Unveiling the Influence of Modeling Approach and Gender in Subject Independent Multimodal Emotion Recognition Using EOG and PPG
Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such as electroencephalogram (EEG), electrooculogram (EOG) and plethysmograph (PPG). This work focuses on emotion recognition using EOG and PPG. V...
Saved in:
Published in | IEEE access Vol. 12; pp. 177342 - 177354 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such as electroencephalogram (EEG), electrooculogram (EOG) and plethysmograph (PPG). This work focuses on emotion recognition using EOG and PPG. Valence and arousal are the two fundamental dimensions of emotion. This study investigates whether joint prediction of arousal and valence emotion dimensions is preferable to independent prediction of each emotion dimension in subject independent multimodal emotion recognition using EOG and PPG. Additionally, the study explores the influence of gender on model evaluation metrics. The results based on the DEAP dataset indicate that the independent prediction of arousal and valence with gender included as an independent variable improves a few of the model evaluation metrics statistically. The inclusion of gender as an independent variable in the model improves the RMSE and F1-Measure for independent arousal prediction, while the ROC area improves for independent valence prediction. Independent models for valence and arousal provide improvement in accuracy and F1-Measure evaluation metrics by a minimum of 53.25% over the multi-class approach and 25.00% over the multi-label approach. |
---|---|
AbstractList | Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such as electroencephalogram (EEG), electrooculogram (EOG) and plethysmograph (PPG). This work focuses on emotion recognition using EOG and PPG. Valence and arousal are the two fundamental dimensions of emotion. This study investigates whether joint prediction of arousal and valence emotion dimensions is preferable to independent prediction of each emotion dimension in subject independent multimodal emotion recognition using EOG and PPG. Additionally, the study explores the influence of gender on model evaluation metrics. The results based on the DEAP dataset indicate that the independent prediction of arousal and valence with gender included as an independent variable improves a few of the model evaluation metrics statistically. The inclusion of gender as an independent variable in the model improves the RMSE and F1-Measure for independent arousal prediction, while the ROC area improves for independent valence prediction. Independent models for valence and arousal provide improvement in accuracy and F1-Measure evaluation metrics by a minimum of 53.25% over the multi-class approach and 25.00% over the multi-label approach. |
Author | Ramaswamy, Manju Priya Arthanarisamy Palaniswamy, Suja |
Author_xml | – sequence: 1 givenname: Manju Priya Arthanarisamy orcidid: 0000-0001-7006-9116 surname: Ramaswamy fullname: Ramaswamy, Manju Priya Arthanarisamy organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India – sequence: 2 givenname: Suja orcidid: 0000-0001-8252-5828 surname: Palaniswamy fullname: Palaniswamy, Suja email: p_suja@blr.amrita.edu organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India |
BookMark | eNpNkU9rGzEQxUVJoWmaT9AeBD3b0f9dHY1xXUNCQl2fhVYaOTJrydXuBnrqV-_aG0J00fBm3k9i3md0lXIChL5SMqeU6LvFcrnabueMMDHnkigqqw_omlGlZ1xydfWu_oRuu-5AxlOPkqyu0b9deoHYxrTH_TPgTQrtAMkBzgE_ZA-XzuJ0Ktm6Z2yTx2tIHgqOCW-H5gCuH00eTmc19fhhaPt4zN62eHXMfcwJ_wKX9yle6l135q0e1xfU09P6C_oYbNvB7et9g3Y_Vr-XP2f3j-vNcnE_c1zqfibAO1pbrQJzTDaaAlPAg1CWgQoVIbJmWjdeU64Jo46SRlhHGue5rEPw_AZtJq7P9mBOJR5t-WuyjeYi5LI3tvTRtWAqrgTXSlorhOA1aGsbyZ1rakdoBWRkfZ9Y41b-DND15pCHksbvG04FUYIyIscpPk25kruuQHh7lRJzDs5MwZlzcOY1uNH1bXJFAHjnqFTFlOT_Af8zles |
CODEN | IAECCG |
Cites_doi | 10.1007/978-3-319-04702-7_15 10.1016/j.physbeh.2019.03.023 10.1038/s41598-018-32063-4 10.1109/T-AFFC.2011.15 10.1007/s40846-019-00505-7 10.1145/3363560 10.1016/j.jksuci.2022.04.012 10.1002/9780471740360.ebs0471 10.1109/TAU.1967.1161901 10.3389/fnins.2022.1000716 10.3390/app10103501 10.4186/ej.2017.21.4.259 10.1111/jopy.12258 10.1109/34.954607 10.1109/ICETST49965.2020.9080725 10.1109/ENBENG.2017.7889451 10.1109/TCYB.2018.2797176 10.1016/0013-4694(91)90154-V 10.1109/ICCISc52257.2021.9485024 10.1007/978-3-319-41111-8 10.1145/3268891.3268904 10.1016/j.jksuci.2021.06.012 10.1016/S0893-6080(05)80023-1 10.3390/s18092826 10.7717/peerj.10448 10.1049/rsn2.12297 10.1016/j.inffus.2022.03.009 10.1037/0003-066X.45.1.16 10.1016/j.neulet.2011.08.055 10.1016/0013-4694(73)90260-5 10.1016/B978-1-55860-247-2.50035-8 10.1109/ICECCT52121.2021.9616828 10.1111/1467-8721.00003 10.1016/j.bspc.2019.101835 10.1109/TBME.1983.325136 10.11591/ijece.v8i4.pp2433-2441 10.3390/s17071485 10.4159/9780674028821 10.3390/s20174723 10.3390/s22218198 10.1109/EMBC.2014.6944757 10.2307/2347628 10.3390/electronics12030571 10.1214/aoms/1177729586 10.1371/journal.pone.0081691 10.1109/TAFFC.2019.2916015 10.1007/978-981-19-8338-2_17 10.1097/00129492-200411000-00026 10.1016/j.expneurol.2009.01.012 10.3390/s20082384 10.1109/ACCESS.2020.3023871 10.1108/aci-03-2022-0080 10.1136/bjo.68.4.225 10.1109/FG.2011.5771352 10.1109/ICCISc52257.2021.9484949 10.1080/02699930802204677 10.1109/JSEN.2023.3312172 10.1016/j.bspc.2022.104140 10.3389/fnhum.2022.955534 10.1109/EMBC.2019.8856563 10.1504/ijbet.2017.10003041 10.1109/EMBC.2014.6943754 10.1007/978-3-319-10662-5_28 10.1109/ACCESS.2024.3413136 10.3390/bios12100811 10.1037/emo0001095 10.1109/EMBC.2012.6346372 10.1109/TCYB.2020.2987575 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3506157 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 177354 |
ExternalDocumentID | oai_doaj_org_article_73643965aa44438e9aab53ccb8c017e0 10_1109_ACCESS_2024_3506157 10767265 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-4edc18a96f2c25b91e26e3f46a2e6f70058299bd9139021c10b4ac0bcd358ffd3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 00:43:36 EDT 2025 Mon Jun 30 12:59:53 EDT 2025 Tue Jul 01 03:02:59 EDT 2025 Wed Aug 27 02:28:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-4edc18a96f2c25b91e26e3f46a2e6f70058299bd9139021c10b4ac0bcd358ffd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8252-5828 0000-0001-7006-9116 |
OpenAccessLink | https://doaj.org/article/73643965aa44438e9aab53ccb8c017e0 |
PQID | 3140641205 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3140641205 doaj_primary_oai_doaj_org_article_73643965aa44438e9aab53ccb8c017e0 crossref_primary_10_1109_ACCESS_2024_3506157 ieee_primary_10767265 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Lu (ref24) ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 Read (ref40) 2016; 17 ref36 ref31 ref30 ref33 ref32 Frank (ref39) 2016 ref2 ref1 Frank (ref52) 2012 ref38 ref71 ref70 ref72 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Brody (ref58) 1999 ref60 ref62 ref61 |
References_xml | – ident: ref23 doi: 10.1007/978-3-319-04702-7_15 – ident: ref59 doi: 10.1016/j.physbeh.2019.03.023 – ident: ref3 doi: 10.1038/s41598-018-32063-4 – ident: ref41 doi: 10.1109/T-AFFC.2011.15 – ident: ref61 doi: 10.1007/s40846-019-00505-7 – ident: ref7 doi: 10.1145/3363560 – ident: ref30 doi: 10.1016/j.jksuci.2022.04.012 – ident: ref42 doi: 10.1002/9780471740360.ebs0471 – ident: ref48 doi: 10.1109/TAU.1967.1161901 – ident: ref66 doi: 10.3389/fnins.2022.1000716 – ident: ref36 doi: 10.3390/app10103501 – ident: ref45 doi: 10.4186/ej.2017.21.4.259 – ident: ref11 doi: 10.1111/jopy.12258 – ident: ref33 doi: 10.1109/34.954607 – ident: ref34 doi: 10.1109/ICETST49965.2020.9080725 – ident: ref12 doi: 10.1109/ENBENG.2017.7889451 – ident: ref26 doi: 10.1109/TCYB.2018.2797176 – ident: ref18 doi: 10.1016/0013-4694(91)90154-V – ident: ref70 doi: 10.1109/ICCISc52257.2021.9485024 – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2016 ident: ref39 – year: 2012 ident: ref52 article-title: Locally weighted naive Bayes publication-title: arXiv:1212.2487 – ident: ref49 doi: 10.1007/978-3-319-41111-8 – ident: ref55 doi: 10.1145/3268891.3268904 – ident: ref68 doi: 10.1016/j.jksuci.2021.06.012 – ident: ref50 doi: 10.1016/S0893-6080(05)80023-1 – ident: ref6 doi: 10.3390/s18092826 – ident: ref35 doi: 10.7717/peerj.10448 – ident: ref32 doi: 10.1049/rsn2.12297 – ident: ref16 doi: 10.1016/j.inffus.2022.03.009 – ident: ref17 doi: 10.1037/0003-066X.45.1.16 – ident: ref28 doi: 10.1016/j.neulet.2011.08.055 – ident: ref47 doi: 10.1016/0013-4694(73)90260-5 – ident: ref51 doi: 10.1016/B978-1-55860-247-2.50035-8 – ident: ref71 doi: 10.1109/ICECCT52121.2021.9616828 – ident: ref10 doi: 10.1111/1467-8721.00003 – start-page: 1170 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. ident: ref24 article-title: Combining eye movements and EEG to enhance emotion recognition – ident: ref31 doi: 10.1016/j.bspc.2019.101835 – ident: ref43 doi: 10.1109/TBME.1983.325136 – ident: ref4 doi: 10.11591/ijece.v8i4.pp2433-2441 – ident: ref20 doi: 10.3390/s17071485 – volume-title: Emotion and the Family year: 1999 ident: ref58 doi: 10.4159/9780674028821 – ident: ref62 doi: 10.3390/s20174723 – ident: ref65 doi: 10.3390/s22218198 – ident: ref25 doi: 10.1109/EMBC.2014.6944757 – ident: ref53 doi: 10.2307/2347628 – ident: ref21 doi: 10.3390/electronics12030571 – ident: ref54 doi: 10.1214/aoms/1177729586 – ident: ref57 doi: 10.1371/journal.pone.0081691 – ident: ref67 doi: 10.1109/TAFFC.2019.2916015 – ident: ref72 doi: 10.1007/978-981-19-8338-2_17 – ident: ref1 doi: 10.1097/00129492-200411000-00026 – ident: ref44 doi: 10.1016/j.expneurol.2009.01.012 – ident: ref13 doi: 10.3390/s20082384 – ident: ref63 doi: 10.1109/ACCESS.2020.3023871 – ident: ref15 doi: 10.1108/aci-03-2022-0080 – ident: ref19 doi: 10.1136/bjo.68.4.225 – ident: ref37 doi: 10.1109/FG.2011.5771352 – ident: ref69 doi: 10.1109/ICCISc52257.2021.9484949 – ident: ref9 doi: 10.1080/02699930802204677 – ident: ref5 doi: 10.1109/JSEN.2023.3312172 – ident: ref64 doi: 10.1016/j.bspc.2022.104140 – ident: ref56 doi: 10.3389/fnhum.2022.955534 – volume: 17 start-page: 1 issue: 21 year: 2016 ident: ref40 article-title: MEKA: A multi-label/multi-target extension to WEKA publication-title: J. Mach. Learn. Res. – ident: ref22 doi: 10.1109/EMBC.2019.8856563 – ident: ref14 doi: 10.1504/ijbet.2017.10003041 – ident: ref27 doi: 10.1109/EMBC.2014.6943754 – ident: ref2 doi: 10.1007/978-3-319-10662-5_28 – ident: ref8 doi: 10.1109/ACCESS.2024.3413136 – ident: ref29 doi: 10.3390/bios12100811 – ident: ref38 doi: 10.1037/emo0001095 – ident: ref46 doi: 10.1109/EMBC.2012.6346372 – ident: ref60 doi: 10.1109/TCYB.2020.2987575 |
SSID | ssj0000816957 |
Score | 2.3002143 |
Snippet | Multimodal emotion recognition is identifying emotions from multiple modalities like facial expressions, speech, gestures, text and physiological signals such... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 177342 |
SubjectTerms | Affective computing Arousal Brain modeling DEAP Electroencephalography Electromyography electrooculogram Electrooculography Emotion recognition Emotions Gender Independent variables Measurement modeling Physiology plethysmograph Predictive models Solid modeling Speech recognition subject independent Training |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgFIpYWpAPHMni-Bkfl9W2BYlSIVbqzbKdsVShZhFke-DCX69fqQoIqTfLiRNHn-15ZGY-hN4oJ4JXQBsvHDTcEtF03PmGhqAkCaELbcpG_nQmT9f844W4qMnqORcGAHLwGcxTM__L7zd-m1xlcYcrqagUO2gnWm4lWevWoZIYJLRQtbJQS_S7xXIZPyLagJTPmUiyW_0hfXKR_sqq8s9RnOXL8R46m2ZWwkq-zbejm_tffxVtvPfUn6DHVdPEi7I09tEDGJ6iR3fqDz5Dv9fDNVymhHQc9UD8YSIswZuAE0lavrKoVcexHXpcmOfw5YDjiZNcOHHQxKM74pzNe7Xp42tXhR4If5kClGI7hyfg1eeT_Kjz85MDtD5efV2eNpWRofFM6LHh0Pu2s1oG6qlwugUqgQUuLQUZVOIojOLN9anWaFQefEsct5443zPRhdCz52h32AzwAuHYA8wR3YdoAUrfWWlBMx6osoI518_Q2wkp870U3jDZYCHaFGBNAtZUYGfofULz9tZUNTt3RBRM3YRGsaR_SWEt55x1oK11gnnvOh8PJiAzdJCQu_O-AtoMHU2Lw9Qt_tOwaJpK3lIiXv5n2CF6mKZYHDZHaHf8sYVXUYUZ3eu8dG8AaHHvRQ priority: 102 providerName: IEEE |
Title | Unveiling the Influence of Modeling Approach and Gender in Subject Independent Multimodal Emotion Recognition Using EOG and PPG |
URI | https://ieeexplore.ieee.org/document/10767265 https://www.proquest.com/docview/3140641205 https://doaj.org/article/73643965aa44438e9aab53ccb8c017e0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQjyIKpfLASGjiZzyWqqUgARWiUjfLdmypAymCwMqvYzsJKmJgYYuchx_3xsfX8j0HgHOuqTPcosRQbROiUprkRJsEOcdZ6lzuspCNfHfPZgtyu6TLDamvcCaspgeuB27IccBMRpUihODcCqU0xcbo3HhnsjFa95i3EUzFOTjPmKC8oRnKUjEcjce-Rz4gROQS0wDk_AcURcb-RmLl17wcwWa6B3abVSIc1a3bB1u2PAA7G9yBh-BzUX7YVUgmh34NB29asRG4djAInMU7o4YxHKqygLVqHFyV0M8WYfvFv9Rq4FYwZuI-rwtf7aSW9oGP7eEifx2PFsDJw3X81Hx-3QWL6eRpPEsaNYXEYCqqhNjCZLkSzCGDqBaZRcxiR5hCljke9AU9NOki8IR64DdZqokyqTYFprlzBT4CnXJd2mMAfYnFOhWF89EbM7liygpMHOKKYq2LHrhoB1a-1KQZMgYbqZC1HWSwg2zs0ANXYfC_Hw2M17HA-4Fs_ED-5Qc90A2m26iPM44Y7YF-a0vZ_J5vEvuwkpEMpfTkP-o-BduhP_XOTB90qtd3e-bXKpUeRLccxLTCLy2t5d4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPItYKOAD3MiS-JkcOCzLtrv0QYW6Um_GdmypQmQR3QXBhV_CX-G3MXaSVQFxrMTNcmI7sj-PZ5yZ-QCeKCuCU55mTlifcZOLrOTWZTQEJfMQylDEaOSDQzmd89cn4mQDfqxjYbz3yfnMD2Mx_cuvF24Vr8pwhyupqOx9KPf81y9ooZ29mL3C5XxK6c7keDzNOhKBzDFRLTPua1eUppKBOipsVXgqPQtcGuplUJFWDyWyrWN6TDzvXJFbblxuXc1EGULNsN9LcBkVDUHb8LD1FU7krKiE6nIZFXn1fDQe47Sh1Un5kImoLajfzrtEC9DxuPwl_NOJtnMDfvZz0TqyvB-ulnbovv2RJvK_naybcL3TpcmoBf8t2PDNbbh2LsPiHfg-bz770xhyT1DTJbOekoUsAok0cOnJqMurTkxTk5Zbj5w2BGVqvKTCRj1T8JKkeOUPixqHnbQESORt74KF5eSAQSZvdlNXR0e7WzC_kBm4C5vNovH3gGCNZzav6oA2rnSlkcZXjAeqjGDW1gN41iNDf2xTi-hkkuWVboGkI5B0B6QBvIzoWb8a84KnClx13YkZrVjUMKUwhnPOSl8ZYwVzzpYORa_PB7AVkXJuvBYkA9juwag7IXamGRrfkhc0F_f_0ewxXJkeH-zr_dnh3gO4Gj-3vZ7ahs3lp5V_iArb0j5K24bAu4uG3i9tmk0J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+Influence+of+Modeling+Approach+and+Gender+in+Subject+Independent+Multimodal+Emotion+Recognition+Using+EOG+and+PPG&rft.jtitle=IEEE+access&rft.au=Ramaswamy%2C+Manju+Priya+Arthanarisamy&rft.au=Palaniswamy%2C+Suja&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=177342&rft.epage=177354&rft_id=info:doi/10.1109%2FACCESS.2024.3506157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3506157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |