Automated Zebrafish Spine Scoring System Based on Instance Segmentation

In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in the spine to confirm the efficacy of new medicines. However, the current method for evaluating efficacy is time-consuming and labor-intensive,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 18814 - 18826
Main Authors Chen, Wen-Hsin, Kuo, Tien-Ying, Wei, Yu-Jen, Ho, Cheng-Jung, Lin, Ming-der, Chen, Huan, Lin, Wen-Ying
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in the spine to confirm the efficacy of new medicines. However, the current method for evaluating efficacy is time-consuming and labor-intensive, requiring manual observation. Taking advantage of advancements in deep learning technology, we propose an automatic method for detecting and recognizing zebrafish vertebrae of the images captured from image sensors to solve this problem. Our method was designed using Mask R-CNN as the instance segmentation backbone, enhanced with a mask enhancement module and a small object preprocessing approach to strengthen its detection abilities. Compared to the original Mask R-CNN architecture, our method improved the mean average precision (mAP) score for vertebra bounding box and mask detection by 7.1% to 97.7% and by 1.2% to 96.6%, respectively. Additionally, we developed a system using these detection algorithms to automatically calculate spinal vertebra growth scores, providing a valuable tool for researchers to assess drug efficacy.
AbstractList In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in the spine to confirm the efficacy of new medicines. However, the current method for evaluating efficacy is time-consuming and labor-intensive, requiring manual observation. Taking advantage of advancements in deep learning technology, we propose an automatic method for detecting and recognizing zebrafish vertebrae of the images captured from image sensors to solve this problem. Our method was designed using Mask R-CNN as the instance segmentation backbone, enhanced with a mask enhancement module and a small object preprocessing approach to strengthen its detection abilities. Compared to the original Mask R-CNN architecture, our method improved the mean average precision (mAP) score for vertebra bounding box and mask detection by 7.1% to 97.7% and by 1.2% to 96.6%, respectively. Additionally, we developed a system using these detection algorithms to automatically calculate spinal vertebra growth scores, providing a valuable tool for researchers to assess drug efficacy.
Author Kuo, Tien-Ying
Lin, Wen-Ying
Chen, Wen-Hsin
Wei, Yu-Jen
Chen, Huan
Ho, Cheng-Jung
Lin, Ming-der
Author_xml – sequence: 1
  givenname: Wen-Hsin
  surname: Chen
  fullname: Chen, Wen-Hsin
  organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
– sequence: 2
  givenname: Tien-Ying
  orcidid: 0000-0001-9831-5622
  surname: Kuo
  fullname: Kuo, Tien-Ying
  email: tykuo@ntut.edu.tw
  organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
– sequence: 3
  givenname: Yu-Jen
  surname: Wei
  fullname: Wei, Yu-Jen
  organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
– sequence: 4
  givenname: Cheng-Jung
  surname: Ho
  fullname: Ho, Cheng-Jung
  organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
– sequence: 5
  givenname: Ming-der
  surname: Lin
  fullname: Lin, Ming-der
  organization: Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
– sequence: 6
  givenname: Huan
  orcidid: 0000-0003-0410-3843
  surname: Chen
  fullname: Chen, Huan
  organization: Department of Computer Science and Engineering, National Chung Hsing University, Taichung City, Taiwan
– sequence: 7
  givenname: Wen-Ying
  surname: Lin
  fullname: Lin, Wen-Ying
  organization: Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
BookMark eNpNUU1PAjEUbAwmIvIL9LCJZ7Af2-7uEQkiCYmH1YuXptt9xSXQYlsO_HuLawzv0Pf6MjOdZm7RwDoLCN0TPCUEV0-z-XxR11OKKZ8yzqgo8RUaUiKqSbqKwcV8g8YhbHGqMq14MUTL2TG6vYrQZp_QeGW68JXVh85CVmvnO7vJ6lOIsM-eVUggZ7OVDVFZnQCw2YONKnbO3qFro3YBxn99hD5eFu_z18n6bbmaz9YTzXgVJzkQrBpsCBSASSnAaEMpnP_RUoIFbRnwRpuGaINz3opGKFPQyrQNFS1oNkKrXrd1aisPvtsrf5JOdfJ34fxGKh87vQOpNWsKAqJkLM8JqKpQecuBAHBTNipPWo-91sG77yOEKLfu6G2yLxkRhBWEpXOEWI_S3oXgwfy_SrA8G5d9APIcgPwLILEeelYHABeMMq-4wOwHddKDuQ
CODEN IAECCG
Cites_doi 10.1109/adics58448.2024.10533619
10.1038/s41592-023-01873-4
10.1038/s41598-021-81997-9
10.1109/CVPR52688.2022.00135
10.1109/CVPR.2018.00644
10.1109/ICCV48922.2021.00683
10.1021/acs.est.3c00593
10.1109/CVPR46437.2021.01422
10.1007/s11263-007-0090-8
10.1109/ICIP46576.2022.9897990
10.3390/rs13091670
10.26508/lsa.202302351
10.1109/CVPR46437.2021.01008
10.3390/app10041247
10.1109/CVPR42600.2020.00982
10.1007/978-3-030-92632-8_36
10.1007/s00198-019-05212-2
10.1109/ICCV.2017.322
10.1016/j.bspc.2024.106928
10.5220/0008975201240133
10.1088/2057-1976/ad160f
10.1016/j.jep.2022.115565
10.1109/CVPR.2019.00511
10.3390/inventions4040072
10.1007/978-3-319-10602-1_48
10.1007/978-3-031-72751-1_1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3532680
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 18826
ExternalDocumentID oai_doaj_org_article_cc3b71e6833441ea97a4d5e1ee5f8ba4
10_1109_ACCESS_2025_3532680
10849560
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 112-2221-E-027-083; 113-2221-E-027-081-MY2
  funderid: 10.13039/501100020950
– fundername: Tzu Chi University
  grantid: 610400239–11
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-4e10ab0f1e7e0186efcf22e1109d21062d3e5bcfb1cf045d6b6af729fdb26dec3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:21:35 EDT 2025
Mon Jun 30 12:59:59 EDT 2025
Tue Jul 01 03:03:06 EDT 2025
Wed Aug 27 01:53:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-4e10ab0f1e7e0186efcf22e1109d21062d3e5bcfb1cf045d6b6af729fdb26dec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0410-3843
0000-0001-9831-5622
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10849560
PQID 3161371361
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3532680
proquest_journals_3161371361
ieee_primary_10849560
doaj_primary_oai_doaj_org_article_cc3b71e6833441ea97a4d5e1ee5f8ba4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref2
ref1
Ren (ref10); 28
ref17
ref16
ref19
ref18
ref24
ref23
Wang (ref9) 2024
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1109/adics58448.2024.10533619
– ident: ref20
  doi: 10.1038/s41592-023-01873-4
– ident: ref17
  doi: 10.1038/s41598-021-81997-9
– ident: ref6
  doi: 10.1109/CVPR52688.2022.00135
– ident: ref13
  doi: 10.1109/CVPR.2018.00644
– ident: ref5
  doi: 10.1109/ICCV48922.2021.00683
– ident: ref18
  doi: 10.1021/acs.est.3c00593
– ident: ref4
  doi: 10.1109/CVPR46437.2021.01422
– ident: ref27
  doi: 10.1007/s11263-007-0090-8
– ident: ref24
  doi: 10.1109/ICIP46576.2022.9897990
– ident: ref11
  doi: 10.3390/rs13091670
– ident: ref21
  doi: 10.26508/lsa.202302351
– ident: ref3
  doi: 10.1109/CVPR46437.2021.01008
– ident: ref19
  doi: 10.3390/app10041247
– volume: 28
  start-page: 91
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref23
  doi: 10.1109/CVPR42600.2020.00982
– ident: ref12
  doi: 10.1007/978-3-030-92632-8_36
– ident: ref15
  doi: 10.1007/s00198-019-05212-2
– ident: ref2
  doi: 10.1109/ICCV.2017.322
– ident: ref25
  doi: 10.1016/j.bspc.2024.106928
– ident: ref16
  doi: 10.5220/0008975201240133
– ident: ref26
  doi: 10.1088/2057-1976/ad160f
– year: 2024
  ident: ref9
  article-title: YOLOv10: Real-time end-to-end object detection
  publication-title: arXiv:2405.14458
– ident: ref1
  doi: 10.1016/j.jep.2022.115565
– ident: ref14
  doi: 10.1109/CVPR.2019.00511
– ident: ref22
  doi: 10.3390/inventions4040072
– ident: ref28
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref8
  doi: 10.1007/978-3-031-72751-1_1
SSID ssj0000816957
Score 2.3337855
Snippet In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 18814
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification algorithms
Computer architecture
Deep learning
Effectiveness
Feature extraction
image analysis
Image segmentation
Instance segmentation
Machine learning
Micromechanical devices
Object recognition
object segmentation
Osteoporosis
Prediction algorithms
Proposals
Spine
Vertebrae
Zebrafish
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIjyIKBXlgJBDbsROPpeJTggUqIRYrts_AQFpB-_85OwFFYmBhjU5y7i65ey_xPRNyHGRd-SrXmcV-GkdyRIY1ELIoleZrXehCxUHhu3t1PS1un-RT76ivuCeslQduA3fmnLAlA1UJgZ0bal3WhZfAAGSobJ2UQLHn9chUqsEVU1qWncwQy_XZeDJBj5AQcnkqJIKWKATZa0VJsb87YuVXXU7N5nKTbHQokY7bu9siK9Bsk_WeduAOuRovFzOEm-Dpc_z5G94-X-nDHA3og0u76mirRk7PsVF5OmvoTYKCDg3g5b2bOWoGZHp58Ti5zrpTETInpF5kBbC8tnlgUELOKgXBBc4hOumRvynuBUjrgmUuIF7zyqo6IIQO3nLlwYldstrMGtgjlFshy8JqWyEL43VuPaIRJQKSDkwV50Ny8h0gM2_FL0wiDbk2bTxNjKfp4jkk5zGIP6ZRuTpdwHyaLp_mr3wOySCmoLdelTjckIy-c2K61-zTCMSrAmm2Yvv_sfYBWYv-tF9YRmR18bGEQ8QcC3uUHq8vZdvRGQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Automated Zebrafish Spine Scoring System Based on Instance Segmentation
URI https://ieeexplore.ieee.org/document/10849560
https://www.proquest.com/docview/3161371361
https://doaj.org/article/cc3b71e6833441ea97a4d5e1ee5f8ba4
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooLaXqlg_5wJFsEzt24uOyKqVIcAEk1IsV2-O2qppFJXvh1zN2vGjVCqm3KLIVZ8b2vGd7ngGOg-xa35a6sBRPY0qOKGgOxCJKpflO17pWMVH48kqd39YXd_IuJ6unXBhETIfPcBof016-X7hlXCqjEd4mPL8Jm8TcxmSt5wWVeIOElk1WFqpK_Wk2n9NPEAfkciok4ZSo_bgWfZJIf75V5Z-pOMWXsx24WrVsPFbya7oc7NQ9_iXa-N9NfwOvM9Jks7FrvIUN7Hfh1Zr-4Dv4MlsOC4Ks6Nm3uIEcfj78YNf3VIBdu3Qyj42K5uyUgp1ni559TXDSUQH8_jvnLfV7cHv2-WZ-XuSbFQonpB6KGquys2WosMGyahUGFzjHaDVPHFBxL1BaF2zlAmE-r6zqAsHw4C1XHp14D1v9oscPwLgVsqmtti0xOd6V1hOiUSIQcSF3cz6Bk5XFzf0ooGES8Si1GR1kooNMdtAETqNXnotG9ev0gqxp8mAyzgnbVKhaIQjNYaebrvYSK0QZWtvVE9iLHlj73mj8CRysnGzyUH0wgjCvIKquqo8vVNuH7djEceHlALaGP0s8JCgy2KNE4Y9SR3wCJqXbSQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOQAHPou6UMAHjmSJ7dhJjtsVZQvtXtpKFRcrtscFoWYrmr3w6xk73moFQuIWRbbizLM9b2zPM8C7oLrGN2VbWPKnMSVHFjQHYhGl0nzXVm2lY6LwyVIvzqvPF-oiJ6unXBhETIfPcBof016-X7l1XCqjEd4kPn8X7pHjV3xM17pdUol3SLSqztpCvGw_zOZz-g2KAoWaSkVMJao_bvmfJNOf71X5azJOHubwMSw3bRsPlvyYrgc7db_-kG3878Y_gUeZa7LZ2Dmewh3sn8HDLQXC5_Bpth5WRFrRs69xCzl8v_nGTq-pADt16WweGzXN2QG5O89WPTtKhNJRAby8yplL_S6cH348my-KfLdC4aRqh6JCXna2DBxrLHmjMbggBEareYoCtfASlXXBcheI9XltdReIiAdvhfbo5AvY6Vc97gETVqq6sq1tKJYTXWk9cRotA4UuBLgQE3i_sbi5HiU0TAo9ytaMAJkIkMkATeAgonJbNOpfpxdkTZOHk3FO2pqjbqQkPoddW3eVV8gRVWhsV01gNyKw9b3R-BPY34Bs8mC9MZJYr6RgXfOX_6j2Fu4vzk6OzfHR8ssreBCbOy7D7MPO8HONr4mYDPZN6o6_AZIN3Z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Zebrafish+Spine+Scoring+System+Based+on+Instance+Segmentation&rft.jtitle=IEEE+access&rft.au=Chen%2C+Wen-Hsin&rft.au=Kuo%2C+Tien-Ying&rft.au=Wei%2C+Yu-Jen&rft.au=Ho%2C+Cheng-Jung&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=18814&rft.epage=18826&rft_id=info:doi/10.1109%2FACCESS.2025.3532680&rft.externalDocID=10849560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon