Indirect NMR detection via proton of nuclei subject to large anisotropic interactions, such as 14N, 195Pt, and 35Cl, using the T-HMQC sequence
Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been introduced for the indirect detection via protons of quadrupolar nuclei with spin I = 1 (14N) or 3/2 (35Cl) in solids at fast magic-angle spi...
Saved in:
Published in | The Journal of chemical physics Vol. 156; no. 6; pp. 064202 - 64222 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been introduced for the indirect detection via protons of quadrupolar nuclei with spin I = 1 (14N) or 3/2 (35Cl) in solids at fast magic-angle spinning (MAS). The sequence is simple as it only uses four rectangular pulses and exhibits low t1-noise because the recoupling pulses are applied to the indirectly detected isotope, I. We demonstrate that this sequence is applicable for the detection via protons of spin-1/2 nuclei subject to large chemical shift anisotropy, such as 195Pt. We also report the proton detection of double-quantum (2Q) coherences of 14N nuclei using this sequence. This 2Q version is more robust to the adjustment of the magic angle and the instabilities of the MAS frequencies than its parent single-quantum (1Q) version since the 2Q coherences are not broadened by the first-order quadrupole interaction. In practice, than its 1Q counterpart for the indirect detection of 14N nuclei, the 2Q variant benefits from a slightly higher resolution and comparable sensitivity. In this article, we derive for the first time the Hamiltonian that describes the spin dynamics during the TRAPDOR recoupling. This Hamiltonian demonstrates the importance of the adiabaticity parameter as well as the role of third-order terms in the effective Hamiltonian. The effects of offsets, radio-frequency field, and recoupling time on the efficiency of the T-HMQC sequence are analyzed numerically as well as with experimental detection via protons of 195Pt nuclei in a mixture of cis- and trans-platin and that of 14N and 35Cl isotopes in l-histidine HCl. |
---|---|
AbstractList | Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been introduced for the indirect detection via protons of quadrupolar nuclei with spin I = 1 (14N) or 3/2 (35Cl) in solids at fast magic-angle spinning (MAS). The sequence is simple as it only uses four rectangular pulses and exhibits low t1-noise because the recoupling pulses are applied to the indirectly detected isotope, I. We demonstrate that this sequence is applicable for the detection via protons of spin-1/2 nuclei subject to large chemical shift anisotropy, such as 195Pt. We also report the proton detection of double-quantum (2Q) coherences of 14N nuclei using this sequence. This 2Q version is more robust to the adjustment of the magic angle and the instabilities of the MAS frequencies than its parent single-quantum (1Q) version since the 2Q coherences are not broadened by the first-order quadrupole interaction. In practice, than its 1Q counterpart for the indirect detection of 14N nuclei, the 2Q variant benefits from a slightly higher resolution and comparable sensitivity. In this article, we derive for the first time the Hamiltonian that describes the spin dynamics during the TRAPDOR recoupling. This Hamiltonian demonstrates the importance of the adiabaticity parameter as well as the role of third-order terms in the effective Hamiltonian. The effects of offsets, radio-frequency field, and recoupling time on the efficiency of the T-HMQC sequence are analyzed numerically as well as with experimental detection via protons of 195Pt nuclei in a mixture of cis- and trans-platin and that of 14N and 35Cl isotopes in l-histidine HCl. Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been introduced for the indirect detection via protons of quadrupolar nuclei with spin I = 1 (14N) or 3/2 (35Cl) in solids at fast magic-angle spinning (MAS). The sequence is simple as it only uses four rectangular pulses and exhibits low t1-noise because the recoupling pulses are applied to the indirectly detected isotope, I. We demonstrate that this sequence is applicable for the detection via protons of spin-1/2 nuclei subject to large chemical shift anisotropy, such as 195Pt. We also report the proton detection of double-quantum (2Q) coherences of 14N nuclei using this sequence. This 2Q version is more robust to the adjustment of the magic angle and the instabilities of the MAS frequencies than its parent single-quantum (1Q) version since the 2Q coherences are not broadened by the first-order quadrupole interaction. In practice, than its 1Q counterpart for the indirect detection of 14N nuclei, the 2Q variant benefits from a slightly higher resolution and comparable sensitivity. In this article, we derive for the first time the Hamiltonian that describes the spin dynamics during the TRAPDOR recoupling. This Hamiltonian demonstrates the importance of the adiabaticity parameter as well as the role of third-order terms in the effective Hamiltonian. The effects of offsets, radio-frequency field, and recoupling time on the efficiency of the T-HMQC sequence are analyzed numerically as well as with experimental detection via protons of 195Pt nuclei in a mixture of cis- and trans-platin and that of 14N and 35Cl isotopes in l-histidine HCl.Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been introduced for the indirect detection via protons of quadrupolar nuclei with spin I = 1 (14N) or 3/2 (35Cl) in solids at fast magic-angle spinning (MAS). The sequence is simple as it only uses four rectangular pulses and exhibits low t1-noise because the recoupling pulses are applied to the indirectly detected isotope, I. We demonstrate that this sequence is applicable for the detection via protons of spin-1/2 nuclei subject to large chemical shift anisotropy, such as 195Pt. We also report the proton detection of double-quantum (2Q) coherences of 14N nuclei using this sequence. This 2Q version is more robust to the adjustment of the magic angle and the instabilities of the MAS frequencies than its parent single-quantum (1Q) version since the 2Q coherences are not broadened by the first-order quadrupole interaction. In practice, than its 1Q counterpart for the indirect detection of 14N nuclei, the 2Q variant benefits from a slightly higher resolution and comparable sensitivity. In this article, we derive for the first time the Hamiltonian that describes the spin dynamics during the TRAPDOR recoupling. This Hamiltonian demonstrates the importance of the adiabaticity parameter as well as the role of third-order terms in the effective Hamiltonian. The effects of offsets, radio-frequency field, and recoupling time on the efficiency of the T-HMQC sequence are analyzed numerically as well as with experimental detection via protons of 195Pt nuclei in a mixture of cis- and trans-platin and that of 14N and 35Cl isotopes in l-histidine HCl. |
Author | Bayzou, Racha Hung, Ivan Gan, Zhehong Lafon, Olivier Trébosc, Julien Amoureux, Jean-Paul |
Author_xml | – sequence: 1 givenname: Racha surname: Bayzou fullname: Bayzou, Racha organization: Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide – sequence: 2 givenname: Julien surname: Trébosc fullname: Trébosc, Julien organization: Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638–IMEC–Fédération Chevreul – sequence: 3 givenname: Ivan surname: Hung fullname: Hung, Ivan organization: National High Magnetic Field Laboratory – sequence: 4 givenname: Zhehong surname: Gan fullname: Gan, Zhehong organization: National High Magnetic Field Laboratory – sequence: 5 givenname: Olivier surname: Lafon fullname: Lafon, Olivier organization: Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide – sequence: 6 givenname: Jean-Paul surname: Amoureux fullname: Amoureux, Jean-Paul organization: 5Bruker Biospin, 34 rue de l’industrie, 67166 Wissembourg, France |
BackLink | https://hal.univ-lille.fr/hal-04138261$$DView record in HAL |
BookMark | eNp90UtvEzEQAGALFdEHHPgHlrgAyrYz6_Vjj1UEpFJaHirnleN1GkdbO7W9kfgT_GYcUgoqiJNH1jfj8cwxOfDBW0JeIpwiCHbGTwFULQGekCME1VZStHBAjgBqrFoB4pAcp7QGAJR184wcMo5CMS6PyPcL37toTaZXl19ob3MJXfB06zTdxJBLGJbUj2awjqZxsd7RHOig442l2rsUcgwbZ6jz2Ub9MztNCjUrqhPF5mpCseWf8qTonjI-HSZ0TM7f0Lyy9LqaXX6e0mTvRuuNfU6eLvWQ7Iv784R8ff_uejqr5h8_XEzP55VhvM0VZxrFwkowCAyxt8YoWRu-bCRqlFL0jVpALyVyhUrUimnAujcLi4tSAdgJebOvu9JDt4nuVsdvXdCum53Pu90dNMhULXCLxb7e2zKP0mXK3a1Lxg6D9jaMqatF3TIFDa8LffWIrsMYffnJTimmuMA_HjcxpBTt8qEDhG630I539wst9uyRNS7r3ZBz1G74Z8bbfUb6JR_Kb0P8DbtNv_wf_rvyD0i_ufQ |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1002_cphc_202400613 crossref_primary_10_1016_j_jmr_2023_107378 crossref_primary_10_1016_j_ssnmr_2022_101835 crossref_primary_10_1002_cmtd_202400078 crossref_primary_10_1016_j_jmr_2023_107459 crossref_primary_10_1039_D4FD00151F crossref_primary_10_1016_j_bpc_2024_107254 crossref_primary_10_1016_j_ssnmr_2022_101821 crossref_primary_10_1016_j_jmr_2022_107324 crossref_primary_10_1016_j_jmro_2022_100062 crossref_primary_10_1016_j_ssnmr_2022_101808 crossref_primary_10_1016_j_ssnmr_2022_101807 |
Cites_doi | 10.1016/0022-2364(87)90038-2 10.1021/jp0401123 10.1016/0022-2364(76)90304-8 10.1039/d0cp03511d 10.1016/s0009-2614(90)87174-p 10.1016/j.jmr.2017.01.010 10.1016/0009-2614(92)85486-t 10.1039/b611447d 10.1016/0022-2364(87)90285-x 10.1039/c3cp50787d 10.1016/j.ssnmr.2015.09.003 10.1021/ja00272a071 10.1016/j.jmr.2011.12.009 10.1016/0926-2040(95)00002-8 10.1063/1.4753987 10.1021/ja0618898 10.1063/5.0030604 10.1016/j.cplett.2007.07.060 10.1016/j.jmr.2020.106832 10.1063/1.1377031 10.1006/jmre.1996.1087 10.1021/jp906099k 10.1016/j.jmr.2007.02.015 10.1039/c6cp04279a 10.1063/1.5126599 10.1021/ja00136a022 10.1016/0022-2364(88)90275-2 10.1021/jp040270u 10.1016/j.jmr.2018.11.008 10.1139/v11-033 10.1016/s0009-2614(02)00398-6 10.1016/j.jmr.2007.10.008 10.1016/j.pnmrs.2004.12.001 10.1021/ar400045t 10.3389/fmolb.2021.645347 10.1039/c8cp06276e 10.1021/ja504734p 10.1002/9780470034590.emrstm1199 10.1039/c5cp06042g 10.1016/j.ssnmr.2017.03.005 10.1016/j.ssnmr.2019.03.001 10.1016/j.jmr.2022.107147 10.1039/c7cc03462h 10.1039/c6cp04353d 10.1021/acs.jpclett.0c01236 10.1021/jp971547b 10.1016/j.ssnmr.2008.04.006 10.1016/j.jmr.2015.06.008 10.1016/j.cplett.2006.12.066 10.1006/jmre.2002.2557 10.1016/j.jmr.2010.10.011 10.1063/1.3521491 10.1021/ja901278q 10.1016/0022-2364(83)90279-2 10.1016/0022-2364(89)90152-2 10.1016/j.jmr.2011.06.013 10.1021/ja9939791 10.1103/physrev.57.522 10.1016/j.jmr.2013.02.015 10.1006/jmre.2000.2179 10.1063/1.435879 10.1016/j.jmr.2021.107093 10.1016/j.ssnmr.2017.06.008 10.1039/c3ce40967h 10.1021/ja0578597 10.1006/jmre.1998.1455 10.1016/j.jmr.2018.07.005 10.1016/0022-2364(89)90050-4 10.1038/s43586-020-00002-1 10.1021/ja065415k 10.1016/j.cplett.2008.12.044 10.1039/c7ra01182b 10.1021/acs.jpclett.6b00860 10.1016/j.pnmrs.2010.06.002 10.1016/j.jmr.2008.10.010 10.1021/jp031048c 10.1016/j.pnmrs.2018.05.001 10.1006/jmre.2002.2548 10.1351/pac200173111795 10.1063/1.5000689 10.1016/j.jmr.2021.106983 10.1002/chem.201301862 10.1016/j.jmr.2019.04.004 10.1016/j.ssnmr.2008.11.002 10.1021/jacs.0c09101 10.1016/j.jmr.2006.06.003 10.1016/j.ssnmr.2016.05.001 10.1039/b926546e 10.1021/ja4076277 10.1016/j.ssnmr.2017.06.002 10.1063/1.4983220 10.1016/j.jmr.2012.08.015 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 1XC VOOES |
DOI | 10.1063/5.0082700 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | oai_HAL_hal_04138261v1 10_1063_5_0082700 jcp |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-18-CE08-0015-01 funderid: https://doi.org/10.13039/501100001665 – fundername: National Science Foundation grantid: NSF/DMR-1644779 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 .GJ 0ZJ 186 1XC 2WC 3O- 41~ 6TJ 9M8 AAYJJ ABDEX ABDPE ABRJW ACBNA AETEA AFFNX AI. EJD H~9 MVM NEUPN NHB OHT P0- QZG RDFOP ROL T9H UBC UMC UQL VH1 VOH VOOES X7L XJT XOL ZCG ZGI ZXP |
ID | FETCH-LOGICAL-c359t-53a16be70c10311decc872c5f471a1776d48b0d77158186283a012dcbe1bc3503 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri May 09 12:22:56 EDT 2025 Thu Jul 10 23:29:54 EDT 2025 Sun Jun 29 15:26:25 EDT 2025 Tue Jul 01 00:27:56 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Thu Jun 23 13:36:35 EDT 2022 Fri Jun 21 00:13:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Published under an exclusive license by AIP Publishing. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-53a16be70c10311decc872c5f471a1776d48b0d77158186283a012dcbe1bc3503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1132-732X 0000-0002-4034-855X 0000-0003-3772-6801 0000-0002-5214-4060 0000-0002-9855-5113 0000-0001-8916-739X |
OpenAccessLink | https://hal.univ-lille.fr/hal-04138261 |
PMID | 35168357 |
PQID | 2628385610 |
PQPubID | 2050685 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1063_5_0082700 proquest_miscellaneous_2629380452 hal_primary_oai_HAL_hal_04138261v1 crossref_citationtrail_10_1063_5_0082700 proquest_journals_2628385610 scitation_primary_10_1063_5_0082700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-14 |
PublicationDateYYYYMMDD | 2022-02-14 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Hirsh, Rossini, Emsley, Schurko (c12) 2016; 18 Tycko, Opella (c38) 1986; 108 Li, Trébosc, Hu, Shen, Amoureux, Lafon (c32) 2018; 294 Harris, Becker, Cabral de Menezes, Goodfellow, Granger (c87) 2001; 73 van Eck, Janssen, Maas, Veeman (c52) 1990; 174 Atterberry, Carnhahan, Chen, Venkatesh, Rossini (c46) 2022 Amoureux, Huguenard, Engelke, Taulelle (c66) 2002; 356 Levitt (c78) 1989; 82 Gan, Amoureux, Trébosc (c24) 2007; 435 Hung, Gan (c62) 2020; 11 Lucier, Reidel, Schurko (c89) 2011; 89 Kobayashi, Perras, Goh, Metz, Huang, Pruski (c11) 2016; 7 Jarvis, Haies, Williamson, Carravetta (c48) 2013; 15 Pell, Kervern, Emsley, Deschamps, Massiot, Grandinetti, Pintacuda (c75) 2011; 134 Pons, Feliz, Giralt (c90) 1988; 78 Gan (c19) 2006; 128 Paluch, Rankin, Trébosc, Lafon, Amoureux (c68) 2019; 100 Antonijevic, Halpern-Manners (c22) 2008; 33 O’Dell, Schurko (c15) 2009; 131 Shen, Trébosc, Lafon, Gan, Pourpoint, Hu, Chen, Amoureux (c28) 2015; 72 Hung, Rossini, Schurko (c6) 2004; 108 Stark, Haberkorn, Griffin (c85) 1978; 68 Kao, Grey (c80) 1998; 133 Müller, Bodenhausen, Ernst (c81) 1987; 75 Bloch, Siegert (c76) 1940; 57 Vitzthum, Caporini, Ulzega, Bodenhausen (c31) 2011; 212 Reif, Ashbrook, Emsley, Hong (c1) 2021; 1 Siegel, Nakashima, Wasylishen (c7) 2004; 108 Rankin, Trébosc, Paluch, Lafon, Amoureux (c30) 2019; 303 Hunt, Mackay (c93) 1976; 22 Venkatesh, Luan, Perras, Hung, Huang, Rossini (c40) 2020; 22 O’Dell, He, Pandohee (c36) 2013; 15 Wong, Laurencin, Dupree, Smith (c58) 2009; 35 Hung, Gor’kov, Gan (c51) 2019; 151 Pell, Sanders, Wegner, Pintacuda, Grey (c33) 2017; 146 Carnevale, Ji, Bodenhausen (c55) 2017; 147 Huguenard, Taulelle, Knott, Gan (c64) 2002; 156 MacGregor, O’Dell, Schurko (c16) 2011; 208 Perras, Pruski (c41) 2019; 298 Venkatesh, Hanrahan, Rossini (c61) 2017; 84 Pandey, Kato, Ishii, Nishiyama (c60) 2016; 18 Gan (c42); 2006 Perras, Venkatesh, Hanrahan, Goh, Huang, Rossini, Pruski (c67) 2017; 276 Lu, Lafon, Trébosc, Tricot, Delevoye, Méar, Montagne, Amoureux (c72) 2012; 137 Ashbrook, Wimperis (c65) 2002; 156 Leskes, Madhu, Vega (c77) 2010; 57 Lafon, Wang, Hu, Vasconcelos, Trébosc, Cristol, Deng, Amoureux (c27) 2009; 113 Lucier, Johnston, Xu, Hanson, Senanayake, Yao, Bourassa, Srebro, Autschbach, Schurko (c71) 2014; 136 Grey, Veeman (c53) 1992; 192 Cavadini, Abraham, Bodenhausen (c25) 2007; 445 Venkatesh, Perras, Rossini (c70) 2021; 327 Nishiyama, Malon, Gan, Endo, Nemoto (c35) 2013; 230 Ashbrook, Sneddon (c5) 2014; 136 Venkatesh, Lund, Rochlitz, Jabbour, Gordon, Menzildjian, Viger-Gravel, Berruyer, Gajan, Copéret, Lesage, Rossini (c69) 2020; 142 Pell, Pintacuda, Grey (c4) 2019; 111 Trebosc, Hu, Amoureux, Gan (c57) 2007; 186 Caravatti, Bodenhausen, Ernst (c73) 1983; 55 Marion, Ikura, Tschudin, Bax (c91) 1989; 85 Lu, Lafon, Trébosc, Amoureux (c44) 2012; 215 Bak, Rasmussen, Nielsen (c82) 2000; 147 Nagashima, Lilly Thankamony, Trébosc, Pourpoint, Lafon, Amoureux (c47) 2017; 84 Hung, Schurko (c13) 2004; 108 Shen, Trébosc, O’Dell, Lafon, Pourpoint, Hu, Chen, Amoureux (c29) 2015; 258 Shen, Chen, Amoureux, Hu (c37) 2016; 78 Rossini, Hanrahan, Thuo (c59) 2016; 18 Jerschow (c79) 2005; 46 Sajith, Jayanthi, Lupulescu (c56) 2020; 320 Mao, Wiench, Lin, Pruski (c86) 2009; 196 Duong, Gan, Nishiyama (c45) 2021; 8 Larsen, Jakobsen, Ellis, Nielsen (c8) 1997; 101 Jarvis, Concistre, Haies, Bounds, Kuprov, Carravetta, Williamson (c50) 2019; 21 Sasaki, Trébosc, Amoureux (c88) 2021; 333 Aleksis, Pell (c34) 2020; 153 Bak, Nielsen (c83) 1997; 125 Cavadini, Abraham, Bodenhausen (c23) 2008; 190 Chen, Wang, Hu, Lafon, Trébosc, Deng, Amoureux (c43) 2010; 12 Shen, Wegner, Trébosc, Hu, Lafon, Amoureux (c39) 2017; 87 O’Dell, Rossini, Schurko (c14) 2009; 468 Brinkmann, Kentgens (c26) 2006; 128 Corinti, Coletti, Re, Piccirillo, Giampà, Crestoni, Fornarini (c92) 2017; 7 Schurko (c3) 2013; 46 Gan (c63) 2000; 122 Rabbani, Edmonds, Gosling, Palmer (c84) 1987; 72 Brinkmann, Levitt (c74) 2001; 115 Jarvis, Haies, Lelli, Rossini, Kuprov, Carravetta, Williamson (c49) 2017; 53 Cavadini, Antonijevic, Lupulescu, Bodenhausen (c20) 2006; 182 Harris, Lupulescu, Lucier, Frydman, Schurko (c9) 2012; 224 Grey, Vega (c54) 1995; 117 Cavadini, Lupulescu, Antonijevic, Bodenhausen (c18) 2006; 128 Harris, Veinberg, Mireault, Lupulescu, Frydman, Schurko (c10) 2013; 19 Massiot, Farnan, Gautier, Trumeau, Trokiner, Coutures (c17) 1995; 4 (2023081000335770400_c11) 2016; 7 (2023081000335770400_c45) 2021; 8 (2023081000335770400_c2) 2011 (2023081000335770400_c10) 2013; 19 (2023081000335770400_c36) 2013; 15 (2023081000335770400_c42); 2006 (2023081000335770400_c78) 1989; 82 (2023081000335770400_c74) 2001; 115 (2023081000335770400_c41) 2019; 298 (2023081000335770400_c55) 2017; 147 (2023081000335770400_c58) 2009; 35 (2023081000335770400_c30) 2019; 303 (2023081000335770400_c16) 2011; 208 (2023081000335770400_c17) 1995; 4 (2023081000335770400_c85) 1978; 68 (2023081000335770400_c50) 2019; 21 (2023081000335770400_c67) 2017; 276 (2023081000335770400_c35) 2013; 230 (2023081000335770400_c12) 2016; 18 (2023081000335770400_c49) 2017; 53 (2023081000335770400_c64) 2002; 156 (2023081000335770400_c90) 1988; 78 (2023081000335770400_c28) 2015; 72 (2023081000335770400_c83) 1997; 125 (2023081000335770400_c34) 2020; 153 (2023081000335770400_c61) 2017; 84 (2023081000335770400_c89) 2011; 89 (2023081000335770400_c33) 2017; 146 (2023081000335770400_c8) 1997; 101 (2023081000335770400_c65) 2002; 156 (2023081000335770400_c7) 2004; 108 (2023081000335770400_c66) 2002; 356 (2023081000335770400_c75) 2011; 134 (2023081000335770400_c57) 2007; 186 (2023081000335770400_c22) 2008; 33 (2023081000335770400_c24) 2007; 435 (2023081000335770400_c32) 2018; 294 (2023081000335770400_c37) 2016; 78 (2023081000335770400_c14) 2009; 468 (2023081000335770400_c82) 2000; 147 (2023081000335770400_c6) 2004; 108 (2023081000335770400_c18) 2006; 128 (2023081000335770400_c38) 1986; 108 (2023081000335770400_c3) 2013; 46 (2023081000335770400_c23) 2008; 190 (2023081000335770400_c29) 2015; 258 (2023081000335770400_c39) 2017; 87 (2023081000335770400_c72) 2012; 137 (2023081000335770400_c20) 2006; 182 (2023081000335770400_c59) 2016; 18 (2023081000335770400_c68) 2019; 100 (2023081000335770400_c5) 2014; 136 (2023081000335770400_c84) 1987; 72 (2023081000335770400_c15) 2009; 131 (2023081000335770400_c19) 2006; 128 (2023081000335770400_c81) 1987; 75 (2023081000335770400_c73) 1983; 55 (2023081000335770400_c77) 2010; 57 (2023081000335770400_c88) 2021; 333 (2023081000335770400_c9) 2012; 224 (2023081000335770400_c40) 2020; 22 (2023081000335770400_c51) 2019; 151 (2023081000335770400_c60) 2016; 18 (2023081000335770400_c43) 2010; 12 (2023081000335770400_c76) 1940; 57 (2023081000335770400_c26) 2006; 128 (2023081000335770400_c1) 2021; 1 (2023081000335770400_c53) 1992; 192 (2023081000335770400_c25) 2007; 445 (2023081000335770400_c46) 2022 (2023081000335770400_c62) 2020; 11 (2023081000335770400_c48) 2013; 15 (2023081000335770400_c79) 2005; 46 (2023081000335770400_c31) 2011; 212 (2023081000335770400_c52) 1990; 174 (2023081000335770400_c54) 1995; 117 (2023081000335770400_c87) 2001; 73 (2023081000335770400_c80) 1998; 133 (2023081000335770400_c21) 1999 (2023081000335770400_c69) 2020; 142 (2023081000335770400_c47) 2017; 84 (2023081000335770400_c86) 2009; 196 (2023081000335770400_c91) 1989; 85 (2023081000335770400_c63) 2000; 122 (2023081000335770400_c27) 2009; 113 (2023081000335770400_c92) 2017; 7 (2023081000335770400_c13) 2004; 108 (2023081000335770400_c44) 2012; 215 (2023081000335770400_c71) 2014; 136 (2023081000335770400_c93) 1976; 22 (2023081000335770400_c56) 2020; 320 (2023081000335770400_c4) 2019; 111 (2023081000335770400_c70) 2021; 327 |
References_xml | – volume: 190 start-page: 160 year: 2008 ident: c23 article-title: Coherence transfer between spy nuclei and nitrogen-14 in solids publication-title: J. Magn. Reson. – volume: 212 start-page: 234 year: 2011 ident: c31 article-title: Broadband excitation and indirect detection of nitrogen-14 in rotating solids using Delays Alternating with Nutation (DANTE) publication-title: J. Magn. Reson. – volume: 55 start-page: 88 year: 1983 ident: c73 article-title: Selective pulse experiments in high-resolution solid state NMR publication-title: J. Magn. Reson. – volume: 108 start-page: 7112 year: 2004 ident: c6 article-title: Application of the Carr–Purcell Meiboom–Gill pulse sequence for the acquisition of solid-state NMR spectra of spin-1/2 nuclei publication-title: J. Phys. Chem. A – volume: 22 start-page: 20815 year: 2020 ident: c40 article-title: -noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy publication-title: Phys. Chem. Chem. Phys. – volume: 18 start-page: 25893 year: 2016 ident: c12 article-title: Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients publication-title: Phys. Chem. Chem. Phys. – volume: 87 start-page: 111 year: 2017 ident: c39 article-title: Minimizing the -noise when using an indirect H high-resolution detection of unlabeled samples publication-title: Solid State Nucl. Magn. Reson. – volume: 147 start-page: 296 year: 2000 ident: c82 article-title: SIMPSON: A general simulation program for solid-state NMR spectroscopy publication-title: J. Magn. Reson. – volume: 2006 start-page: 4712 ident: c42 article-title: Measuring multiple carbon–nitrogen distances in natural abundant solids using R-RESPDOR NMR publication-title: Chem. Commun. – volume: 12 start-page: 9395 year: 2010 ident: c43 article-title: Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR publication-title: Phys. Chem. Chem. Phys. – volume: 136 start-page: 15440 year: 2014 ident: c5 article-title: New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei publication-title: J. Am. Chem. Soc. – volume: 215 start-page: 34 year: 2012 ident: c44 article-title: Detailed analysis of the S-RESPDOR solid-state NMR method for inter-nuclear distance measurement between spin-1/2 and quadrupolar nuclei publication-title: J. Magn. Reson. – volume: 89 start-page: 919 year: 2011 ident: c89 article-title: Multinuclear solid-state NMR of square-planar platinum complexes—Cisplatin and related systems publication-title: Can. J. Chem. – volume: 108 start-page: 2218 year: 2004 ident: c7 article-title: Application of multiple-pulse experiments to characterize broad NMR chemical-shift powder patterns from spin-1/2 nuclei in the solid state publication-title: J. Phys. Chem. B – year: 2022 ident: c46 article-title: Double echo symmetry-based REDOR and RESPDOR pulse sequences for the improved proton detected measurement of heteronuclear dipolar coupling constants publication-title: J. Magn. Reson. – volume: 21 start-page: 5941 year: 2019 ident: c50 article-title: Quantitative analysis of N quadrupolar coupling using H detected N solid-state NMR publication-title: Phys. Chem. Chem. Phys. – volume: 117 start-page: 8232 year: 1995 ident: c54 article-title: Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with H/ Al TRAPDOR NMR publication-title: J. Am. Chem. Soc. – volume: 435 start-page: 163 year: 2007 ident: c24 article-title: Proton-detected N MAS NMR using homonuclear decoupled rotary resonance publication-title: Chem. Phys. Lett. – volume: 156 start-page: 269 year: 2002 ident: c65 article-title: Satellite-transition MAS NMR of spin I = 3/2, 5/2, 7/2, and 9/2 nuclei: Sensitivity, resolution, and practical implementation publication-title: J. Magn. Reson. – volume: 84 start-page: 171 year: 2017 ident: c61 article-title: Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei publication-title: Solid State Nucl. Magn. Reson. – volume: 100 start-page: 11 year: 2019 ident: c68 article-title: Analysis of HMQC experiments applied to a spin 1/2 nucleus subject to very large CSA publication-title: Solid State Nucl. Magn. Reson. – volume: 75 start-page: 297 year: 1987 ident: c81 article-title: Relaxation-induced violations of coherence transfer selection rules in nuclear magnetic resonance publication-title: J. Magn. Reson. – volume: 125 start-page: 132 year: 1997 ident: c83 article-title: REPULSION, a novel approach to efficient powder averaging in solid-state NMR publication-title: J. Magn. Reson. – volume: 46 start-page: 63 year: 2005 ident: c79 article-title: From nuclear structure to the quadrupolar NMR interaction and high-resolution spectroscopy publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 174 start-page: 428 year: 1990 ident: c52 article-title: A novel application of nuclear spin-echo double-resonance to aluminophosphates and aluminosilicates publication-title: Chem. Phys. Lett. – volume: 142 start-page: 18936 year: 2020 ident: c69 article-title: The structure of molecular and surface platinum sites determined by DNP-SENS and fast MAS Pt solid-state NMR spectroscopy publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 7613 year: 2013 ident: c48 article-title: An efficient NMR method for the characterisation of N sites through indirect C detection publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 295 year: 1976 ident: c93 article-title: Deuterium and nitrogen pure quadrupole resonance in amino acids. II publication-title: J. Magn. Reson. – volume: 258 start-page: 86 year: 2015 ident: c29 article-title: Comparison of various NMR methods for the indirect detection of nitrogen-14 nuclei via protons in solids publication-title: J. Magn. Reson. – volume: 147 start-page: 184201 year: 2017 ident: c55 article-title: Double cross polarization for the indirect detection of nitrogen-14 nuclei in magic angle spinning NMR spectroscopy publication-title: J. Chem. Phys. – volume: 156 start-page: 131 year: 2002 ident: c64 article-title: Optimizing STMAS publication-title: J. Magn. Reson. – volume: 192 start-page: 379 year: 1992 ident: c53 article-title: The detection of weak heteronuclear coupling between spin 1 and spin 1/2 nuclei in MAS NMR; N/ C/ H triple resonance experiments publication-title: Chem. Phys. Lett. – volume: 84 start-page: 216 year: 2017 ident: c47 article-title: γ-independent through-space hetero-nuclear correlation between spin-1/2 and quadrupolar nuclei in solids publication-title: Solid State Nucl. Magn. Reson. – volume: 276 start-page: 95 year: 2017 ident: c67 article-title: Indirect detection of infinite-speed MAS solid-state NMR spectra publication-title: J. Magn. Reson. – volume: 68 start-page: 1996 year: 1978 ident: c85 article-title: N NMR determination of NH bond lengths in solids publication-title: J. Chem. Phys. – volume: 208 start-page: 103 year: 2011 ident: c16 article-title: New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides publication-title: J. Magn. Reson. – volume: 53 start-page: 12116 year: 2017 ident: c49 article-title: Measurement of N quadrupole couplings in biomolecular solids using indirect-detection N solid-state NMR with DNP publication-title: Chem. Commun. – volume: 136 start-page: 1333 year: 2014 ident: c71 article-title: Unravelling the structure of Magnus’ pink salt publication-title: J. Am. Chem. Soc. – volume: 294 start-page: 101 year: 2018 ident: c32 article-title: Indirect detection of broad spectra in solid-state NMR using interleaved DANTE trains publication-title: J. Magn. Reson. – volume: 333 start-page: 107093 year: 2021 ident: c88 article-title: Accelerating the acquisition of high-resolution quadrupolar MQ/ST-HETCOR 2D spectra under fast MAS via H detection and through-space population transfers publication-title: J. Magn. Reson. – volume: 115 start-page: 357 year: 2001 ident: c74 article-title: Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann–Hahn sequences publication-title: J. Chem. Phys. – volume: 468 start-page: 330 year: 2009 ident: c14 article-title: Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG publication-title: Chem. Phys. Lett. – volume: 108 start-page: 3531 year: 1986 ident: c38 article-title: High-resolution nitrogen-14 overtone spectroscopy: An approach to natural abundance nitrogen NMR of oriented and polycrystalline systems publication-title: J. Am. Chem. Soc. – volume: 298 start-page: 31 year: 2019 ident: c41 article-title: Reducing noise through rapid scanning publication-title: J. Magn. Reson. – volume: 8 start-page: 645347 year: 2021 ident: c45 article-title: Selective H– N distance measurements by N overtone solid-state NMR spectroscopy at fast MAS publication-title: Front. Mol. Biosci. – volume: 186 start-page: 220 year: 2007 ident: c57 article-title: Through-space R -HETCOR experiments between spin-1/2 and half-integer quadrupolar nuclei in solid-state NMR publication-title: J. Magn. Reson. – volume: 11 start-page: 4734 year: 2020 ident: c62 article-title: High-resolution NMR of = 3/2 quadrupole nuclei by detection of double-quantum satellite transitions via protons publication-title: J. Phys. Chem. Lett. – volume: 57 start-page: 522 year: 1940 ident: c76 article-title: Magnetic resonance for nonrotating fields publication-title: Phys. Rev. – volume: 18 start-page: 25284 year: 2016 ident: c59 article-title: Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences publication-title: Phys. Chem. Chem. Phys. – volume: 46 start-page: 1985 year: 2013 ident: c3 article-title: Ultra-wideline solid-state NMR spectroscopy publication-title: Acc. Chem. Res. – volume: 7 start-page: 2322 year: 2016 ident: c11 article-title: DNP-enhanced ultrawideline solid-state NMR spectroscopy: Studies of platinum in metal–organic frameworks publication-title: J. Phys. Chem. Lett. – volume: 15 start-page: 8657 year: 2013 ident: c36 article-title: Identifying H–N proximities in solid-state NMR using N overtone irradiation under fast MAS publication-title: CrystEngComm – volume: 82 start-page: 427 year: 1989 ident: c78 article-title: Why do spinning sidebands have the same phase? publication-title: J. Magn. Reson. – volume: 128 start-page: 6040 year: 2006 ident: c19 article-title: Measuring amide nitrogen quadrupolar coupling by high-resolution N/ C NMR correlation under magic-angle spinning publication-title: J. Am. Chem. Soc. – volume: 327 start-page: 106983 year: 2021 ident: c70 article-title: Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy publication-title: J. Magn. Reson. – volume: 111 start-page: 1 year: 2019 ident: c4 article-title: Paramagnetic NMR in solution and the solid state publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 224 start-page: 38 year: 2012 ident: c9 article-title: Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy publication-title: J. Magn. Reson. – volume: 137 start-page: 144201 year: 2012 ident: c72 article-title: Observation of proximities between spin-1/2 and quadrupolar nuclei: Which heteronuclear dipolar recoupling method is preferable? publication-title: J. Chem. Phys. – volume: 33 start-page: 82 year: 2008 ident: c22 article-title: Probing amide bond nitrogens in solids using N NMR spectroscopy publication-title: Solid State Nucl. Magn. Reson. – volume: 445 start-page: 1 year: 2007 ident: c25 article-title: Proton-detected nitrogen-14 NMR by recoupling of heteronuclear dipolar interactions using symmetry-based sequences publication-title: Chem. Phys. Lett. – volume: 19 start-page: 16469 year: 2013 ident: c10 article-title: Rapid acquisition of N solid-state NMR spectra with broadband cross polarization publication-title: Chem. - Eur. J. – volume: 133 start-page: 313 year: 1998 ident: c80 article-title: INEPT experiments involving quadrupolar nuclei in solids publication-title: J. Magn. Reson. – volume: 57 start-page: 345 year: 2010 ident: c77 article-title: Floquet theory in solid-state nuclear magnetic resonance publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 72 start-page: 104 year: 2015 ident: c28 article-title: Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses publication-title: Solid State Nucl. Magn. Reson. – volume: 122 start-page: 3242 year: 2000 ident: c63 article-title: Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning publication-title: J. Am. Chem. Soc. – volume: 85 start-page: 393 year: 1989 ident: c91 article-title: Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins publication-title: J. Magn. Reson. – volume: 182 start-page: 168 year: 2006 ident: c20 article-title: Indirect detection of nitrogen-14 in solids via protons by nuclear magnetic resonance spectroscopy publication-title: J. Magn. Reson. – volume: 108 start-page: 9060 year: 2004 ident: c13 article-title: Solid-state Zr NMR of bis(cyclopentadienyl)dichlorozirconium(IV) publication-title: J. Phys. Chem. B – volume: 7 start-page: 15877 year: 2017 ident: c92 article-title: Hydrolysis of cis- and transplatin: Structure and reactivity of the aqua complexes in a solvent free environment publication-title: RSC Adv. – volume: 73 start-page: 1795 year: 2001 ident: c87 article-title: NMR nomenclature. Nuclear spin properties and conventions for chemical shifts publication-title: Pure Appl. Chem. – volume: 128 start-page: 7706 year: 2006 ident: c18 article-title: Nitrogen-14 NMR spectroscopy using residual dipolar splittings in solids publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 230 year: 1987 ident: c84 article-title: Measurement of the N quadrupole coupling constants in glycine, diglycine, triglycine, and tetraglycine and a comparison with calculation publication-title: J. Magn. Reson. – volume: 131 start-page: 6658 year: 2009 ident: c15 article-title: Fast and simple acquisition of solid-state N NMR spectra with signal enhancement via population transfer publication-title: J. Am. Chem. Soc. – volume: 196 start-page: 92 year: 2009 ident: c86 article-title: Indirectly detected through-bond chemical shift correlation NMR spectroscopy in solids under fast MAS: Studies of organic–inorganic hybrid materials publication-title: J. Magn. Reson. – volume: 146 start-page: 194202 year: 2017 ident: c33 article-title: Low-power broadband solid-state MAS NMR of N publication-title: J. Chem. Phys. – volume: 356 start-page: 497 year: 2002 ident: c66 article-title: Unified representation of MQMAS and STMAS NMR of half-integer quadrupolar nuclei publication-title: Chem. Phys. Lett. – volume: 35 start-page: 32 year: 2009 ident: c58 article-title: Two-dimensional Ca– H correlation solid-state NMR spectroscopy publication-title: Solid State Nucl. Magn. Reson. – volume: 128 start-page: 14758 year: 2006 ident: c26 article-title: Proton-selective O– H distance measurements in fast magic-angle-spinning solid-state NMR spectroscopy for the determination of hydrogen bond lengths publication-title: J. Am. Chem. Soc. – volume: 320 start-page: 106832 year: 2020 ident: c56 article-title: Effective Hamiltonian and H– N cross polarization/double cross polarization at fast MAS publication-title: J. Magn. Reson. – volume: 78 start-page: 5 year: 2016 ident: c37 article-title: Broad-band excitation in indirectly detected N overtone spectroscopy with composite pulses publication-title: Solid State Nucl. Magn. Reson. – volume: 78 start-page: 314 year: 1988 ident: c90 article-title: Steady-state DQF-COSY spectra using a variable relaxation delay publication-title: J. Magn. Reson. – volume: 113 start-page: 12864 year: 2009 ident: c27 article-title: Indirect detection via spin-1/2 nuclei in solid state NMR spectroscopy: Application to the observation of proximities between protons and quadrupolar nuclei publication-title: J. Phys. Chem. A – volume: 153 start-page: 244202 year: 2020 ident: c34 article-title: Low-power synchronous helical pulse sequences for large anisotropic interactions in MAS NMR: Double-quantum excitation of N publication-title: J. Chem. Phys. – volume: 303 start-page: 28 year: 2019 ident: c30 article-title: Evaluation of excitation schemes for indirect detection of N via solid-state HMQC NMR experiments publication-title: J. Magn. Reson. – volume: 134 start-page: 024117 year: 2011 ident: c75 article-title: Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses publication-title: J. Chem. Phys. – volume: 4 start-page: 241 year: 1995 ident: c17 article-title: Ga and Ga nuclear magnetic resonance study of beta-Ga O : Resolution of four- and six-fold coordinated Ga sites in static conditions publication-title: Solid State Nucl. Magn. Reson. – volume: 230 start-page: 160 year: 2013 ident: c35 article-title: Proton–nitrogen-14 overtone two-dimensional correlation NMR spectroscopy of solid-sample at very fast magic angle sample spinning publication-title: J. Magn. Reson. – volume: 18 start-page: 6209 year: 2016 ident: c60 article-title: Two-dimensional proton-detected Cl/ H correlation solid-state NMR experiment under fast magic angle sample spinning: Application to pharmaceutical compounds publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 2 year: 2021 ident: c1 article-title: Solid-state NMR spectroscopy publication-title: Nat. Rev. Methods Primers – volume: 101 start-page: 8597 year: 1997 ident: c8 article-title: Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors publication-title: J. Phys. Chem. A – volume: 151 start-page: 154202 year: 2019 ident: c51 article-title: Efficient and sideband-free H-detected N magic-angle spinning NMR publication-title: J. Chem. Phys. – volume: 75 start-page: 297 year: 1987 ident: 2023081000335770400_c81 article-title: Relaxation-induced violations of coherence transfer selection rules in nuclear magnetic resonance publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(87)90038-2 – volume: 108 start-page: 7112 year: 2004 ident: 2023081000335770400_c6 article-title: Application of the Carr–Purcell Meiboom–Gill pulse sequence for the acquisition of solid-state NMR spectra of spin-1/2 nuclei publication-title: J. Phys. Chem. A doi: 10.1021/jp0401123 – volume: 22 start-page: 295 year: 1976 ident: 2023081000335770400_c93 article-title: Deuterium and nitrogen pure quadrupole resonance in amino acids. II publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(76)90304-8 – volume: 22 start-page: 20815 year: 2020 ident: 2023081000335770400_c40 article-title: t1-noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d0cp03511d – volume: 174 start-page: 428 year: 1990 ident: 2023081000335770400_c52 article-title: A novel application of nuclear spin-echo double-resonance to aluminophosphates and aluminosilicates publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(90)87174-p – volume: 276 start-page: 95 year: 2017 ident: 2023081000335770400_c67 article-title: Indirect detection of infinite-speed MAS solid-state NMR spectra publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2017.01.010 – volume: 192 start-page: 379 year: 1992 ident: 2023081000335770400_c53 article-title: The detection of weak heteronuclear coupling between spin 1 and spin 1/2 nuclei in MAS NMR; 14N/13C/1H triple resonance experiments publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)85486-t – volume: 2006 start-page: 4712 ident: 2023081000335770400_c42 article-title: Measuring multiple carbon–nitrogen distances in natural abundant solids using R-RESPDOR NMR publication-title: Chem. Commun. doi: 10.1039/b611447d – volume: 72 start-page: 230 year: 1987 ident: 2023081000335770400_c84 article-title: Measurement of the 14N quadrupole coupling constants in glycine, diglycine, triglycine, and tetraglycine and a comparison with calculation publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(87)90285-x – volume: 15 start-page: 7613 year: 2013 ident: 2023081000335770400_c48 article-title: An efficient NMR method for the characterisation of 14N sites through indirect 13C detection publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50787d – volume: 72 start-page: 104 year: 2015 ident: 2023081000335770400_c28 article-title: Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2015.09.003 – volume: 108 start-page: 3531 year: 1986 ident: 2023081000335770400_c38 article-title: High-resolution nitrogen-14 overtone spectroscopy: An approach to natural abundance nitrogen NMR of oriented and polycrystalline systems publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00272a071 – volume: 215 start-page: 34 year: 2012 ident: 2023081000335770400_c44 article-title: Detailed analysis of the S-RESPDOR solid-state NMR method for inter-nuclear distance measurement between spin-1/2 and quadrupolar nuclei publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2011.12.009 – volume: 4 start-page: 241 year: 1995 ident: 2023081000335770400_c17 article-title: 71Ga and 69Ga nuclear magnetic resonance study of beta-Ga2O3: Resolution of four- and six-fold coordinated Ga sites in static conditions publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/0926-2040(95)00002-8 – volume: 137 start-page: 144201 year: 2012 ident: 2023081000335770400_c72 article-title: Observation of proximities between spin-1/2 and quadrupolar nuclei: Which heteronuclear dipolar recoupling method is preferable? publication-title: J. Chem. Phys. doi: 10.1063/1.4753987 – volume: 128 start-page: 7706 year: 2006 ident: 2023081000335770400_c18 article-title: Nitrogen-14 NMR spectroscopy using residual dipolar splittings in solids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0618898 – volume: 153 start-page: 244202 year: 2020 ident: 2023081000335770400_c34 article-title: Low-power synchronous helical pulse sequences for large anisotropic interactions in MAS NMR: Double-quantum excitation of 14N publication-title: J. Chem. Phys. doi: 10.1063/5.0030604 – volume: 445 start-page: 1 year: 2007 ident: 2023081000335770400_c25 article-title: Proton-detected nitrogen-14 NMR by recoupling of heteronuclear dipolar interactions using symmetry-based sequences publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.07.060 – volume: 320 start-page: 106832 year: 2020 ident: 2023081000335770400_c56 article-title: Effective Hamiltonian and 1H–14N cross polarization/double cross polarization at fast MAS publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2020.106832 – volume: 115 start-page: 357 year: 2001 ident: 2023081000335770400_c74 article-title: Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann–Hahn sequences publication-title: J. Chem. Phys. doi: 10.1063/1.1377031 – volume: 125 start-page: 132 year: 1997 ident: 2023081000335770400_c83 article-title: REPULSION, a novel approach to efficient powder averaging in solid-state NMR publication-title: J. Magn. Reson. doi: 10.1006/jmre.1996.1087 – volume: 113 start-page: 12864 year: 2009 ident: 2023081000335770400_c27 article-title: Indirect detection via spin-1/2 nuclei in solid state NMR spectroscopy: Application to the observation of proximities between protons and quadrupolar nuclei publication-title: J. Phys. Chem. A doi: 10.1021/jp906099k – volume: 186 start-page: 220 year: 2007 ident: 2023081000335770400_c57 article-title: Through-space R3-HETCOR experiments between spin-1/2 and half-integer quadrupolar nuclei in solid-state NMR publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.02.015 – volume: 18 start-page: 25284 year: 2016 ident: 2023081000335770400_c59 article-title: Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c6cp04279a – volume: 151 start-page: 154202 year: 2019 ident: 2023081000335770400_c51 article-title: Efficient and sideband-free 1H-detected 14N magic-angle spinning NMR publication-title: J. Chem. Phys. doi: 10.1063/1.5126599 – volume: 117 start-page: 8232 year: 1995 ident: 2023081000335770400_c54 article-title: Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00136a022 – volume: 78 start-page: 314 year: 1988 ident: 2023081000335770400_c90 article-title: Steady-state DQF-COSY spectra using a variable relaxation delay publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(88)90275-2 – volume: 108 start-page: 9060 year: 2004 ident: 2023081000335770400_c13 article-title: Solid-state 91Zr NMR of bis(cyclopentadienyl)dichlorozirconium(IV) publication-title: J. Phys. Chem. B doi: 10.1021/jp040270u – volume: 298 start-page: 31 year: 2019 ident: 2023081000335770400_c41 article-title: Reducing t1 noise through rapid scanning publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2018.11.008 – volume: 89 start-page: 919 year: 2011 ident: 2023081000335770400_c89 article-title: Multinuclear solid-state NMR of square-planar platinum complexes—Cisplatin and related systems publication-title: Can. J. Chem. doi: 10.1139/v11-033 – volume: 356 start-page: 497 year: 2002 ident: 2023081000335770400_c66 article-title: Unified representation of MQMAS and STMAS NMR of half-integer quadrupolar nuclei publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(02)00398-6 – volume: 190 start-page: 160 year: 2008 ident: 2023081000335770400_c23 article-title: Coherence transfer between spy nuclei and nitrogen-14 in solids publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.10.008 – volume: 46 start-page: 63 year: 2005 ident: 2023081000335770400_c79 article-title: From nuclear structure to the quadrupolar NMR interaction and high-resolution spectroscopy publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2004.12.001 – volume: 46 start-page: 1985 year: 2013 ident: 2023081000335770400_c3 article-title: Ultra-wideline solid-state NMR spectroscopy publication-title: Acc. Chem. Res. doi: 10.1021/ar400045t – volume: 8 start-page: 645347 year: 2021 ident: 2023081000335770400_c45 article-title: Selective 1H–14N distance measurements by 14N overtone solid-state NMR spectroscopy at fast MAS publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.645347 – volume: 21 start-page: 5941 year: 2019 ident: 2023081000335770400_c50 article-title: Quantitative analysis of 14N quadrupolar coupling using 1H detected 14N solid-state NMR publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c8cp06276e – start-page: 358 volume-title: Solid-State NMR Spectroscopy of Inorganic Materials year: 1999 ident: 2023081000335770400_c21 article-title: Wide-line 14N NMR in solids – volume: 136 start-page: 15440 year: 2014 ident: 2023081000335770400_c5 article-title: New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504734p – volume-title: Encyclopedia of Magnetic Resonance year: 2011 ident: 2023081000335770400_c2 article-title: Acquisition of wideline solid-state NMR spectra of quadrupolar nuclei doi: 10.1002/9780470034590.emrstm1199 – volume: 18 start-page: 6209 year: 2016 ident: 2023081000335770400_c60 article-title: Two-dimensional proton-detected 35Cl/1H correlation solid-state NMR experiment under fast magic angle sample spinning: Application to pharmaceutical compounds publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c5cp06042g – volume: 84 start-page: 171 year: 2017 ident: 2023081000335770400_c61 article-title: Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2017.03.005 – volume: 100 start-page: 11 year: 2019 ident: 2023081000335770400_c68 article-title: Analysis of HMQC experiments applied to a spin 1/2 nucleus subject to very large CSA publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2019.03.001 – year: 2022 ident: 2023081000335770400_c46 article-title: Double echo symmetry-based REDOR and RESPDOR pulse sequences for the improved proton detected measurement of heteronuclear dipolar coupling constants publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2022.107147 – volume: 53 start-page: 12116 year: 2017 ident: 2023081000335770400_c49 article-title: Measurement of 14N quadrupole couplings in biomolecular solids using indirect-detection 14N solid-state NMR with DNP publication-title: Chem. Commun. doi: 10.1039/c7cc03462h – volume: 18 start-page: 25893 year: 2016 ident: 2023081000335770400_c12 article-title: 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c6cp04353d – volume: 11 start-page: 4734 year: 2020 ident: 2023081000335770400_c62 article-title: High-resolution NMR of S = 3/2 quadrupole nuclei by detection of double-quantum satellite transitions via protons publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01236 – volume: 101 start-page: 8597 year: 1997 ident: 2023081000335770400_c8 article-title: Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors publication-title: J. Phys. Chem. A doi: 10.1021/jp971547b – volume: 33 start-page: 82 year: 2008 ident: 2023081000335770400_c22 article-title: Probing amide bond nitrogens in solids using 14N NMR spectroscopy publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2008.04.006 – volume: 258 start-page: 86 year: 2015 ident: 2023081000335770400_c29 article-title: Comparison of various NMR methods for the indirect detection of nitrogen-14 nuclei via protons in solids publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2015.06.008 – volume: 435 start-page: 163 year: 2007 ident: 2023081000335770400_c24 article-title: Proton-detected 14N MAS NMR using homonuclear decoupled rotary resonance publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.12.066 – volume: 156 start-page: 269 year: 2002 ident: 2023081000335770400_c65 article-title: Satellite-transition MAS NMR of spin I = 3/2, 5/2, 7/2, and 9/2 nuclei: Sensitivity, resolution, and practical implementation publication-title: J. Magn. Reson. doi: 10.1006/jmre.2002.2557 – volume: 208 start-page: 103 year: 2011 ident: 2023081000335770400_c16 article-title: New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2010.10.011 – volume: 134 start-page: 024117 year: 2011 ident: 2023081000335770400_c75 article-title: Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses publication-title: J. Chem. Phys. doi: 10.1063/1.3521491 – volume: 131 start-page: 6658 year: 2009 ident: 2023081000335770400_c15 article-title: Fast and simple acquisition of solid-state 14N NMR spectra with signal enhancement via population transfer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901278q – volume: 55 start-page: 88 year: 1983 ident: 2023081000335770400_c73 article-title: Selective pulse experiments in high-resolution solid state NMR publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(83)90279-2 – volume: 85 start-page: 393 year: 1989 ident: 2023081000335770400_c91 article-title: Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(89)90152-2 – volume: 212 start-page: 234 year: 2011 ident: 2023081000335770400_c31 article-title: Broadband excitation and indirect detection of nitrogen-14 in rotating solids using Delays Alternating with Nutation (DANTE) publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2011.06.013 – volume: 122 start-page: 3242 year: 2000 ident: 2023081000335770400_c63 article-title: Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9939791 – volume: 57 start-page: 522 year: 1940 ident: 2023081000335770400_c76 article-title: Magnetic resonance for nonrotating fields publication-title: Phys. Rev. doi: 10.1103/physrev.57.522 – volume: 230 start-page: 160 year: 2013 ident: 2023081000335770400_c35 article-title: Proton–nitrogen-14 overtone two-dimensional correlation NMR spectroscopy of solid-sample at very fast magic angle sample spinning publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2013.02.015 – volume: 147 start-page: 296 year: 2000 ident: 2023081000335770400_c82 article-title: SIMPSON: A general simulation program for solid-state NMR spectroscopy publication-title: J. Magn. Reson. doi: 10.1006/jmre.2000.2179 – volume: 68 start-page: 1996 year: 1978 ident: 2023081000335770400_c85 article-title: 14N NMR determination of NH bond lengths in solids publication-title: J. Chem. Phys. doi: 10.1063/1.435879 – volume: 333 start-page: 107093 year: 2021 ident: 2023081000335770400_c88 article-title: Accelerating the acquisition of high-resolution quadrupolar MQ/ST-HETCOR 2D spectra under fast MAS via 1H detection and through-space population transfers publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2021.107093 – volume: 87 start-page: 111 year: 2017 ident: 2023081000335770400_c39 article-title: Minimizing the t1-noise when using an indirect 1H high-resolution detection of unlabeled samples publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2017.06.008 – volume: 15 start-page: 8657 year: 2013 ident: 2023081000335770400_c36 article-title: Identifying H–N proximities in solid-state NMR using 14N overtone irradiation under fast MAS publication-title: CrystEngComm doi: 10.1039/c3ce40967h – volume: 128 start-page: 6040 year: 2006 ident: 2023081000335770400_c19 article-title: Measuring amide nitrogen quadrupolar coupling by high-resolution 14N/13C NMR correlation under magic-angle spinning publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0578597 – volume: 133 start-page: 313 year: 1998 ident: 2023081000335770400_c80 article-title: INEPT experiments involving quadrupolar nuclei in solids publication-title: J. Magn. Reson. doi: 10.1006/jmre.1998.1455 – volume: 294 start-page: 101 year: 2018 ident: 2023081000335770400_c32 article-title: Indirect detection of broad spectra in solid-state NMR using interleaved DANTE trains publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2018.07.005 – volume: 82 start-page: 427 year: 1989 ident: 2023081000335770400_c78 article-title: Why do spinning sidebands have the same phase? publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(89)90050-4 – volume: 1 start-page: 2 year: 2021 ident: 2023081000335770400_c1 article-title: Solid-state NMR spectroscopy publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-020-00002-1 – volume: 128 start-page: 14758 year: 2006 ident: 2023081000335770400_c26 article-title: Proton-selective 17O–1H distance measurements in fast magic-angle-spinning solid-state NMR spectroscopy for the determination of hydrogen bond lengths publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065415k – volume: 468 start-page: 330 year: 2009 ident: 2023081000335770400_c14 article-title: Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.12.044 – volume: 7 start-page: 15877 year: 2017 ident: 2023081000335770400_c92 article-title: Hydrolysis of cis- and transplatin: Structure and reactivity of the aqua complexes in a solvent free environment publication-title: RSC Adv. doi: 10.1039/c7ra01182b – volume: 7 start-page: 2322 year: 2016 ident: 2023081000335770400_c11 article-title: DNP-enhanced ultrawideline solid-state NMR spectroscopy: Studies of platinum in metal–organic frameworks publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00860 – volume: 57 start-page: 345 year: 2010 ident: 2023081000335770400_c77 article-title: Floquet theory in solid-state nuclear magnetic resonance publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2010.06.002 – volume: 196 start-page: 92 year: 2009 ident: 2023081000335770400_c86 article-title: Indirectly detected through-bond chemical shift correlation NMR spectroscopy in solids under fast MAS: Studies of organic–inorganic hybrid materials publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2008.10.010 – volume: 108 start-page: 2218 year: 2004 ident: 2023081000335770400_c7 article-title: Application of multiple-pulse experiments to characterize broad NMR chemical-shift powder patterns from spin-1/2 nuclei in the solid state publication-title: J. Phys. Chem. B doi: 10.1021/jp031048c – volume: 111 start-page: 1 year: 2019 ident: 2023081000335770400_c4 article-title: Paramagnetic NMR in solution and the solid state publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2018.05.001 – volume: 156 start-page: 131 year: 2002 ident: 2023081000335770400_c64 article-title: Optimizing STMAS publication-title: J. Magn. Reson. doi: 10.1006/jmre.2002.2548 – volume: 73 start-page: 1795 year: 2001 ident: 2023081000335770400_c87 article-title: NMR nomenclature. Nuclear spin properties and conventions for chemical shifts publication-title: Pure Appl. Chem. doi: 10.1351/pac200173111795 – volume: 147 start-page: 184201 year: 2017 ident: 2023081000335770400_c55 article-title: Double cross polarization for the indirect detection of nitrogen-14 nuclei in magic angle spinning NMR spectroscopy publication-title: J. Chem. Phys. doi: 10.1063/1.5000689 – volume: 327 start-page: 106983 year: 2021 ident: 2023081000335770400_c70 article-title: Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2021.106983 – volume: 19 start-page: 16469 year: 2013 ident: 2023081000335770400_c10 article-title: Rapid acquisition of 14N solid-state NMR spectra with broadband cross polarization publication-title: Chem. - Eur. J. doi: 10.1002/chem.201301862 – volume: 303 start-page: 28 year: 2019 ident: 2023081000335770400_c30 article-title: Evaluation of excitation schemes for indirect detection of 14N via solid-state HMQC NMR experiments publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2019.04.004 – volume: 35 start-page: 32 year: 2009 ident: 2023081000335770400_c58 article-title: Two-dimensional 43Ca–1H correlation solid-state NMR spectroscopy publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2008.11.002 – volume: 142 start-page: 18936 year: 2020 ident: 2023081000335770400_c69 article-title: The structure of molecular and surface platinum sites determined by DNP-SENS and fast MAS 195Pt solid-state NMR spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09101 – volume: 182 start-page: 168 year: 2006 ident: 2023081000335770400_c20 article-title: Indirect detection of nitrogen-14 in solids via protons by nuclear magnetic resonance spectroscopy publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.06.003 – volume: 78 start-page: 5 year: 2016 ident: 2023081000335770400_c37 article-title: Broad-band excitation in indirectly detected 14N overtone spectroscopy with composite pulses publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2016.05.001 – volume: 12 start-page: 9395 year: 2010 ident: 2023081000335770400_c43 article-title: Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b926546e – volume: 136 start-page: 1333 year: 2014 ident: 2023081000335770400_c71 article-title: Unravelling the structure of Magnus’ pink salt publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4076277 – volume: 84 start-page: 216 year: 2017 ident: 2023081000335770400_c47 article-title: γ-independent through-space hetero-nuclear correlation between spin-1/2 and quadrupolar nuclei in solids publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2017.06.002 – volume: 146 start-page: 194202 year: 2017 ident: 2023081000335770400_c33 article-title: Low-power broadband solid-state MAS NMR of 14N publication-title: J. Chem. Phys. doi: 10.1063/1.4983220 – volume: 224 start-page: 38 year: 2012 ident: 2023081000335770400_c9 article-title: Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2012.08.015 |
SSID | ssj0001724 |
Score | 2.4601352 |
Snippet | Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been... |
SourceID | hal proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 064202 |
SubjectTerms | Anisotropy Chemical equilibrium Chemical Sciences Coherence Histidine Nitrogen isotopes NMR Nuclear magnetic resonance Nuclei or physical chemistry Protons Quadrupole interaction Quadrupoles Quantum phenomena Robustness (mathematics) Spin dynamics Theoretical and |
Title | Indirect NMR detection via proton of nuclei subject to large anisotropic interactions, such as 14N, 195Pt, and 35Cl, using the T-HMQC sequence |
URI | http://dx.doi.org/10.1063/5.0082700 https://www.proquest.com/docview/2628385610 https://www.proquest.com/docview/2629380452 https://hal.univ-lille.fr/hal-04138261 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2ERovCAaIwkDm8oDUBpo618dpbHSoHWN00sRL5NiOWmlKqiapxH4Ev4Ifyjmxc5lUTcBLVCVu5Pp8Pec79rkQ8k4GIvGEza2Ax77lSFdanMXccgInAQuvAqbQUZyeeeNL58uVe7W19bsTtVQW8QdxszGv5H-kCvdArpgl-w-SbV4KN-AzyBeuIGG4_pWMT1Ntkfpn04u-VIXSfb_XC45xV4WmgilWLF708zLGLRfkmtcY_d3n6SLPilW2XIiqaMRKpzhUcs1LMccONLZTRQHYoXte1HGezD2qto3LvM60mlnj6Tf4konK7vLdNvOs4ryiLk-gN1TaLXr-8yYr-xdczBszMTOH-HGWiyqNu01aGxsNdbpusf0ZFNWPuZpnxhSbnQxwgrGvSruT2RxR3QqTOO_Mp84_sC30u7QF02p7GISW7-nGo41e1xXLDYC9jfYCCBoIGbfVAjyBb41iHQhw9jU6uZxMotnx1Wyb7I7AGQFtunv4aTr53lh8IIGm2reeWV3BymMfm1ff4j3bc4y67bg0e8B3dOhFh93MHpIHRkT0UGPsEdlS6T7ZO6q7Ae6Te2aFHpNfNeoooI42qKOAOqpRR7OEatRRgzpaZLRCHe2gjnZRN6CIOcpzCpgb0ApxAxgtKeJtQCu0UUAb1WijNdqekMuT49nR2DJdPSzB3LCwXMZtL1b-UGCHEVuCDgn8kXAToEnc9n1POkE8lL5vu1htEegvBxIlRazsGN4wZE_JTpql6hmhbCQDxZOQM3AEklCETCqfAQeVoJccLnrkfb3mUb2-2HnlOqpCLzwWuZERT4-8aYYudZ2XjYNAcM1zrMw-PpxEeG_oYDFPz17bPXJQyzUyuiKPRvg7AvRVeuR18xhEiMdzPFVZWY0JWYAtDnrkbYOHu2azYdQ6W7UjoqVMnt89nRfkfvtXPCA7xapUL4FmF_Erg_I_o43Rlg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+NMR+detection+via+proton+of+nuclei+subject+to+large+anisotropic+interactions%2C+such+as+14N%2C+195Pt%2C+and+35Cl%2C+using+the+T-HMQC+sequence&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Bayzou+Racha&rft.au=Tr%C3%A9bosc+Julien&rft.au=Hung%2C+Ivan&rft.au=Gan+Zhehong&rft.date=2022-02-14&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=156&rft.issue=6&rft_id=info:doi/10.1063%2F5.0082700&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |