossref_primary_10_1109_TVT_2024_3378919 crossref_primary_10_3390_electronics12112478 crossref_primary_10_1109_TVT_2024_3429507 crossref_primary_10_1002_spy2_501 crossref_primary_10_1155_2020_8879054 crossref_primary_10_1002_dac_4820 crossref_primary_10_1109_JIOT_2023_3323433 crossref_primary_10_1109_TII_2020_3007644 crossref_primary_10_1109_TITS_2024_3460876 crossref_primary_10_1002_dac_4827 crossref_primary_10_1016_j_cmpb_2023_107884 crossref_primary_10_1016_j_inffus_2023_102050 crossref_primary_10_1109_TCCN_2020_3003036 crossref_primary_10_12677_mos_2024_133334 crossref_primary_10_1109_ACCESS_2020_3033828 crossref_primary_10_3390_math11244908 crossref_primary_10_1109_TITS_2021_3052355 crossref_primary_10_1109_TED_2022_3154668 crossref_primary_10_1109_ACCESS_2020_2995392 crossref_primary_10_1109_TSC_2024_3394689 crossref_primary_10_1002_dac_4793 crossref_primary_10_1109_TCSS_2021_3087197 crossref_primary_10_1109_ACCESS_2020_2998427 crossref_primary_10_1007_s10586_023_04217_1 crossref_primary_10_1109_OJITS_2020_3027518 crossref_primary_10_1109_TITS_2022_3232518 crossref_primary_10_3390_electronics12071647 crossref_primary_10_3390_s23177325 crossref_primary_10_1109_TGCN_2021_3073714 crossref_primary_10_1109_ACCESS_2020_3005400 crossref_primary_10_1109_ACCESS_2020_3026615 crossref_primary_10_1007_s10776_021_00535_6 crossref_primary_10_1108_IJPCC_09_2023_0250 crossref_primary_10_1109_TMC_2020_3025116 crossref_primary_10_1109_ACCESS_2020_2977855 crossref_primary_10_1145_3604933 crossref_primary_10_1109_ACCESS_2020_3002416 crossref_primary_10_1109_JSEN_2023_3272507 crossref_primary_10_1155_2022_4509434 crossref_primary_10_1016_j_compind_2022_103748 crossref_primary_10_3390_electronics12163441 crossref_primary_10_1002_dac_5592 crossref_primary_10_1109_TNNLS_2021_3105905 crossref_primary_10_1186_s13638_023_02310_y crossref_primary_10_1109_TVT_2021_3099303 crossref_primary_10_1002_dac_5016 crossref_primary_10_1109_TVT_2023_3344934 crossref_primary_10_3390_photonics9030129 crossref_primary_10_1002_dac_5655 crossref_primary_10_3390_make3040043 crossref_primary_10_3390_s23073449 crossref_primary_10_1155_2021_6457099 crossref_primary_10_1109_TITS_2022_3178759 crossref_primary_10_3390_drones7030163 crossref_primary_10_3390_s23198077 crossref_primary_10_1016_j_dsp_2023_104127 crossref_primary_10_1109_ACCESS_2020_2985731 crossref_primary_10_1109_JIOT_2024_3360183 crossref_primary_10_1109_TVT_2022_3226764 crossref_primary_10_1007_s11277_021_09392_1 crossref_primary_10_1007_s10586_022_03817_7 crossref_primary_10_1109_ACCESS_2020_2998363 crossref_primary_10_3390_s23156795 crossref_primary_10_1007_s11227_023_05328_7 crossref_primary_10_1109_TITS_2021_3114507 crossref_primary_10_1002_dac_5389 crossref_primary_10_1109_ACCESS_2020_2997831 crossref_primary_10_1109_MWC_019_2100718 crossref_primary_10_1109_TITS_2022_3147845 crossref_primary_10_1109_ACCESS_2020_3037357 crossref_primary_10_1109_TITS_2023_3312936 crossref_primary_10_1109_TCSS_2020_3041171 crossref_primary_10_3390_su151612516 crossref_primary_10_3390_electronics12183777 crossref_primary_10_1109_TIV_2023_3344478 crossref_primary_10_1109_TCCN_2020_3002253 crossref_primary_10_1145_3579992 crossref_primary_10_1007_s42001_024_00340_0 crossref_primary_10_1109_ACCESS_2022_3165937 crossref_primary_10_1002_dac_5093 crossref_primary_10_1109_ACCESS_2020_3023642 crossref_primary_10_54105_ijef_B2593_04021124 crossref_primary_10_1016_j_comcom_2024_03_005 crossref_primary_10_1016_j_heliyon_2024_e29033 crossref_primary_10_1109_TVT_2023_3328845 crossref_primary_10_1109_TII_2020_3016037 crossref_primary_10_1109_ACCESS_2020_3003808 crossref_primary_10_3390_s23031497 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1002_dac_4621 crossref_primary_10_1109_ACCESS_2024_3377102 crossref_primary_10_1109_TCSS_2021_3068369 crossref_primary_10_1109_TITS_2023_3297248 crossref_primary_10_3390_rs15010154 crossref_primary_10_1155_2020_8816681 crossref_primary_10_1109_JIOT_2021_3138434 crossref_primary_10_1109_ACCESS_2020_3004228 crossref_primary_10_1109_TSUSC_2020_3003014 crossref_primary_10_1016_j_dcan_2023_05_010 crossref_primary_10_1109_ACCESS_2022_3140719 crossref_primary_10_1109_TCSS_2021_3062053 crossref_primary_10_1016_j_multra_2024_100137 crossref_primary_10_3389_fpubh_2020_584430 crossref_primary_10_1109_TVT_2023_3234336 crossref_primary_10_3390_electronics12051182 crossref_primary_10_1002_dac_5549 crossref_primary_10_1016_j_compeleceng_2025_110082 crossref_primary_10_47134_par_v1i2_2466 crossref_primary_10_1109_TITS_2023_3275741 crossref_primary_10_1016_j_comcom_2024_06_018 crossref_primary_10_1109_COMST_2024_3395414 crossref_primary_10_1016_j_dcan_2023_03_007 crossref_primary_10_1109_TII_2022_3155162 crossref_primary_10_3390_s23104888 crossref_primary_10_1109_ACCESS_2024_3493112 crossref_primary_10_1109_TII_2023_3315744 crossref_primary_10_1155_2020_8891595 crossref_primary_10_1109_ACCESS_2020_2975238 crossref_primary_10_1109_TCSS_2021_3063538 crossref_primary_10_1007_s11276_022_03204_5 crossref_primary_10_1007_s11432_020_3125_y crossref_primary_10_3390_sym13071197 crossref_primary_10_1109_JIOT_2022_3155667 crossref_primary_10_1109_TNSE_2023_3292570 crossref_primary_10_1016_j_comcom_2020_10_019 crossref_primary_10_1016_j_grets_2022_100002 crossref_primary_10_1002_dac_5432 crossref_primary_10_1155_2020_8818616 crossref_primary_10_3390_electronics13193894 crossref_primary_10_3389_fpubh_2020_584387 crossref_primary_10_23919_cje_2022_00_294 crossref_primary_10_3390_s22239157 crossref_primary_10_3390_app12105171 |
Cites_doi | 10.1109/TVT.2018.2886010 10.1145/3317572 10.1109/TNET.2015.2487344 10.1109/MVT.2018.2882873 10.1109/MNET.2019.1800239 10.1109/TMC.2018.2829874 10.1109/JSAC.2018.2844681 10.1109/TIE.2017.2703673 10.1109/JIOT.2018.2868616 10.1109/MCOM.2017.1601224 10.1109/TCCN.2019.2930521 10.1109/TWC.2016.2633522 10.1109/JIOT.2018.2875917 10.1109/CCNC.2019.8651764 10.1109/JIOT.2018.2883762 10.1109/TMM.2019.2893549 10.1109/TII.2019.2892767 10.1109/TII.2019.2929740 10.1109/TITS.2019.2929825 10.1109/TII.2017.2777139 10.1109/TWC.2018.2821664 10.1126/science.aar6404 10.1109/JSAC.2018.2815360 10.1109/TII.2019.2937079 10.1109/TITS.2017.2709462 10.1109/MWC.2019.1700441 10.1109/MNET.2019.1800309 10.1109/COMST.2018.2846401 10.1109/COMST.2018.2844341 10.1109/EuCNC.2019.8801991 10.1109/MCOM.2018.1700622 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2020.2970276 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 5212 |
ExternalDocumentID | 10_1109_TITS_2020_2970276 8984310 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2018T110210 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 61971084; 61771120; 61671092 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: DUT19JC18 funderid: 10.13039/501100012226 – fundername: Shenzhen Science and Technology planning project grantid: JCYJ20170818111012390 funderid: 10.13039/501100013093 – fundername: open research fund of National Mobile Communications Research Laboratory, Southeast University grantid: 2020D05 funderid: 10.13039/501100008081 – fundername: National Natural Science Foundation of Chongqing grantid: cstc2019jcyj-msxmX0208 funderid: 10.13039/501100005230 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-53dc3ebe911ad13c816f16eeab1ba4430910f47b01d8436a385ad011d317c3383 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 06:19:31 EDT 2025 Tue Jul 01 04:29:03 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Wed Aug 27 02:39:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-53dc3ebe911ad13c816f16eeab1ba4430910f47b01d8436a385ad011d317c3383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7870-5524 0000-0001-7197-867X 0000-0003-4098-6399 0000-0002-4952-699X 0000-0003-3514-5413 0000-0002-1569-9657 0000-0001-5860-0082 |
PQID | 2560134568 |
PQPubID | 75735 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2020_2970276 ieee_primary_8984310 proquest_journals_2560134568 crossref_primary_10_1109_TITS_2020_2970276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref7 doi: 10.1109/TVT.2018.2886010 – ident: ref28 doi: 10.1145/3317572 – ident: ref15 doi: 10.1109/TNET.2015.2487344 – ident: ref5 doi: 10.1109/MVT.2018.2882873 – ident: ref17 doi: 10.1109/MNET.2019.1800239 – ident: ref31 doi: 10.1109/TMC.2018.2829874 – ident: ref19 doi: 10.1109/JSAC.2018.2844681 – ident: ref23 doi: 10.1109/TIE.2017.2703673 – ident: ref11 doi: 10.1109/JIOT.2018.2868616 – ident: ref30 doi: 10.1109/MCOM.2017.1601224 – ident: ref18 doi: 10.1109/TCCN.2019.2930521 – ident: ref10 doi: 10.1109/TWC.2016.2633522 – ident: ref20 doi: 10.1109/JIOT.2018.2875917 – ident: ref24 doi: 10.1109/CCNC.2019.8651764 – ident: ref27 doi: 10.1109/JIOT.2018.2883762 – ident: ref3 doi: 10.1109/TMM.2019.2893549 – ident: ref1 doi: 10.1109/TII.2019.2892767 – ident: ref16 doi: 10.1109/TII.2019.2929740 – ident: ref22 doi: 10.1109/TITS.2019.2929825 – ident: ref25 doi: 10.1109/TII.2017.2777139 – ident: ref9 doi: 10.1109/TWC.2018.2821664 – ident: ref13 doi: 10.1126/science.aar6404 – ident: ref29 doi: 10.1109/JSAC.2018.2815360 – ident: ref8 doi: 10.1109/TII.2019.2937079 – ident: ref14 doi: 10.1109/TITS.2017.2709462 – ident: ref2 doi: 10.1109/MWC.2019.1700441 – ident: ref21 doi: 10.1109/MNET.2019.1800309 – ident: ref26 doi: 10.1109/COMST.2018.2846401 – ident: ref12 doi: 10.1109/COMST.2018.2844341 – ident: ref4 doi: 10.1109/EuCNC.2019.8801991 – ident: ref6 doi: 10.1109/MCOM.2018.1700622 |
SSID | ssj0014511 |
Score | 2.6578872 |
Snippet | Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5201 |
SubjectTerms | Algorithms Artificial intelligence Caching content caching Control systems Deep learning deep reinforcement learning Edge computing Intelligent transportation systems Internet of connected vehicles Internet of Vehicles Machine learning Optimization Quality of experience Resource management Servers Task analysis Traffic control traffic control system Traffic information Transportation networks User experience Vehicles Wireless networks |
Title | Joint Computing and Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System |
URI | https://ieeexplore.ieee.org/document/8984310 https://www.proquest.com/docview/2560134568 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3CghYLYfqA5cKrIrh3H2bi3dqGUlbYH2EW9RbE9bitQtoLspRL_nbGdXfElxC2KbMnRTGbm2c9vGHuV-8q73BjCJooAirQiM4Jjxin0IZeq9LF92-yyvFgU0yt1tcVeb-7CIGIkn-EwPMazfLe0q7BVNqp0RfmOAPoDAm7prtbmxCDobEVt1LzINFfrE0zB9Wj-fv6RkGDOh7keEwwrf8lBsanKH5E4ppfzHTZbLyyxSj4PV50Z2vvfNBv_d-W77HFfZ8JpcownbAvbp-zRT-qDe-z7dHnbdpD6OtAbaFoHk0SuhNsW1LssNCCIHXgcpK1D7GDp4RPeRDbdCZzCG8Q7-IBRgNXGvUboNVuvszNKkQ4oHQadCpgkVjwkkfRnbHH-dj65yPpuDJmVSneZks5KMjlFx8YJaStRelEiNkaYpihkKDx8MTZcOPrWspGVahxFD0cVig1A-DnbbmnBLxi43GlvPQax92LsVaNMw4XXVFtWVaFxwPjaPrXtpcpDx4wvdYQsXNfBpHUwad2bdMCON1Pukk7HvwbvBRNtBvbWGbDDtRPU_Z_8rY6QVVKZWe3_fdYBe5gHnkskBR6y7e7rCo-oUOnMy-ihPwAED-OJ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcigcgFJQFwqdAydEtnYcZ2NuZaHdlm4PsEW9RbE9bitQtoLsBYn_ztjOrvioUG9RZEuOZjIzz35-w9jL3Ffe5cYQNlEEUKQVmREcM06hD7lUpY_t26an5eSsOD5X52vs9eouDCJG8hkOw2M8y3dzuwhbZXuVrijfEUC_Q3lfiXRba3VmEJS2ojpqXmSaq-UZpuB6b3Y0-0RYMOfDXI8IiJV_ZKHYVuWfWBwTzMEDNl0uLfFKvgwXnRnaH3-pNt527Q_Z_b7ShP3kGptsDdtH7N5v-oNb7Ofx_KrtIHV2oDfQtA7GiV4JVy2owyy0IIg9eBykzUPsYO7hM15GPt0b2Id3iNfwEaMEq427jdCrtl5kbylJOqCEGJQqYJx48ZBk0h-zs4P3s_Ek6_sxZFYq3WVKOivJ6BQfGyekrUTpRYnYGGGaopCh9PDFyHDh6FvLRlaqcRQ_HNUoNkDhJ2y9pQVvM3C50956DHLvxcirRpmGC6-puqyqQuOA8aV9atuLlYeeGV_rCFq4roNJ62DSujfpgL1aTblOSh3_G7wVTLQa2FtnwHaWTlD3__L3OoJWSYVm9fTmWbtsYzKbntQnR6cfnrG7eWC9RIrgDlvvvi3wOZUtnXkRvfUXCdPm0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Computing+and+Caching+in+5G-Envisioned+Internet+of+Vehicles%3A+A+Deep+Reinforcement+Learning-Based+Traffic+Control+System&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Ning%2C+Zhaolong&rft.au=Zhang%2C+Kaiyuan&rft.au=Wang%2C+Xiaojie&rft.au=Obaidat%2C+Mohammad+S.&rft.date=2021-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=8&rft.spage=5201&rft.epage=5212&rft_id=info:doi/10.1109%2FTITS.2020.2970276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2020_2970276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |