Out-of-Distribution Data Generation for Fault Detection and Diagnosis in Industrial Systems

The emergence of Industry 4.0 has transformed modern-day factories into high-tech industrial sites through rapid automation and increased access to real-time data. Deep learning approaches possessing superior capabilities for intelligent, data-driven fault diagnosis have become critical in ensuring...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 135061 - 135073
Main Authors Kafunah, Jefkine, Verma, Priyanka, Ali, Muhammad Intizar, Breslin, John G.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of Industry 4.0 has transformed modern-day factories into high-tech industrial sites through rapid automation and increased access to real-time data. Deep learning approaches possessing superior capabilities for intelligent, data-driven fault diagnosis have become critical in ensuring process safety and reliability in these industrial sites. However, such applications trained exclusively on in-distribution process data face challenges in the wake of previously unseen out-of-distribution (OOD) data in the real world. This paper addresses the challenge of out-of-distribution data detection for deep learning-based fault diagnosis models by generating synthetic data to simulate real-world anomalies not present in the training set. We propose Manifold Guided Sampling (MGS), a data-driven method for generating synthetic OOD samples from the in-distribution data-supporting manifold estimated through a deep generative model. Synthetic data from MGS enhances the model capacity for prediction uncertainty quantification, resulting in safe and reliable models for real-world industrial process monitoring. Furthermore, the MGS algorithm maintains the in-distribution data feature space as a reference point during data generation to ensure the resulting synthetic OOD data is realistic. We analyze the effectiveness of MGS through experiments conducted on the steel plates faults dataset and demonstrate that augmenting training data with synthetic data from MGS enhances the model performance in OOD detection tasks and provides robustness against dataset distributional shifts. The findings underscore the effectiveness of utilizing synthetic MGS-generated OOD data in scenarios where real-world OOD data is limited, enabling better generalization and more reliable fault detection in practical applications.
AbstractList The emergence of Industry 4.0 has transformed modern-day factories into high-tech industrial sites through rapid automation and increased access to real-time data. Deep learning approaches possessing superior capabilities for intelligent, data-driven fault diagnosis have become critical in ensuring process safety and reliability in these industrial sites. However, such applications trained exclusively on in-distribution process data face challenges in the wake of previously unseen out-of-distribution (OOD) data in the real world. This paper addresses the challenge of out-of-distribution data detection for deep learning-based fault diagnosis models by generating synthetic data to simulate real-world anomalies not present in the training set. We propose Manifold Guided Sampling (MGS), a data-driven method for generating synthetic OOD samples from the in-distribution data-supporting manifold estimated through a deep generative model. Synthetic data from MGS enhances the model capacity for prediction uncertainty quantification, resulting in safe and reliable models for real-world industrial process monitoring. Furthermore, the MGS algorithm maintains the in-distribution data feature space as a reference point during data generation to ensure the resulting synthetic OOD data is realistic. We analyze the effectiveness of MGS through experiments conducted on the steel plates faults dataset and demonstrate that augmenting training data with synthetic data from MGS enhances the model performance in OOD detection tasks and provides robustness against dataset distributional shifts. The findings underscore the effectiveness of utilizing synthetic MGS-generated OOD data in scenarios where real-world OOD data is limited, enabling better generalization and more reliable fault detection in practical applications.
Author Breslin, John G.
Ali, Muhammad Intizar
Kafunah, Jefkine
Verma, Priyanka
Author_xml – sequence: 1
  givenname: Jefkine
  orcidid: 0000-0003-0943-1969
  surname: Kafunah
  fullname: Kafunah, Jefkine
  email: jefkine.kafunah@insight-centre.org
  organization: School of Engineering and the Data Science Institute, University of Galway, Galway, Ireland
– sequence: 2
  givenname: Priyanka
  surname: Verma
  fullname: Verma, Priyanka
  organization: School of Engineering and the Data Science Institute, University of Galway, Galway, Ireland
– sequence: 3
  givenname: Muhammad Intizar
  orcidid: 0000-0002-0674-2131
  surname: Ali
  fullname: Ali, Muhammad Intizar
  organization: School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
– sequence: 4
  givenname: John G.
  orcidid: 0000-0001-5790-050X
  surname: Breslin
  fullname: Breslin, John G.
  organization: School of Engineering and the Data Science Institute, University of Galway, Galway, Ireland
BookMark eNpNUctqHDEQFMEBP-IvcA4DOc9GUut5NLu2s2DwYZNTDkKjh9GyHjmS5uC_9-yOCe5LdxdV1Q11ic7GPAaEbgheEYL1z9v1-m63W1FMYQUAUnD1BV1QInQPHMTZp_kcXde6x3OpGeLyAv19mlqfY79JtZU0TC3lsdvYZruHMIZiT3vMpbu306F1m9CCO2F29N0m2ecx11S7NHbb0U9HD3vodm-1hZf6DX2N9lDD9Ue_Qn_u736vf_WPTw_b9e1j74Dr1nMiwGIvmRcCBitAeDJoRp3Hg2SKRuKkCpzhwDSVg-CcDJgxpxWPFPwAV2i7-Pps9-a1pBdb3ky2yZyAXJ6NLS25QzCYUc5ViE45zBxELbkOKkZPrOSChtnrx-L1WvK_KdRm9nkq4_y-oUpropUQembBwnIl11pC_H-VYHMMxSyhmGMo5iOUWfV9UaUQwicFACUS4B0g5ok0
CODEN IAECCG
Cites_doi 10.1109/MSP.2012.2205597
10.1109/TIE.2016.2627020
10.7551/mitpress/7921.003.0004
10.1016/j.pnucene.2010.09.006
10.1007/s11263-015-0812-2
10.1016/j.eswa.2022.118237
10.1109/TIM.2019.2902003
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.3390/machines10070523
10.1146/annurev-chembioeng-061114-123255
10.1109/TMECH.2017.2728371
10.1109/CVPRW53098.2021.00014
10.3390/pr8091123
10.1109/ACCESS.2020.2985617
10.1016/j.patrec.2005.10.010
10.1109/CVPR.2015.7298682
10.1109/TIE.2015.2417501
10.1098/rsta.2009.0159
10.1109/TIA.2017.2661250
10.1145/3422622
10.1109/ICPR48806.2021.9412616
10.1038/s41591-018-0107-6
10.1016/j.eswa.2022.118884
10.1109/IVS.2017.7995975
10.20965/ijat.2017.p0004
10.1090/jams/852
10.36001/ijphm.2016.v7i3.2414
10.1016/S0378-3758(00)00115-4
10.1109/ACCESS.2018.2794765
10.1016/j.chemolab.2012.10.005
10.1088/1361-6501/aab945
10.1109/ICRA.2019.8793742
10.1016/j.jobe.2023.105961
10.1524/stnd.2005.23.4.249
10.1093/mnras/sty2140
10.1016/j.ymssp.2015.10.025
10.1002/wics.61
10.1080/01621459.1984.10477105
10.1146/annurev-environ-021512-110549
10.1109/TIE.2014.2301773
10.1109/TIE.2017.2774777
10.1109/TPAMI.2013.50
10.1016/B978-0-12-819504-8.00007-X
10.1016/B978-008045263-0/50065-9
10.1038/s41586-020-2649-2
10.1145/3065386
10.1146/annurev-control-053018-023652
10.1016/j.measurement.2020.108774
10.1109/ICIEA.2019.8834354
10.1016/B978-0-12-819166-8.00197-3
10.1109/TSMC.2017.2754287
10.1109/ICPR.2018.8546189
10.1109/tii.2019.2943898
10.1007/11550907_37
10.1007/s11263-015-0816-y
10.1186/s40537-021-00444-8
10.1109/41.873214
10.1007/978-94-009-5438-0_20
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3337658
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 135073
ExternalDocumentID oai_doaj_org_article_042558efc8c04c3f9759e8ffd1a7562e
10_1109_ACCESS_2023_3337658
10332173
Genre orig-research
GrantInformation_xml – fundername: Grant from Science Foundation Ireland (SFI)
  grantid: 12/RC/2289_P2 (Insight)
  funderid: 10.13039/501100001602
– fundername: Grant from the Science Foundation Ireland
  grantid: 16/RC/3918 (Confirm)
  funderid: 10.13039/501100001602
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-5163a0d74d663ba636d1b942cd0b7482f1c78e540e4927b6551b044c985f23db3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Thu Sep 05 15:29:56 EDT 2024
Thu Oct 10 18:14:38 EDT 2024
Fri Aug 23 01:01:47 EDT 2024
Wed Jun 26 19:24:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-5163a0d74d663ba636d1b942cd0b7482f1c78e540e4927b6551b044c985f23db3
ORCID 0000-0002-0674-2131
0000-0001-5790-050X
0000-0003-0943-1969
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10332173
PQID 2899198669
PQPubID 4845423
PageCount 13
ParticipantIDs proquest_journals_2899198669
crossref_primary_10_1109_ACCESS_2023_3337658
ieee_primary_10332173
doaj_primary_oai_doaj_org_article_042558efc8c04c3f9759e8ffd1a7562e
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
Dua (ref78) 2017
ref15
ref14
ref58
ref53
ref52
ref55
ref10
ref54
Tokozume (ref62)
Vernekar (ref67) 2019
Sugiyama (ref11); 19
ref17
ref16
ref19
ref18
Lee (ref65)
Nair (ref83)
ref51
ref50
(ref42) 2005
ref46
Krizhevsky (ref63)
ref45
Vernekar (ref74)
ref48
ref47
ref86
ref41
ref88
Sohn (ref68); 28
Malinin (ref38); 31
Guo (ref59)
Srivastava (ref85) 2014; 15
ref49
ref8
Liang (ref40) 2017
Charpentier (ref89); 33
ref7
ref9
ref4
Ioffe (ref84); 37
ref3
Ba (ref21) 2016
ref6
ref5
Wang (ref36); 30
ref82
Vaswani (ref22); 30
ref80
Malinin (ref34); 32
ref35
ref79
ref37
ref75
ref77
ref76
Rifai (ref43); 24
Lakshminarayanan (ref30)
ref2
ref1
ref39
Zhang (ref61)
Zhu (ref87) 2022
ref71
ref70
Kingma (ref81)
ref72
ref24
ref23
ref26
ref25
ref69
ref20
ref64
ref66
Chen (ref73); 31
Depeweg (ref32)
ref28
Narayanan (ref44); 23
ref27
Gal (ref31) 2016
ref29
Inoue (ref60) 2018
Depeweg (ref33) 2017; 1050
References_xml – volume: 19
  start-page: 1337
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: Mixture regression for covariate shift
  contributor:
    fullname: Sugiyama
– ident: ref20
  doi: 10.1109/MSP.2012.2205597
– year: 2005
  ident: ref42
  article-title: Algorithms for manifold learning
– ident: ref53
  doi: 10.1109/TIE.2016.2627020
– ident: ref9
  doi: 10.7551/mitpress/7921.003.0004
– ident: ref6
  doi: 10.1016/j.pnucene.2010.09.006
– ident: ref37
  doi: 10.1007/s11263-015-0812-2
– ident: ref15
  doi: 10.1016/j.eswa.2022.118237
– ident: ref52
  doi: 10.1109/TIM.2019.2902003
– year: 2017
  ident: ref40
  article-title: Enhancing the reliability of out-of-distribution image detection in neural networks
  publication-title: arXiv:1706.02690
  contributor:
    fullname: Liang
– start-page: 807
  volume-title: Proc. 27th Int. Conf. Mach. Learn. (ICML)
  ident: ref83
  article-title: Rectified linear units improve restricted Boltzmann machines
  contributor:
    fullname: Nair
– volume: 30
  start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Attention is all you need
  contributor:
    fullname: Vaswani
– ident: ref86
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– ident: ref79
  doi: 10.3390/machines10070523
– volume: 1050
  start-page: 11
  year: 2017
  ident: ref33
  article-title: Decomposition of uncertainty for active learning and reliable reinforcement learning in stochastic systems
  publication-title: Stat
  contributor:
    fullname: Depeweg
– ident: ref3
  doi: 10.1146/annurev-chembioeng-061114-123255
– ident: ref51
  doi: 10.1109/TMECH.2017.2728371
– ident: ref69
  doi: 10.1109/CVPRW53098.2021.00014
– ident: ref8
  doi: 10.3390/pr8091123
– start-page: 6405
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
  contributor:
    fullname: Lakshminarayanan
– ident: ref54
  doi: 10.1109/ACCESS.2020.2985617
– year: 2019
  ident: ref67
  article-title: Out-of-distribution detection in classifiers via generation
  publication-title: arXiv:1910.04241
  contributor:
    fullname: Vernekar
– volume: 28
  start-page: 3483
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref68
  article-title: Learning structured output representation using deep conditional generative models
  contributor:
    fullname: Sohn
– volume-title: Proc. 33rd Conf. Neural Inf. Process. Syst. (NeurIPS), Saf. Robustness Decis. Making Workshop
  ident: ref74
  article-title: Out-of-distribution detection in classifiers via generation
  contributor:
    fullname: Vernekar
– ident: ref88
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref24
  doi: 10.1109/CVPR.2015.7298682
– year: 2018
  ident: ref60
  article-title: Data augmentation by pairing samples for images classification
  publication-title: arXiv:1801.02929
  contributor:
    fullname: Inoue
– volume: 24
  start-page: 2294
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: The manifold tangent classifier
  contributor:
    fullname: Rifai
– volume: 32
  start-page: 14547
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Reverse kl-divergence training of prior networks: Improved uncertainty and adversarial robustness
  contributor:
    fullname: Malinin
– ident: ref45
  doi: 10.1109/TIE.2015.2417501
– ident: ref71
  doi: 10.1098/rsta.2009.0159
– ident: ref47
  doi: 10.1109/TIA.2017.2661250
– ident: ref66
  doi: 10.1145/3422622
– ident: ref39
  doi: 10.1109/ICPR48806.2021.9412616
– ident: ref25
  doi: 10.1038/s41591-018-0107-6
– start-page: 1106
  volume-title: Proc. Adv. Neural Inf. Process. Syst., 26th Annu. Conf. Neural Inf. Process. Syst.
  ident: ref63
  article-title: ImageNet classification with deep convolutional neural networks
  contributor:
    fullname: Krizhevsky
– ident: ref17
  doi: 10.1016/j.eswa.2022.118884
– ident: ref26
  doi: 10.1109/IVS.2017.7995975
– ident: ref1
  doi: 10.20965/ijat.2017.p0004
– ident: ref41
  doi: 10.1090/jams/852
– ident: ref2
  doi: 10.36001/ijphm.2016.v7i3.2414
– volume: 37
  start-page: 448
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref84
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  contributor:
    fullname: Ioffe
– ident: ref13
  doi: 10.1016/S0378-3758(00)00115-4
– ident: ref55
  doi: 10.1109/ACCESS.2018.2794765
– ident: ref29
  doi: 10.1016/j.chemolab.2012.10.005
– ident: ref49
  doi: 10.1088/1361-6501/aab945
– ident: ref28
  doi: 10.1109/ICRA.2019.8793742
– ident: ref14
  doi: 10.1016/j.jobe.2023.105961
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Represent. (ICLR) Conf. Track
  ident: ref81
  article-title: Adam: A method for stochastic optimization
  contributor:
    fullname: Kingma
– ident: ref12
  doi: 10.1524/stnd.2005.23.4.249
– volume: 33
  start-page: 1356
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref89
  article-title: Posterior network: Uncertainty estimation without ood samples via density-based pseudo-counts
  contributor:
    fullname: Charpentier
– ident: ref70
  doi: 10.1093/mnras/sty2140
– ident: ref58
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref77
  doi: 10.1002/wics.61
– volume: 31
  start-page: 7047
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Predictive uncertainty estimation via prior networks
  contributor:
    fullname: Malinin
– volume: 31
  start-page: 2615
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref73
  article-title: Isolating sources of disentanglement in variational autoencoders
  contributor:
    fullname: Chen
– ident: ref76
  doi: 10.1080/01621459.1984.10477105
– ident: ref4
  doi: 10.1146/annurev-environ-021512-110549
– ident: ref46
  doi: 10.1109/TIE.2014.2301773
– ident: ref50
  doi: 10.1109/TIE.2017.2774777
– ident: ref72
  doi: 10.1109/TPAMI.2013.50
– ident: ref19
  doi: 10.1016/B978-0-12-819504-8.00007-X
– start-page: 1321
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref59
  article-title: On calibration of modern neural networks
  contributor:
    fullname: Guo
– ident: ref18
  doi: 10.1016/B978-008045263-0/50065-9
– volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR)
  ident: ref65
  article-title: Training confidence-calibrated classifiers for detecting out-of-distribution samples
  contributor:
    fullname: Lee
– ident: ref82
  doi: 10.1038/s41586-020-2649-2
– ident: ref23
  doi: 10.1145/3065386
– volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR)
  ident: ref62
  article-title: Learning from between-class examples for deep sound recognition
  contributor:
    fullname: Tokozume
– year: 2022
  ident: ref87
  article-title: Benchmarking deep AUROC optimization: Loss functions and algorithmic choices
  publication-title: arXiv:2203.14177
  contributor:
    fullname: Zhu
– ident: ref5
  doi: 10.1146/annurev-control-053018-023652
– volume: 23
  start-page: 1786
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Sample complexity of testing the manifold hypothesis
  contributor:
    fullname: Narayanan
– year: 2016
  ident: ref21
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
  contributor:
    fullname: Ba
– ident: ref56
  doi: 10.1016/j.measurement.2020.108774
– ident: ref80
  doi: 10.1109/ICIEA.2019.8834354
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref85
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Srivastava
– year: 2016
  ident: ref31
  article-title: Uncertainty in deep learning
  contributor:
    fullname: Gal
– ident: ref16
  doi: 10.1016/B978-0-12-819166-8.00197-3
– ident: ref7
  doi: 10.1109/TSMC.2017.2754287
– ident: ref27
  doi: 10.1109/ICPR.2018.8546189
– volume-title: UCI machine learning repository: Steel plates faults data set
  year: 2017
  ident: ref78
  contributor:
    fullname: Dua
– volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR)
  ident: ref61
  article-title: mixup: Beyond empirical risk minimization
  contributor:
    fullname: Zhang
– ident: ref57
  doi: 10.1109/tii.2019.2943898
– ident: ref10
  doi: 10.1007/11550907_37
– start-page: 1184
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning
  contributor:
    fullname: Depeweg
– ident: ref64
  doi: 10.1007/s11263-015-0816-y
– ident: ref35
  doi: 10.1186/s40537-021-00444-8
– ident: ref48
  doi: 10.1109/41.873214
– volume: 30
  start-page: 7029
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Learning to model the tail
  contributor:
    fullname: Wang
– ident: ref75
  doi: 10.1007/978-94-009-5438-0_20
SSID ssj0000816957
Score 2.3193908
Snippet The emergence of Industry 4.0 has transformed modern-day factories into high-tech industrial sites through rapid automation and increased access to real-time...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 135061
SubjectTerms Algorithms
Anomalies
Data models
Datasets
Deep generative models
Deep learning
Effectiveness
Fault detection
Fault diagnosis
Feature extraction
Generative adversarial networks
Industrial applications
Industry 4.0
Machine learning
Manifolds
out-of-distribution data
Process monitoring
safety-critical
Steel plates
Synthetic data
Training
uncertainty estimation
variational autoencoder
Vibrations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_ix4qrq-Tg0WrbfDQ56q6LeNCLwoKHkE9YkK5o9_87SaMWPHjx2FKa5s0keVOG9xA6t8JayAtX1MazgjpPCmlh4RHKtaayDo1PXb4P_O6Z3i_YYmD1FXvCenngHrirmFRM-AAvLaklQTZMehGCq3QDZ7dPu2_FBsVU2oNFxSVrssxQVcqr6-kUZnQZ3cIvCYFlFU3eB0dRUuzPFiu_9uV02Mx30U5mifi6_7o9tOHbfbQ90A48QC-P665YhWIWlW-zaRWe6U7jXkk6XQMjxXO9fu3wzHep6arFunV41jfYLT_wssU_7h0465eP0PP89ml6V2SnhMISJruCAavSpWuoAwJhNCfcVUbS2rrSNFTUobKN8EDOPMDfGA40yZSUWilYqIkz5BBttqvWHyFsXCDWQiEYakc9p7oWWkI4ebCBeB_G6OILNPXWC2KoVEiUUvUYq4ixyhiP0U0E9vvRqGadbkCMVY6x-ivGYzSKYRmMRwiUUmSMJl9xUnnpfahYQVZScC6P_2PsE7QV59P_dZmgze597U-Bh3TmLKXcJ6kO2LQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Out-of-Distribution Data Generation for Fault Detection and Diagnosis in Industrial Systems
URI https://ieeexplore.ieee.org/document/10332173
https://www.proquest.com/docview/2899198669
https://doaj.org/article/042558efc8c04c3f9759e8ffd1a7562e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT_TAsxULpfKBYxOS2HHsY9llVXEoFypV6sHyYyxVrbKIJhd-PePHllVRJW5JlCh2vhn7G2f8DSGfnHQO7cJXnYW-4h5YpRw6HuPCGK66MEDK8r0Q55f821V_VTarp70wAJCSz6COh-lfvt-4OS6VoYczhhSa7ZE92XR5s9bDgkqsIKH6oSgLtY36fLZcYifqWCC8Zgw9KdZ135l9kkh_qaryz1Cc5pf1S3KxbVlOK7mt58nW7vcj0cb_bvor8qIwTXqWTeM1eQbjG3Kwoz_4llx_n6dqE6pVVM8tha_oykyGZjXqdI6slq7NfDfRFUwpcWukZvR0lZP0bu7pzUj_VgChRQP9kFyuv_5Ynlel2kLlWK-mqkdmZho_cI8kxBrBhG-t4p3zjR247ELrBglI8AAhHKxAqmUbzp2SfeiYt-yI7I-bEd4Ran1gzmEwGTrPQXDTSaPQJERwgQGEBTndoqB_ZlENnYKRRukMmo6g6QLagnyJSD3cGhWx0wX8wro4mI6DTy8hoPE13LGghl6BDMG3ZkCOBwtyGFHZeV8GZEGOt8Dr4r73OkahrZJCqPdPPPaBPI9NzIsxx2R_-jXDR6Qnkz1JYf1JMs4_2mzjSw
link.rule.ids 315,786,790,802,870,2115,4043,27954,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHIBD-SpiSwEfOJKQxI4dH8tuVwuU5dJKlThY_hhLVVEW0eTCr2fseMsKVIlbEiWKkzcTPzvj9wh56zrnMC580VhoC-6BFcph4jEujOGqCRJSle9arM75p4v2Ii9WT2thACAVn0EZN9O_fL9xY5wqwwxnDCk0u0vuYUdfyWm51s2USvSQUK3M2kJ1pd4fz-f4GGW0CC8Zw1yKzu47_U-S6c--Kv98jFMPs3xE1tu2TYUlV-U42NL9-ku28b8b_5jsZ65Jj6fgeELuQP-UPNxRIHxGvn0dh2ITikXUz83WV3RhBkMnPeq0j7yWLs34faALGFLpVk9N7-liKtO7vKaXPf3jAUKzCvoBOV-enM1XRfZbKBxr1VC0yM1M5SX3SEOsEUz42ireOF9Zybsm1E52gBQPEERpBWJgK86d6trQMG_Zc7LXb3p4Qaj1gTmHw8nQeA6Cm6YzCoNCBBcYQJiRd1sU9I9JVkOn4Uil9ASajqDpDNqMfIhI3ZwaNbHTAXzDOqeYjp-ftoOA4Vdxx4KSrYIuBF8biSwPZuQgorJzvwmQGTnaAq9zAl_rOA6tVSeEOrzlsjfk_ursy6k-_bj-_JI8iM2dpmaOyN7wc4RXSFYG-zqF6G-cW-Wq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out-of-Distribution+Data+Generation+for+Fault+Detection+and+Diagnosis+in+Industrial+Systems&rft.jtitle=IEEE+access&rft.au=Kafunah%2C+Jefkine&rft.au=Verma%2C+Priyanka&rft.au=Ali%2C+Muhammad+Intizar&rft.au=Breslin%2C+John+G.&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=135061&rft.epage=135073&rft_id=info:doi/10.1109%2FACCESS.2023.3337658&rft.externalDocID=10332173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon