Automated Zebrafish Spine Scoring System Based on Instance Segmentation
In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in the spine to confirm the efficacy of new medicines. However, the current method for evaluating efficacy is time-consuming and labor-intensive,...
Saved in:
Published in | IEEE access Vol. 13; pp. 18814 - 18826 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in the spine to confirm the efficacy of new medicines. However, the current method for evaluating efficacy is time-consuming and labor-intensive, requiring manual observation. Taking advantage of advancements in deep learning technology, we propose an automatic method for detecting and recognizing zebrafish vertebrae of the images captured from image sensors to solve this problem. Our method was designed using Mask R-CNN as the instance segmentation backbone, enhanced with a mask enhancement module and a small object preprocessing approach to strengthen its detection abilities. Compared to the original Mask R-CNN architecture, our method improved the mean average precision (mAP) score for vertebra bounding box and mask detection by 7.1% to 97.7% and by 1.2% to 96.6%, respectively. Additionally, we developed a system using these detection algorithms to automatically calculate spinal vertebra growth scores, providing a valuable tool for researchers to assess drug efficacy. |
---|---|
AbstractList | In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in the spine to confirm the efficacy of new medicines. However, the current method for evaluating efficacy is time-consuming and labor-intensive, requiring manual observation. Taking advantage of advancements in deep learning technology, we propose an automatic method for detecting and recognizing zebrafish vertebrae of the images captured from image sensors to solve this problem. Our method was designed using Mask R-CNN as the instance segmentation backbone, enhanced with a mask enhancement module and a small object preprocessing approach to strengthen its detection abilities. Compared to the original Mask R-CNN architecture, our method improved the mean average precision (mAP) score for vertebra bounding box and mask detection by 7.1% to 97.7% and by 1.2% to 96.6%, respectively. Additionally, we developed a system using these detection algorithms to automatically calculate spinal vertebra growth scores, providing a valuable tool for researchers to assess drug efficacy. |
Author | Kuo, Tien-Ying Lin, Wen-Ying Chen, Wen-Hsin Wei, Yu-Jen Chen, Huan Ho, Cheng-Jung Lin, Ming-der |
Author_xml | – sequence: 1 givenname: Wen-Hsin surname: Chen fullname: Chen, Wen-Hsin organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 2 givenname: Tien-Ying orcidid: 0000-0001-9831-5622 surname: Kuo fullname: Kuo, Tien-Ying email: tykuo@ntut.edu.tw organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 3 givenname: Yu-Jen surname: Wei fullname: Wei, Yu-Jen organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 4 givenname: Cheng-Jung surname: Ho fullname: Ho, Cheng-Jung organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 5 givenname: Ming-der surname: Lin fullname: Lin, Ming-der organization: Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan – sequence: 6 givenname: Huan orcidid: 0000-0003-0410-3843 surname: Chen fullname: Chen, Huan organization: Department of Computer Science and Engineering, National Chung Hsing University, Taichung City, Taiwan – sequence: 7 givenname: Wen-Ying surname: Lin fullname: Lin, Wen-Ying organization: Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan |
BookMark | eNpNUU1PAjEUbAwmIvIL9LCJZ7Af2-7uEQkiCYmH1YuXptt9xSXQYlsO_HuLawzv0Pf6MjOdZm7RwDoLCN0TPCUEV0-z-XxR11OKKZ8yzqgo8RUaUiKqSbqKwcV8g8YhbHGqMq14MUTL2TG6vYrQZp_QeGW68JXVh85CVmvnO7vJ6lOIsM-eVUggZ7OVDVFZnQCw2YONKnbO3qFro3YBxn99hD5eFu_z18n6bbmaz9YTzXgVJzkQrBpsCBSASSnAaEMpnP_RUoIFbRnwRpuGaINz3opGKFPQyrQNFS1oNkKrXrd1aisPvtsrf5JOdfJ34fxGKh87vQOpNWsKAqJkLM8JqKpQecuBAHBTNipPWo-91sG77yOEKLfu6G2yLxkRhBWEpXOEWI_S3oXgwfy_SrA8G5d9APIcgPwLILEeelYHABeMMq-4wOwHddKDuQ |
CODEN | IAECCG |
Cites_doi | 10.1109/adics58448.2024.10533619 10.1038/s41592-023-01873-4 10.1038/s41598-021-81997-9 10.1109/CVPR52688.2022.00135 10.1109/CVPR.2018.00644 10.1109/ICCV48922.2021.00683 10.1021/acs.est.3c00593 10.1109/CVPR46437.2021.01422 10.1007/s11263-007-0090-8 10.1109/ICIP46576.2022.9897990 10.3390/rs13091670 10.26508/lsa.202302351 10.1109/CVPR46437.2021.01008 10.3390/app10041247 10.1109/CVPR42600.2020.00982 10.1007/978-3-030-92632-8_36 10.1007/s00198-019-05212-2 10.1109/ICCV.2017.322 10.1016/j.bspc.2024.106928 10.5220/0008975201240133 10.1088/2057-1976/ad160f 10.1016/j.jep.2022.115565 10.1109/CVPR.2019.00511 10.3390/inventions4040072 10.1007/978-3-319-10602-1_48 10.1007/978-3-031-72751-1_1 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3532680 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 18826 |
ExternalDocumentID | oai_doaj_org_article_cc3b71e6833441ea97a4d5e1ee5f8ba4 10_1109_ACCESS_2025_3532680 10849560 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: 112-2221-E-027-083; 113-2221-E-027-081-MY2 funderid: 10.13039/501100020950 – fundername: Tzu Chi University grantid: 610400239–11 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-4e10ab0f1e7e0186efcf22e1109d21062d3e5bcfb1cf045d6b6af729fdb26dec3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:21:35 EDT 2025 Mon Jun 30 12:59:59 EDT 2025 Tue Jul 01 03:03:06 EDT 2025 Wed Aug 27 01:53:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-4e10ab0f1e7e0186efcf22e1109d21062d3e5bcfb1cf045d6b6af729fdb26dec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0410-3843 0000-0001-9831-5622 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10849560 |
PQID | 3161371361 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3532680 proquest_journals_3161371361 ieee_primary_10849560 doaj_primary_oai_doaj_org_article_cc3b71e6833441ea97a4d5e1ee5f8ba4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref2 ref1 Ren (ref10); 28 ref17 ref16 ref19 ref18 ref24 ref23 Wang (ref9) 2024 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref7 doi: 10.1109/adics58448.2024.10533619 – ident: ref20 doi: 10.1038/s41592-023-01873-4 – ident: ref17 doi: 10.1038/s41598-021-81997-9 – ident: ref6 doi: 10.1109/CVPR52688.2022.00135 – ident: ref13 doi: 10.1109/CVPR.2018.00644 – ident: ref5 doi: 10.1109/ICCV48922.2021.00683 – ident: ref18 doi: 10.1021/acs.est.3c00593 – ident: ref4 doi: 10.1109/CVPR46437.2021.01422 – ident: ref27 doi: 10.1007/s11263-007-0090-8 – ident: ref24 doi: 10.1109/ICIP46576.2022.9897990 – ident: ref11 doi: 10.3390/rs13091670 – ident: ref21 doi: 10.26508/lsa.202302351 – ident: ref3 doi: 10.1109/CVPR46437.2021.01008 – ident: ref19 doi: 10.3390/app10041247 – volume: 28 start-page: 91 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref10 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – ident: ref23 doi: 10.1109/CVPR42600.2020.00982 – ident: ref12 doi: 10.1007/978-3-030-92632-8_36 – ident: ref15 doi: 10.1007/s00198-019-05212-2 – ident: ref2 doi: 10.1109/ICCV.2017.322 – ident: ref25 doi: 10.1016/j.bspc.2024.106928 – ident: ref16 doi: 10.5220/0008975201240133 – ident: ref26 doi: 10.1088/2057-1976/ad160f – year: 2024 ident: ref9 article-title: YOLOv10: Real-time end-to-end object detection publication-title: arXiv:2405.14458 – ident: ref1 doi: 10.1016/j.jep.2022.115565 – ident: ref14 doi: 10.1109/CVPR.2019.00511 – ident: ref22 doi: 10.3390/inventions4040072 – ident: ref28 doi: 10.1007/978-3-319-10602-1_48 – ident: ref8 doi: 10.1007/978-3-031-72751-1_1 |
SSID | ssj0000816957 |
Score | 2.3337855 |
Snippet | In studying new medicines for osteoporosis, researchers use zebrafish as animal subjects to test drugs and observe the growth situation of their vertebrae in... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 18814 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Classification algorithms Computer architecture Deep learning Effectiveness Feature extraction image analysis Image segmentation Instance segmentation Machine learning Micromechanical devices Object recognition object segmentation Osteoporosis Prediction algorithms Proposals Spine Vertebrae Zebrafish |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIjyIKBXlgJBDbsROPpeJTggUqIRYrts_AQFpB-_85OwFFYmBhjU5y7i65ey_xPRNyHGRd-SrXmcV-GkdyRIY1ELIoleZrXehCxUHhu3t1PS1un-RT76ivuCeslQduA3fmnLAlA1UJgZ0bal3WhZfAAGSobJ2UQLHn9chUqsEVU1qWncwQy_XZeDJBj5AQcnkqJIKWKATZa0VJsb87YuVXXU7N5nKTbHQokY7bu9siK9Bsk_WeduAOuRovFzOEm-Dpc_z5G94-X-nDHA3og0u76mirRk7PsVF5OmvoTYKCDg3g5b2bOWoGZHp58Ti5zrpTETInpF5kBbC8tnlgUELOKgXBBc4hOumRvynuBUjrgmUuIF7zyqo6IIQO3nLlwYldstrMGtgjlFshy8JqWyEL43VuPaIRJQKSDkwV50Ny8h0gM2_FL0wiDbk2bTxNjKfp4jkk5zGIP6ZRuTpdwHyaLp_mr3wOySCmoLdelTjckIy-c2K61-zTCMSrAmm2Yvv_sfYBWYv-tF9YRmR18bGEQ8QcC3uUHq8vZdvRGQ priority: 102 providerName: Directory of Open Access Journals |
Title | Automated Zebrafish Spine Scoring System Based on Instance Segmentation |
URI | https://ieeexplore.ieee.org/document/10849560 https://www.proquest.com/docview/3161371361 https://doaj.org/article/cc3b71e6833441ea97a4d5e1ee5f8ba4 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooLaXqlg_5wJFsEzt24uOyKqVIcAEk1IsV2-O2qppFJXvh1zN2vGjVCqm3KLIVZ8b2vGd7ngGOg-xa35a6sBRPY0qOKGgOxCJKpflO17pWMVH48kqd39YXd_IuJ6unXBhETIfPcBof016-X7hlXCqjEd4mPL8Jm8TcxmSt5wWVeIOElk1WFqpK_Wk2n9NPEAfkciok4ZSo_bgWfZJIf75V5Z-pOMWXsx24WrVsPFbya7oc7NQ9_iXa-N9NfwOvM9Jks7FrvIUN7Hfh1Zr-4Dv4MlsOC4Ks6Nm3uIEcfj78YNf3VIBdu3Qyj42K5uyUgp1ni559TXDSUQH8_jvnLfV7cHv2-WZ-XuSbFQonpB6KGquys2WosMGyahUGFzjHaDVPHFBxL1BaF2zlAmE-r6zqAsHw4C1XHp14D1v9oscPwLgVsqmtti0xOd6V1hOiUSIQcSF3cz6Bk5XFzf0ooGES8Si1GR1kooNMdtAETqNXnotG9ev0gqxp8mAyzgnbVKhaIQjNYaebrvYSK0QZWtvVE9iLHlj73mj8CRysnGzyUH0wgjCvIKquqo8vVNuH7djEceHlALaGP0s8JCgy2KNE4Y9SR3wCJqXbSQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOQAHPou6UMAHjmSJ7dhJjtsVZQvtXtpKFRcrtscFoWYrmr3w6xk73moFQuIWRbbizLM9b2zPM8C7oLrGN2VbWPKnMSVHFjQHYhGl0nzXVm2lY6LwyVIvzqvPF-oiJ6unXBhETIfPcBof016-X7l1XCqjEd4kPn8X7pHjV3xM17pdUol3SLSqztpCvGw_zOZz-g2KAoWaSkVMJao_bvmfJNOf71X5azJOHubwMSw3bRsPlvyYrgc7db_-kG3878Y_gUeZa7LZ2Dmewh3sn8HDLQXC5_Bpth5WRFrRs69xCzl8v_nGTq-pADt16WweGzXN2QG5O89WPTtKhNJRAby8yplL_S6cH348my-KfLdC4aRqh6JCXna2DBxrLHmjMbggBEareYoCtfASlXXBcheI9XltdReIiAdvhfbo5AvY6Vc97gETVqq6sq1tKJYTXWk9cRotA4UuBLgQE3i_sbi5HiU0TAo9ytaMAJkIkMkATeAgonJbNOpfpxdkTZOHk3FO2pqjbqQkPoddW3eVV8gRVWhsV01gNyKw9b3R-BPY34Bs8mC9MZJYr6RgXfOX_6j2Fu4vzk6OzfHR8ssreBCbOy7D7MPO8HONr4mYDPZN6o6_AZIN3Z0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Zebrafish+Spine+Scoring+System+Based+on+Instance+Segmentation&rft.jtitle=IEEE+access&rft.au=Chen%2C+Wen-Hsin&rft.au=Kuo%2C+Tien-Ying&rft.au=Wei%2C+Yu-Jen&rft.au=Ho%2C+Cheng-Jung&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=18814&rft.epage=18826&rft_id=info:doi/10.1109%2FACCESS.2025.3532680&rft.externalDocID=10849560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |