Unveiling the Influence of Modeling Approach and Gender in Subject Independent Multimodal Emotion Recognition Using EOG and PPG

Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such as electroencephalogram (EEG), electrooculogram (EOG) and plethysmograph (PPG). This work focuses on emotion recognition using EOG and PPG. V...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 177342 - 177354
Main Authors Ramaswamy, Manju Priya Arthanarisamy, Palaniswamy, Suja
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such as electroencephalogram (EEG), electrooculogram (EOG) and plethysmograph (PPG). This work focuses on emotion recognition using EOG and PPG. Valence and arousal are the two fundamental dimensions of emotion. This study investigates whether joint prediction of arousal and valence emotion dimensions is preferable to independent prediction of each emotion dimension in subject independent multimodal emotion recognition using EOG and PPG. Additionally, the study explores the influence of gender on model evaluation metrics. The results based on the DEAP dataset indicate that the independent prediction of arousal and valence with gender included as an independent variable improves a few of the model evaluation metrics statistically. The inclusion of gender as an independent variable in the model improves the RMSE and F1-Measure for independent arousal prediction, while the ROC area improves for independent valence prediction. Independent models for valence and arousal provide improvement in accuracy and F1-Measure evaluation metrics by a minimum of 53.25% over the multi-class approach and 25.00% over the multi-label approach.
AbstractList Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such as electroencephalogram (EEG), electrooculogram (EOG) and plethysmograph (PPG). This work focuses on emotion recognition using EOG and PPG. Valence and arousal are the two fundamental dimensions of emotion. This study investigates whether joint prediction of arousal and valence emotion dimensions is preferable to independent prediction of each emotion dimension in subject independent multimodal emotion recognition using EOG and PPG. Additionally, the study explores the influence of gender on model evaluation metrics. The results based on the DEAP dataset indicate that the independent prediction of arousal and valence with gender included as an independent variable improves a few of the model evaluation metrics statistically. The inclusion of gender as an independent variable in the model improves the RMSE and F1-Measure for independent arousal prediction, while the ROC area improves for independent valence prediction. Independent models for valence and arousal provide improvement in accuracy and F1-Measure evaluation metrics by a minimum of 53.25% over the multi-class approach and 25.00% over the multi-label approach.
Author Ramaswamy, Manju Priya Arthanarisamy
Palaniswamy, Suja
Author_xml – sequence: 1
  givenname: Manju Priya Arthanarisamy
  orcidid: 0000-0001-7006-9116
  surname: Ramaswamy
  fullname: Ramaswamy, Manju Priya Arthanarisamy
  organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India
– sequence: 2
  givenname: Suja
  orcidid: 0000-0001-8252-5828
  surname: Palaniswamy
  fullname: Palaniswamy, Suja
  email: p_suja@blr.amrita.edu
  organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India
BookMark eNpNkU9rGzEQxUVJoWmaT9AeBD3b0f9dHY1xXUNCQl2fhVYaOTJrydXuBnrqV-_aG0J00fBm3k9i3md0lXIChL5SMqeU6LvFcrnabueMMDHnkigqqw_omlGlZ1xydfWu_oRuu-5AxlOPkqyu0b9deoHYxrTH_TPgTQrtAMkBzgE_ZA-XzuJ0Ktm6Z2yTx2tIHgqOCW-H5gCuH00eTmc19fhhaPt4zN62eHXMfcwJ_wKX9yle6l135q0e1xfU09P6C_oYbNvB7et9g3Y_Vr-XP2f3j-vNcnE_c1zqfibAO1pbrQJzTDaaAlPAg1CWgQoVIbJmWjdeU64Jo46SRlhHGue5rEPw_AZtJq7P9mBOJR5t-WuyjeYi5LI3tvTRtWAqrgTXSlorhOA1aGsbyZ1rakdoBWRkfZ9Y41b-DND15pCHksbvG04FUYIyIscpPk25kruuQHh7lRJzDs5MwZlzcOY1uNH1bXJFAHjnqFTFlOT_Af8zles
CODEN IAECCG
Cites_doi 10.1007/978-3-319-04702-7_15
10.1016/j.physbeh.2019.03.023
10.1038/s41598-018-32063-4
10.1109/T-AFFC.2011.15
10.1007/s40846-019-00505-7
10.1145/3363560
10.1016/j.jksuci.2022.04.012
10.1002/9780471740360.ebs0471
10.1109/TAU.1967.1161901
10.3389/fnins.2022.1000716
10.3390/app10103501
10.4186/ej.2017.21.4.259
10.1111/jopy.12258
10.1109/34.954607
10.1109/ICETST49965.2020.9080725
10.1109/ENBENG.2017.7889451
10.1109/TCYB.2018.2797176
10.1016/0013-4694(91)90154-V
10.1109/ICCISc52257.2021.9485024
10.1007/978-3-319-41111-8
10.1145/3268891.3268904
10.1016/j.jksuci.2021.06.012
10.1016/S0893-6080(05)80023-1
10.3390/s18092826
10.7717/peerj.10448
10.1049/rsn2.12297
10.1016/j.inffus.2022.03.009
10.1037/0003-066X.45.1.16
10.1016/j.neulet.2011.08.055
10.1016/0013-4694(73)90260-5
10.1016/B978-1-55860-247-2.50035-8
10.1109/ICECCT52121.2021.9616828
10.1111/1467-8721.00003
10.1016/j.bspc.2019.101835
10.1109/TBME.1983.325136
10.11591/ijece.v8i4.pp2433-2441
10.3390/s17071485
10.4159/9780674028821
10.3390/s20174723
10.3390/s22218198
10.1109/EMBC.2014.6944757
10.2307/2347628
10.3390/electronics12030571
10.1214/aoms/1177729586
10.1371/journal.pone.0081691
10.1109/TAFFC.2019.2916015
10.1007/978-981-19-8338-2_17
10.1097/00129492-200411000-00026
10.1016/j.expneurol.2009.01.012
10.3390/s20082384
10.1109/ACCESS.2020.3023871
10.1108/aci-03-2022-0080
10.1136/bjo.68.4.225
10.1109/FG.2011.5771352
10.1109/ICCISc52257.2021.9484949
10.1080/02699930802204677
10.1109/JSEN.2023.3312172
10.1016/j.bspc.2022.104140
10.3389/fnhum.2022.955534
10.1109/EMBC.2019.8856563
10.1504/ijbet.2017.10003041
10.1109/EMBC.2014.6943754
10.1007/978-3-319-10662-5_28
10.1109/ACCESS.2024.3413136
10.3390/bios12100811
10.1037/emo0001095
10.1109/EMBC.2012.6346372
10.1109/TCYB.2020.2987575
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3506157
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 177354
ExternalDocumentID oai_doaj_org_article_73643965aa44438e9aab53ccb8c017e0
10_1109_ACCESS_2024_3506157
10767265
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-4edc18a96f2c25b91e26e3f46a2e6f70058299bd9139021c10b4ac0bcd358ffd3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 00:43:36 EDT 2025
Mon Jun 30 12:59:53 EDT 2025
Tue Jul 01 03:02:59 EDT 2025
Wed Aug 27 02:28:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-4edc18a96f2c25b91e26e3f46a2e6f70058299bd9139021c10b4ac0bcd358ffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8252-5828
0000-0001-7006-9116
OpenAccessLink https://doaj.org/article/73643965aa44438e9aab53ccb8c017e0
PQID 3140641205
PQPubID 4845423
PageCount 13
ParticipantIDs proquest_journals_3140641205
doaj_primary_oai_doaj_org_article_73643965aa44438e9aab53ccb8c017e0
crossref_primary_10_1109_ACCESS_2024_3506157
ieee_primary_10767265
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Lu (ref24)
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
Read (ref40) 2016; 17
ref36
ref31
ref30
ref33
ref32
Frank (ref39) 2016
ref2
ref1
Frank (ref52) 2012
ref38
ref71
ref70
ref72
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Brody (ref58) 1999
ref60
ref62
ref61
References_xml – ident: ref23
  doi: 10.1007/978-3-319-04702-7_15
– ident: ref59
  doi: 10.1016/j.physbeh.2019.03.023
– ident: ref3
  doi: 10.1038/s41598-018-32063-4
– ident: ref41
  doi: 10.1109/T-AFFC.2011.15
– ident: ref61
  doi: 10.1007/s40846-019-00505-7
– ident: ref7
  doi: 10.1145/3363560
– ident: ref30
  doi: 10.1016/j.jksuci.2022.04.012
– ident: ref42
  doi: 10.1002/9780471740360.ebs0471
– ident: ref48
  doi: 10.1109/TAU.1967.1161901
– ident: ref66
  doi: 10.3389/fnins.2022.1000716
– ident: ref36
  doi: 10.3390/app10103501
– ident: ref45
  doi: 10.4186/ej.2017.21.4.259
– ident: ref11
  doi: 10.1111/jopy.12258
– ident: ref33
  doi: 10.1109/34.954607
– ident: ref34
  doi: 10.1109/ICETST49965.2020.9080725
– ident: ref12
  doi: 10.1109/ENBENG.2017.7889451
– ident: ref26
  doi: 10.1109/TCYB.2018.2797176
– ident: ref18
  doi: 10.1016/0013-4694(91)90154-V
– ident: ref70
  doi: 10.1109/ICCISc52257.2021.9485024
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2016
  ident: ref39
– year: 2012
  ident: ref52
  article-title: Locally weighted naive Bayes
  publication-title: arXiv:1212.2487
– ident: ref49
  doi: 10.1007/978-3-319-41111-8
– ident: ref55
  doi: 10.1145/3268891.3268904
– ident: ref68
  doi: 10.1016/j.jksuci.2021.06.012
– ident: ref50
  doi: 10.1016/S0893-6080(05)80023-1
– ident: ref6
  doi: 10.3390/s18092826
– ident: ref35
  doi: 10.7717/peerj.10448
– ident: ref32
  doi: 10.1049/rsn2.12297
– ident: ref16
  doi: 10.1016/j.inffus.2022.03.009
– ident: ref17
  doi: 10.1037/0003-066X.45.1.16
– ident: ref28
  doi: 10.1016/j.neulet.2011.08.055
– ident: ref47
  doi: 10.1016/0013-4694(73)90260-5
– ident: ref51
  doi: 10.1016/B978-1-55860-247-2.50035-8
– ident: ref71
  doi: 10.1109/ICECCT52121.2021.9616828
– ident: ref10
  doi: 10.1111/1467-8721.00003
– start-page: 1170
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref24
  article-title: Combining eye movements and EEG to enhance emotion recognition
– ident: ref31
  doi: 10.1016/j.bspc.2019.101835
– ident: ref43
  doi: 10.1109/TBME.1983.325136
– ident: ref4
  doi: 10.11591/ijece.v8i4.pp2433-2441
– ident: ref20
  doi: 10.3390/s17071485
– volume-title: Emotion and the Family
  year: 1999
  ident: ref58
  doi: 10.4159/9780674028821
– ident: ref62
  doi: 10.3390/s20174723
– ident: ref65
  doi: 10.3390/s22218198
– ident: ref25
  doi: 10.1109/EMBC.2014.6944757
– ident: ref53
  doi: 10.2307/2347628
– ident: ref21
  doi: 10.3390/electronics12030571
– ident: ref54
  doi: 10.1214/aoms/1177729586
– ident: ref57
  doi: 10.1371/journal.pone.0081691
– ident: ref67
  doi: 10.1109/TAFFC.2019.2916015
– ident: ref72
  doi: 10.1007/978-981-19-8338-2_17
– ident: ref1
  doi: 10.1097/00129492-200411000-00026
– ident: ref44
  doi: 10.1016/j.expneurol.2009.01.012
– ident: ref13
  doi: 10.3390/s20082384
– ident: ref63
  doi: 10.1109/ACCESS.2020.3023871
– ident: ref15
  doi: 10.1108/aci-03-2022-0080
– ident: ref19
  doi: 10.1136/bjo.68.4.225
– ident: ref37
  doi: 10.1109/FG.2011.5771352
– ident: ref69
  doi: 10.1109/ICCISc52257.2021.9484949
– ident: ref9
  doi: 10.1080/02699930802204677
– ident: ref5
  doi: 10.1109/JSEN.2023.3312172
– ident: ref64
  doi: 10.1016/j.bspc.2022.104140
– ident: ref56
  doi: 10.3389/fnhum.2022.955534
– volume: 17
  start-page: 1
  issue: 21
  year: 2016
  ident: ref40
  article-title: MEKA: A multi-label/multi-target extension to WEKA
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.1109/EMBC.2019.8856563
– ident: ref14
  doi: 10.1504/ijbet.2017.10003041
– ident: ref27
  doi: 10.1109/EMBC.2014.6943754
– ident: ref2
  doi: 10.1007/978-3-319-10662-5_28
– ident: ref8
  doi: 10.1109/ACCESS.2024.3413136
– ident: ref29
  doi: 10.3390/bios12100811
– ident: ref38
  doi: 10.1037/emo0001095
– ident: ref46
  doi: 10.1109/EMBC.2012.6346372
– ident: ref60
  doi: 10.1109/TCYB.2020.2987575
SSID ssj0000816957
Score 2.3002143
Snippet Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 177342
SubjectTerms Affective computing
Arousal
Brain modeling
DEAP
Electroencephalography
Electromyography
electrooculogram
Electrooculography
Emotion recognition
Emotions
Gender
Independent variables
Measurement
modeling
Physiology
plethysmograph
Predictive models
Solid modeling
Speech recognition
subject independent
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgFIpYWpAPHMni-Bkfl9W2BYlSIVbqzbKdsVShZhFke-DCX69fqQoIqTfLiRNHn-15ZGY-hN4oJ4JXQBsvHDTcEtF03PmGhqAkCaELbcpG_nQmT9f844W4qMnqORcGAHLwGcxTM__L7zd-m1xlcYcrqagUO2gnWm4lWevWoZIYJLRQtbJQS_S7xXIZPyLagJTPmUiyW_0hfXKR_sqq8s9RnOXL8R46m2ZWwkq-zbejm_tffxVtvPfUn6DHVdPEi7I09tEDGJ6iR3fqDz5Dv9fDNVymhHQc9UD8YSIswZuAE0lavrKoVcexHXpcmOfw5YDjiZNcOHHQxKM74pzNe7Xp42tXhR4If5kClGI7hyfg1eeT_Kjz85MDtD5efV2eNpWRofFM6LHh0Pu2s1oG6qlwugUqgQUuLQUZVOIojOLN9anWaFQefEsct5443zPRhdCz52h32AzwAuHYA8wR3YdoAUrfWWlBMx6osoI518_Q2wkp870U3jDZYCHaFGBNAtZUYGfofULz9tZUNTt3RBRM3YRGsaR_SWEt55x1oK11gnnvOh8PJiAzdJCQu_O-AtoMHU2Lw9Qt_tOwaJpK3lIiXv5n2CF6mKZYHDZHaHf8sYVXUYUZ3eu8dG8AaHHvRQ
  priority: 102
  providerName: IEEE
Title Unveiling the Influence of Modeling Approach and Gender in Subject Independent Multimodal Emotion Recognition Using EOG and PPG
URI https://ieeexplore.ieee.org/document/10767265
https://www.proquest.com/docview/3140641205
https://doaj.org/article/73643965aa44438e9aab53ccb8c017e0
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQjyIKpfLASGjiZzyWqqUgARWiUjfLdmypAymCwMqvYzsJKmJgYYuchx_3xsfX8j0HgHOuqTPcosRQbROiUprkRJsEOcdZ6lzuspCNfHfPZgtyu6TLDamvcCaspgeuB27IccBMRpUihODcCqU0xcbo3HhnsjFa95i3EUzFOTjPmKC8oRnKUjEcjce-Rz4gROQS0wDk_AcURcb-RmLl17wcwWa6B3abVSIc1a3bB1u2PAA7G9yBh-BzUX7YVUgmh34NB29asRG4djAInMU7o4YxHKqygLVqHFyV0M8WYfvFv9Rq4FYwZuI-rwtf7aSW9oGP7eEifx2PFsDJw3X81Hx-3QWL6eRpPEsaNYXEYCqqhNjCZLkSzCGDqBaZRcxiR5hCljke9AU9NOki8IR64DdZqokyqTYFprlzBT4CnXJd2mMAfYnFOhWF89EbM7liygpMHOKKYq2LHrhoB1a-1KQZMgYbqZC1HWSwg2zs0ANXYfC_Hw2M17HA-4Fs_ED-5Qc90A2m26iPM44Y7YF-a0vZ_J5vEvuwkpEMpfTkP-o-BduhP_XOTB90qtd3e-bXKpUeRLccxLTCLy2t5d4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPItYKOAD3MiS-JkcOCzLtrv0QYW6Um_GdmypQmQR3QXBhV_CX-G3MXaSVQFxrMTNcmI7sj-PZ5yZ-QCeKCuCU55mTlifcZOLrOTWZTQEJfMQylDEaOSDQzmd89cn4mQDfqxjYbz3yfnMD2Mx_cuvF24Vr8pwhyupqOx9KPf81y9ooZ29mL3C5XxK6c7keDzNOhKBzDFRLTPua1eUppKBOipsVXgqPQtcGuplUJFWDyWyrWN6TDzvXJFbblxuXc1EGULNsN9LcBkVDUHb8LD1FU7krKiE6nIZFXn1fDQe47Sh1Un5kImoLajfzrtEC9DxuPwl_NOJtnMDfvZz0TqyvB-ulnbovv2RJvK_naybcL3TpcmoBf8t2PDNbbh2LsPiHfg-bz770xhyT1DTJbOekoUsAok0cOnJqMurTkxTk5Zbj5w2BGVqvKTCRj1T8JKkeOUPixqHnbQESORt74KF5eSAQSZvdlNXR0e7WzC_kBm4C5vNovH3gGCNZzav6oA2rnSlkcZXjAeqjGDW1gN41iNDf2xTi-hkkuWVboGkI5B0B6QBvIzoWb8a84KnClx13YkZrVjUMKUwhnPOSl8ZYwVzzpYORa_PB7AVkXJuvBYkA9juwag7IXamGRrfkhc0F_f_0ewxXJkeH-zr_dnh3gO4Gj-3vZ7ahs3lp5V_iArb0j5K24bAu4uG3i9tmk0J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+Influence+of+Modeling+Approach+and+Gender+in+Subject+Independent+Multimodal+Emotion+Recognition+Using+EOG+and+PPG&rft.jtitle=IEEE+access&rft.au=Ramaswamy%2C+Manju+Priya+Arthanarisamy&rft.au=Palaniswamy%2C+Suja&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=177342&rft.epage=177354&rft_id=info:doi/10.1109%2FACCESS.2024.3506157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3506157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon