Ultra-Wide Patch Antenna Array Design at 60 GHz Band for Remote Vital Sign Monitoring with Doppler Radar Principle

In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed clo...

Full description

Saved in:
Bibliographic Details
Published inJournal of infrared, millimeter and terahertz waves Vol. 38; no. 5; pp. 548 - 566
Main Authors Rabbani, Muhammad Saqib, Ghafouri-Shiraz, Hooshang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-6892
1866-6906
DOI10.1007/s10762-016-0344-z

Cover

Loading…
Abstract In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject’s body area.
AbstractList In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject’s body area.
In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject’s body area.
Author Rabbani, Muhammad Saqib
Ghafouri-Shiraz, Hooshang
Author_xml – sequence: 1
  givenname: Muhammad Saqib
  surname: Rabbani
  fullname: Rabbani, Muhammad Saqib
  organization: School of Electronic Electrical and System Engineering, University of Birmingham
– sequence: 2
  givenname: Hooshang
  surname: Ghafouri-Shiraz
  fullname: Ghafouri-Shiraz, Hooshang
  email: ghafourh@bham.ac.uk
  organization: School of Electronic Electrical and System Engineering, University of Birmingham
BookMark eNp9kMFOAyEQhompiVZ9AG8knleBpWz3WFutJjUatXok04VVzAorYEz7ND6LTybNakxM9MQE_m-G-fqoZ53VCO1TckgJKY4CJYVgGaEiIznn2WoDbdOhEJkoieh918OSbaF-CE-ECM5LsY3CvIkesnujNL6CWD3ikY3aWsAj72GJJzqYB4shYkE-3qdnK3wMVuHaeXytn13U-M5EaPDNOnXhrInOG_uA30x8xBPXto1OSVDg8VV6qEy62EWbNTRB732dO2h-enI7Pstml9Pz8WiWVfmgjBlfEEFUzimveFFXNWE0LUM1y_Oh0otBobhYiLIEPVQUQCuqykqBLhTkjDPId9BB17f17uVVhyif3Ku3aaRkbFAKRvhApFTRpSrvQvC6llXaKBpnkxjTSErk2rDsDMtkWK4Ny1Ui6S-y9eYZ_PJfhnVMaNeetP_509_QJ1wskQo
CitedBy_id crossref_primary_10_3390_s21113737
crossref_primary_10_3390_jimaging7080122
crossref_primary_10_3390_app9204474
crossref_primary_10_1017_S1759078722000095
crossref_primary_10_1109_TAP_2021_3049233
crossref_primary_10_3390_s23084059
crossref_primary_10_1371_journal_pone_0309690
crossref_primary_10_1016_j_sna_2018_08_035
crossref_primary_10_1109_OJAP_2022_3201630
crossref_primary_10_3390_electronics8111294
crossref_primary_10_1109_JSEN_2020_3036039
crossref_primary_10_1049_el_2017_0559
crossref_primary_10_1007_s11276_023_03610_3
crossref_primary_10_1007_s11277_020_07505_w
crossref_primary_10_1051_e3sconf_202122901030
crossref_primary_10_1615_TelecomRadEng_2023047497
Cites_doi 10.1145/2702123.2702200
10.1504/IJHST.2015.069279
10.1002/met.1533
10.1109/MWSYM.2003.1210539
10.1109/BIOWIRELESS.2015.7152126
10.3390/s16081169
10.1109/MWSYM.2007.380556
10.1049/iet-map.2015.0672
10.1109/RWS.2007.351823
10.1109/TIM.2009.2028208
10.1109/RFIC.2012.6242318
10.1109/TBME.2011.2122335
10.1002/mop.27152
10.1109/TBCAS.2015.2411732
10.1002/mop.29400
10.1049/htl.2014.0077
10.1007/s11517-008-0408-x
10.1109/RADAR.2009.4977021
10.1049/SBEW048E
10.1109/LMWC.2008.925112
10.1109/IEMBS.2009.5332635
10.1109/IMWS3.2011.6061896
10.1109/TMTT.2013.2247620
10.1109/RWS.2009.4957278
10.1109/ISMICT.2014.6825209
10.1109/TIM.2011.2171589
10.1109/TIM.2015.2482230
10.1063/1.4916954
10.1145/2942358.2942381
10.1016/j.jhydrol.2012.11.017
10.1109/TMTT.2013.2256924
10.1109/LAWP.2013.2239957
10.1109/JSEN.2011.2118198
10.5539/jas.v4n12p125
10.1109/RBME.2015.2414661
10.1007/s11517-006-0091-8
10.1109/TIM.2009.2025986
10.1109/EMBC.2012.6346652
10.1109/IEMBS.2007.4352624
10.1002/mop.24877
10.1109/IEEE-IWS.2013.6616776
10.1109/LMWC.2015.2463214
10.4236/jbise.2013.67086
ContentType Journal Article
Copyright The Author(s) 2016
Journal of Infrared, Millimeter, and Terahertz Waves is a copyright of Springer, (2016). All Rights Reserved. © 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2016
– notice: Journal of Infrared, Millimeter, and Terahertz Waves is a copyright of Springer, (2016). All Rights Reserved. © 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10762-016-0344-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1866-6906
EndPage 566
ExternalDocumentID 10_1007_s10762_016_0344_z
GrantInformation_xml – fundername: University of Birmingham
  funderid: http://dx.doi.org/10.13039/501100000855
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCEE
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P62
P9T
PF0
PT4
QOS
R89
R9I
ROL
RSV
S16
S3B
SAP
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c359t-4b060d3414c47fcf0216901e2338deb57d46b699ae8d1aaed1d9cdae7da3242a3
IEDL.DBID U2A
ISSN 1866-6892
IngestDate Sun Jul 13 04:09:58 EDT 2025
Thu Jul 03 08:32:59 EDT 2025
Thu Apr 24 22:53:48 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Non-contact vital signs monitoring
60 GHz antenna arrays
Doppler radar
Remote vital sign monitoring
Microstrip antenna
Ultra-wide patch arrays
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-4b060d3414c47fcf0216901e2338deb57d46b699ae8d1aaed1d9cdae7da3242a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10762-016-0344-z
PQID 2259620456
PQPubID 2044290
PageCount 19
ParticipantIDs proquest_journals_2259620456
crossref_citationtrail_10_1007_s10762_016_0344_z
crossref_primary_10_1007_s10762_016_0344_z
springer_journals_10_1007_s10762_016_0344_z
PublicationCentury 2000
PublicationDate 20170500
2017-5-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 5
  year: 2017
  text: 20170500
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of infrared, millimeter and terahertz waves
PublicationTitleAbbrev J Infrared Milli Terahz Waves
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References KazemiSGhorbaniAAmindavarHMorganDRVital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar SystemIEEE Transactions on Instrumentation and Measurement201665225526310.1109/TIM.2015.2482230
ChuangH-RKuoH-CLinF-LHuangT-HKuoC-SOuY-W60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoringIEEE Sensors Journal201212360260910.1109/JSEN.2011.2118198
ShenT-MKaoT-YJHuangT-YTuJLinJWuR-BAntenna design of 60-GHz micro-radar system-in-package for noncontact vital sign detectionIEEE Antennas and Wireless Propagation Letters2012111702170510.1109/LAWP.2013.2239957
ObeidDSadekSZahariaGZeinGEMultitunable microwave system for touchless heartbeat detection and heart rate variability extractionMicrow. Opt. Technol. Lett.20105219219810.1002/mop.24877
M. Valipour, Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorological Applications, 23(1), 2016, pp.91-100.
SuzukiSMatsuiTKagawaMAsaoTKotaniKAn approach to a non-contact vital sign monitoring using dual-frequency microwave radars for elderly careJournal of Biomedical Science and Engineering201360770410.4236/jbise.2013.67086
R. Bancroft, Microstrip and printed antenna design [electronic resource]. Raleigh, NC, SciTech Pub. (2009)
BakhtiariSElmerTWCoxNMGopalsamiNRaptisACLiaoSMikhelsonISahakianAVCompact millimeter-wave sensor for remote monitoring of vital signsIEEE Transactions on Instrumentation and Measurement201261383084110.1109/TIM.2011.2171589
D. T. Petkie, C. Benton and E. Bryan, Millimeter wave radar for remote measurement of vital signs, (2009): 1.
M. Valipour, M. A. G. Sefidkouhi and S. Eslamian, Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology, 5(1), 2015, pp.51-70.
Rahman, E. Yavari, X. Gao, V. Lubecke and O. Boric-Lubecke, Signal processing techniques for vital sign monitoring using mobile short range Doppler radar, In Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2015 I.E. Topical Conference on, pp. 1-3. IEEE, (2015)
M. S. Rabbani, and H. Ghafouri‐Shiraz, Improvement of Microstrip Patch Antenna Gain and Bandwidth at 60GHz and X Bands for Wireless Application, IET Microwaves, Antennas & Propagation, DOI: 10.1049/iet-map.2015.0672, 2016.
LiCLingJLiJLinJAccurate Doppler radar noncontact vital sign detection using the RELAX algorithmIEEE Transactions on Instrumentation and Measurement201059368769510.1109/TIM.2009.2025986
Yang, Z., Pathak, P.H., Zeng, Y., Liran, X. and Mohapatra, P., Monitoring Vital Signs Using Millimeter Wave. DOI: http://dx.doi.org/10.1145/2942358.2942381 [Online] Available at: [http://www.phpathak.com/files/mmvital-mobihoc.pdf], accessed on October the 1th, 2016
T-Y. J. Kao, Y. Yan, T-M. Shen, A. Y-K. Chen and J. Lin, Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection, IEEE Transactions on Microwave Theory and Techniques 61, no. 4 (2013): 1649-1659
Analog Devices, MT-094: Microstrip and Stripline Design - Analog Devices, [Online] Available at: http://www.analog.com/static/imported-files/tutorials/MT-094.pdf, accessed on July the 7th, 2016
μm CMOS for non-contact vital sign detection, In 2009 I.E. Radio Frequency Integrated Circuits Symposium, pp. 97-100. IEEE, (2009)
HuangM-CLiuJJXuWGuCLiCSarrafzadehMA self-calibrating radar sensor system for measuring vital signsIEEE transactions on biomedical circuits and systems201610235236310.1109/TBCAS.2015.2411732
T-Y. J. Kao, A. Y-K. Chen, Y. Yan, T-M. Shen and J. Lin, A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections, In 2012 I.E. Radio Frequency Integrated Circuits Symposium, pp. 443-446. IEEE, (2012)
H-C. Kuo and H-R. Chuang, Investigation of carrier frequency effect on detection performance of Doppler sensor systems for noncontact human vital-signs sensing, In 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1-4. IEEE, (2014)
N. Birsan and D-P. Munteanu, Non-contact cardiopulmonary monitoring algorithm for a 24 GHz Doppler radar, In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3227-3230. IEEE, 2012
RenLKooYSWangHWangYLiuQFathyAENoncontact Multiple Heartbeats Detection and Subject Localization Using UWB Impulse Doppler RadarIEEE Microwave and Wireless Components Letters2015251069069210.1109/LMWC.2015.2463214
LiCXiaoYLinJA 5GHz Double-Sideband Radar Sensor Chip in 0.18 m CMOS for Non-Contact Vital Sign DetectionIEEE Microwave and Wireless Components Letters2008187494496246819610.1109/LMWC.2008.925112
J. Gao, K. Li, T. Sato, J. Wang, H. Harada S. and Kato, January. Implementation considerations of patch antenna array for 60GHz beam steering system applications. In 2009 I.E. Radio and Wireless Symposium(pp. 35-38). IEEE, 2009
M. Valipour, Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. Journal of Agricultural Science,4(12), 2012, p.125
D. Obeid, G. Zaharia, S. Sadek and G. El Zein, 2012. Microwave doppler radar for heartbeat detection vs electrocardiogram. Microwave and Optical Technology Letters, 54(11), pp.2610-2617.
F. Adib, H. Mao, Z. Kabelac, D. Katabi and R. C. Miller, Smart homes that monitor breathing and heart rate, In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837-846. ACM, (2015)
C. Gu, Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors, 16(8), 2016, p.1169.
C. Li and J. Lin, Non-contact measurement of periodic movements by a 22-40GHz radar sensor using nonlinear phase modulation, In 2007 IEEE/MTT-S International Microwave Symposium, pp. 579-582. IEEE, (2007)
A. D. Droitcour, T. B. Seto, B-K. Park, S. Yamada, A. Vergara, C. E. Hourani, T. Shing, A.Yuen, V. M. Lubecke, and O. Boric-Lubecke, Non-contact respiratory rate measurement validation for hospitalized patients, In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4812-4815. IEEE, (2009)
C. Li, Y. Xiao and J. Lin, Design guidelines for radio frequency non-contact vital sign detection, In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1651-1654. IEEE, (2007)
BakhtiariSLiaoSElmerTRaptisACA real-time heart rate analysis for a remote millimeter wave IQ sensorIEEE Transactions on Biomedical Engineering20115861839184510.1109/TBME.2011.2122335
Kao, T.Y.J. and Lin, J., 2013, April. Vital sign detection using 60-GHz Doppler radar system. In Wireless Symposium (IWS), 2013 I.E. International (pp. 1-4). IEEE.
LiCLubeckeVMBoric-LubeckeOLinJA review on recent advances in Doppler radar sensors for noncontact healthcare monitoringIEEE Transactions on microwave theory and techniques20136152046206010.1109/TMTT.2013.2256924
RabbaniMSGhafouri-ShirazHSize improvement of rectangular microstrip patch antenna at MM-wave and terahertz frequenciesMicrowave and Optical Technology Letters20155711258525893710.1002/mop.29400
BrüserCAntinkCHWartzekTWalterMLeonhardtSAmbient and Unobtrusive Cardiorespiratory Monitoring TechniquesIEEE reviews in biomedical engineering20158304310.1109/RBME.2015.2414661
NHS. Online at: http://www.nhs.uk/chq/Pages/2024.aspx, accessed on July the 7th, 2016
GuCLiCLinJLongJHuangfuJRanLInstrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architectureIEEE Transactions on Instrumentation and Measurement20105961580158810.1109/TIM.2009.2028208
VillarroelMGuazziAJorgeJDavisSWatkinsonPGreenGShenviAMcCormickKTarassenkoLContinuous non-contact vital sign monitoring in neonatal intensive care unitHealthcare technology letters2014138710.1049/htl.2014.0077
C. Li and J. Lin, Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection, In Microwave Symposium Digest, 2008 I.E. MTT-S International, pp. 567-570. IEEE, (2008)
M. Valipour, M. E. Banihabib and S. M. R. Behbahani, Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of hydrology,476, 2013, pp.433-441.
UenoyamaMMatsuiTYamadaKSuzukiSTakaseBSuzukiSIshiharaMKawakamiMNon-contact respiratory monitoring system using a ceiling-attached microwave antennaMedical and Biological Engineering and Computing200644983584010.1007/s11517-006-0091-8
SuzukiSMatsuiTKawaharaHIchikiHShimizuJKondoYGotohSYuraHTakaseBIshiharaMA non-contact vital sign monitoring system for ambulances using dual-frequency microwave radarsMedical & biological engineering & computing200947110110510.1007/s11517-008-0408-x
C. Li and J. Lin, Optimal carrier frequency of non-contact vital sign detectors, In 2007 I.E. Radio and Wireless Symposium, pp. 281-284. IEEE, (2007)
H-C. Kuo, H-H. Wang, P-C. Wang, H-R. Chuang, and F-L. Lin, 60-GHz millimeter-wave life detection system with clutter canceller for remote human vital-signal sensing, In Microwave Workshop Series on Millimeter Wave Integration Technologies (IMWS), 2011 I.E. MTT-S International, pp. 93-96. IEEE, (2011)
L. Sun, Y. Li, H. Hong, F. Xi, W. Cai, X. Zhu, Super-resolution spectral estimation in short-time non-contact vital sign measurement, Review of Scientific Instruments, 2015 Apr 1;86(4):044708
A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. E. N. S. H. A. N. Lin and G. T. A. Kovacs, Range correlation effect on ISM band I/Q CMOS radar for non-contact vital signs sensing, In Microwave Symposium Digest, 2003 I.E. MTT-S International, vol. 3, pp. 1945-1948. IEEE, (2003)
344_CR40
MS Rabbani (344_CR37) 2015; 57
D Obeid (344_CR42) 2010; 52
C Li (344_CR20) 2010; 59
344_CR25
344_CR47
344_CR26
344_CR23
344_CR45
S Suzuki (344_CR4) 2013; 6
344_CR24
344_CR46
344_CR21
344_CR43
S Suzuki (344_CR11) 2009; 47
344_CR44
M Uenoyama (344_CR5) 2006; 44
S Bakhtiari (344_CR33) 2012; 61
344_CR18
H-R Chuang (344_CR27) 2012; 12
M-C Huang (344_CR16) 2016; 10
344_CR19
344_CR38
344_CR17
344_CR39
L Ren (344_CR9) 2015; 25
T-M Shen (344_CR31) 2012; 11
C Li (344_CR13) 2008; 18
S Bakhtiari (344_CR34) 2011; 58
M Villarroel (344_CR3) 2014; 1
344_CR36
344_CR15
344_CR35
344_CR10
344_CR32
344_CR30
C Gu (344_CR41) 2010; 59
344_CR1
344_CR29
344_CR2
C Li (344_CR22) 2013; 61
344_CR28
C Brüser (344_CR12) 2015; 8
S Kazemi (344_CR14) 2016; 65
344_CR6
344_CR7
344_CR8
References_xml – reference: LiCXiaoYLinJA 5GHz Double-Sideband Radar Sensor Chip in 0.18 m CMOS for Non-Contact Vital Sign DetectionIEEE Microwave and Wireless Components Letters2008187494496246819610.1109/LMWC.2008.925112
– reference: C. Li, Y. Xiao and J. Lin, Design guidelines for radio frequency non-contact vital sign detection, In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1651-1654. IEEE, (2007)
– reference: RenLKooYSWangHWangYLiuQFathyAENoncontact Multiple Heartbeats Detection and Subject Localization Using UWB Impulse Doppler RadarIEEE Microwave and Wireless Components Letters2015251069069210.1109/LMWC.2015.2463214
– reference: H-C. Kuo and H-R. Chuang, Investigation of carrier frequency effect on detection performance of Doppler sensor systems for noncontact human vital-signs sensing, In 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1-4. IEEE, (2014)
– reference: R. Bancroft, Microstrip and printed antenna design [electronic resource]. Raleigh, NC, SciTech Pub. (2009)
– reference: ChuangH-RKuoH-CLinF-LHuangT-HKuoC-SOuY-W60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoringIEEE Sensors Journal201212360260910.1109/JSEN.2011.2118198
– reference: Analog Devices, MT-094: Microstrip and Stripline Design - Analog Devices, [Online] Available at: http://www.analog.com/static/imported-files/tutorials/MT-094.pdf, accessed on July the 7th, 2016
– reference: C. Li and J. Lin, Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection, In Microwave Symposium Digest, 2008 I.E. MTT-S International, pp. 567-570. IEEE, (2008)
– reference: C. Li and J. Lin, Non-contact measurement of periodic movements by a 22-40GHz radar sensor using nonlinear phase modulation, In 2007 IEEE/MTT-S International Microwave Symposium, pp. 579-582. IEEE, (2007)
– reference: BakhtiariSElmerTWCoxNMGopalsamiNRaptisACLiaoSMikhelsonISahakianAVCompact millimeter-wave sensor for remote monitoring of vital signsIEEE Transactions on Instrumentation and Measurement201261383084110.1109/TIM.2011.2171589
– reference: N. Birsan and D-P. Munteanu, Non-contact cardiopulmonary monitoring algorithm for a 24 GHz Doppler radar, In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3227-3230. IEEE, 2012
– reference: HuangM-CLiuJJXuWGuCLiCSarrafzadehMA self-calibrating radar sensor system for measuring vital signsIEEE transactions on biomedical circuits and systems201610235236310.1109/TBCAS.2015.2411732
– reference: Yang, Z., Pathak, P.H., Zeng, Y., Liran, X. and Mohapatra, P., Monitoring Vital Signs Using Millimeter Wave. DOI: http://dx.doi.org/10.1145/2942358.2942381 [Online] Available at: [http://www.phpathak.com/files/mmvital-mobihoc.pdf], accessed on October the 1th, 2016
– reference: RabbaniMSGhafouri-ShirazHSize improvement of rectangular microstrip patch antenna at MM-wave and terahertz frequenciesMicrowave and Optical Technology Letters20155711258525893710.1002/mop.29400
– reference: A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. E. N. S. H. A. N. Lin and G. T. A. Kovacs, Range correlation effect on ISM band I/Q CMOS radar for non-contact vital signs sensing, In Microwave Symposium Digest, 2003 I.E. MTT-S International, vol. 3, pp. 1945-1948. IEEE, (2003)
– reference: M. S. Rabbani, and H. Ghafouri‐Shiraz, Improvement of Microstrip Patch Antenna Gain and Bandwidth at 60GHz and X Bands for Wireless Application, IET Microwaves, Antennas & Propagation, DOI: 10.1049/iet-map.2015.0672, 2016.
– reference: VillarroelMGuazziAJorgeJDavisSWatkinsonPGreenGShenviAMcCormickKTarassenkoLContinuous non-contact vital sign monitoring in neonatal intensive care unitHealthcare technology letters2014138710.1049/htl.2014.0077
– reference: L. Sun, Y. Li, H. Hong, F. Xi, W. Cai, X. Zhu, Super-resolution spectral estimation in short-time non-contact vital sign measurement, Review of Scientific Instruments, 2015 Apr 1;86(4):044708
– reference: J. Gao, K. Li, T. Sato, J. Wang, H. Harada S. and Kato, January. Implementation considerations of patch antenna array for 60GHz beam steering system applications. In 2009 I.E. Radio and Wireless Symposium(pp. 35-38). IEEE, 2009
– reference: C. Li and J. Lin, Optimal carrier frequency of non-contact vital sign detectors, In 2007 I.E. Radio and Wireless Symposium, pp. 281-284. IEEE, (2007)
– reference: A. D. Droitcour, T. B. Seto, B-K. Park, S. Yamada, A. Vergara, C. E. Hourani, T. Shing, A.Yuen, V. M. Lubecke, and O. Boric-Lubecke, Non-contact respiratory rate measurement validation for hospitalized patients, In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4812-4815. IEEE, (2009)
– reference: Rahman, E. Yavari, X. Gao, V. Lubecke and O. Boric-Lubecke, Signal processing techniques for vital sign monitoring using mobile short range Doppler radar, In Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2015 I.E. Topical Conference on, pp. 1-3. IEEE, (2015)
– reference: μm CMOS for non-contact vital sign detection, In 2009 I.E. Radio Frequency Integrated Circuits Symposium, pp. 97-100. IEEE, (2009)
– reference: T-Y. J. Kao, A. Y-K. Chen, Y. Yan, T-M. Shen and J. Lin, A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections, In 2012 I.E. Radio Frequency Integrated Circuits Symposium, pp. 443-446. IEEE, (2012)
– reference: T-Y. J. Kao, Y. Yan, T-M. Shen, A. Y-K. Chen and J. Lin, Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection, IEEE Transactions on Microwave Theory and Techniques 61, no. 4 (2013): 1649-1659
– reference: ObeidDSadekSZahariaGZeinGEMultitunable microwave system for touchless heartbeat detection and heart rate variability extractionMicrow. Opt. Technol. Lett.20105219219810.1002/mop.24877
– reference: M. Valipour, Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. Journal of Agricultural Science,4(12), 2012, p.125
– reference: BrüserCAntinkCHWartzekTWalterMLeonhardtSAmbient and Unobtrusive Cardiorespiratory Monitoring TechniquesIEEE reviews in biomedical engineering20158304310.1109/RBME.2015.2414661
– reference: KazemiSGhorbaniAAmindavarHMorganDRVital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar SystemIEEE Transactions on Instrumentation and Measurement201665225526310.1109/TIM.2015.2482230
– reference: D. T. Petkie, C. Benton and E. Bryan, Millimeter wave radar for remote measurement of vital signs, (2009): 1.
– reference: F. Adib, H. Mao, Z. Kabelac, D. Katabi and R. C. Miller, Smart homes that monitor breathing and heart rate, In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837-846. ACM, (2015)
– reference: SuzukiSMatsuiTKagawaMAsaoTKotaniKAn approach to a non-contact vital sign monitoring using dual-frequency microwave radars for elderly careJournal of Biomedical Science and Engineering201360770410.4236/jbise.2013.67086
– reference: Kao, T.Y.J. and Lin, J., 2013, April. Vital sign detection using 60-GHz Doppler radar system. In Wireless Symposium (IWS), 2013 I.E. International (pp. 1-4). IEEE.
– reference: LiCLubeckeVMBoric-LubeckeOLinJA review on recent advances in Doppler radar sensors for noncontact healthcare monitoringIEEE Transactions on microwave theory and techniques20136152046206010.1109/TMTT.2013.2256924
– reference: NHS. Online at: http://www.nhs.uk/chq/Pages/2024.aspx, accessed on July the 7th, 2016
– reference: UenoyamaMMatsuiTYamadaKSuzukiSTakaseBSuzukiSIshiharaMKawakamiMNon-contact respiratory monitoring system using a ceiling-attached microwave antennaMedical and Biological Engineering and Computing200644983584010.1007/s11517-006-0091-8
– reference: BakhtiariSLiaoSElmerTRaptisACA real-time heart rate analysis for a remote millimeter wave IQ sensorIEEE Transactions on Biomedical Engineering20115861839184510.1109/TBME.2011.2122335
– reference: LiCLingJLiJLinJAccurate Doppler radar noncontact vital sign detection using the RELAX algorithmIEEE Transactions on Instrumentation and Measurement201059368769510.1109/TIM.2009.2025986
– reference: ShenT-MKaoT-YJHuangT-YTuJLinJWuR-BAntenna design of 60-GHz micro-radar system-in-package for noncontact vital sign detectionIEEE Antennas and Wireless Propagation Letters2012111702170510.1109/LAWP.2013.2239957
– reference: M. Valipour, M. E. Banihabib and S. M. R. Behbahani, Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of hydrology,476, 2013, pp.433-441.
– reference: D. Obeid, G. Zaharia, S. Sadek and G. El Zein, 2012. Microwave doppler radar for heartbeat detection vs electrocardiogram. Microwave and Optical Technology Letters, 54(11), pp.2610-2617.
– reference: M. Valipour, Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorological Applications, 23(1), 2016, pp.91-100.
– reference: SuzukiSMatsuiTKawaharaHIchikiHShimizuJKondoYGotohSYuraHTakaseBIshiharaMA non-contact vital sign monitoring system for ambulances using dual-frequency microwave radarsMedical & biological engineering & computing200947110110510.1007/s11517-008-0408-x
– reference: GuCLiCLinJLongJHuangfuJRanLInstrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architectureIEEE Transactions on Instrumentation and Measurement20105961580158810.1109/TIM.2009.2028208
– reference: M. Valipour, M. A. G. Sefidkouhi and S. Eslamian, Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology, 5(1), 2015, pp.51-70.
– reference: H-C. Kuo, H-H. Wang, P-C. Wang, H-R. Chuang, and F-L. Lin, 60-GHz millimeter-wave life detection system with clutter canceller for remote human vital-signal sensing, In Microwave Workshop Series on Millimeter Wave Integration Technologies (IMWS), 2011 I.E. MTT-S International, pp. 93-96. IEEE, (2011)
– reference: C. Gu, Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors, 16(8), 2016, p.1169.
– ident: 344_CR10
  doi: 10.1145/2702123.2702200
– ident: 344_CR45
  doi: 10.1504/IJHST.2015.069279
– ident: 344_CR43
  doi: 10.1002/met.1533
– ident: 344_CR15
  doi: 10.1109/MWSYM.2003.1210539
– ident: 344_CR21
  doi: 10.1109/BIOWIRELESS.2015.7152126
– ident: 344_CR8
  doi: 10.3390/s16081169
– ident: 344_CR25
  doi: 10.1109/MWSYM.2007.380556
– ident: 344_CR40
  doi: 10.1049/iet-map.2015.0672
– ident: 344_CR24
  doi: 10.1109/RWS.2007.351823
– volume: 59
  start-page: 1580
  issue: 6
  year: 2010
  ident: 344_CR41
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2009.2028208
– ident: 344_CR47
– ident: 344_CR23
  doi: 10.1109/RFIC.2012.6242318
– volume: 58
  start-page: 1839
  issue: 6
  year: 2011
  ident: 344_CR34
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2122335
– ident: 344_CR6
  doi: 10.1002/mop.27152
– volume: 10
  start-page: 352
  issue: 2
  year: 2016
  ident: 344_CR16
  publication-title: IEEE transactions on biomedical circuits and systems
  doi: 10.1109/TBCAS.2015.2411732
– volume: 57
  start-page: 2585
  issue: 11
  year: 2015
  ident: 344_CR37
  publication-title: Microwave and Optical Technology Letters
  doi: 10.1002/mop.29400
– volume: 1
  start-page: 87
  issue: 3
  year: 2014
  ident: 344_CR3
  publication-title: Healthcare technology letters
  doi: 10.1049/htl.2014.0077
– volume: 47
  start-page: 101
  issue: 1
  year: 2009
  ident: 344_CR11
  publication-title: Medical & biological engineering & computing
  doi: 10.1007/s11517-008-0408-x
– ident: 344_CR35
  doi: 10.1109/RADAR.2009.4977021
– ident: 344_CR38
  doi: 10.1049/SBEW048E
– volume: 18
  start-page: 494
  issue: 7
  year: 2008
  ident: 344_CR13
  publication-title: IEEE Microwave and Wireless Components Letters
  doi: 10.1109/LMWC.2008.925112
– ident: 344_CR17
– ident: 344_CR2
  doi: 10.1109/IEMBS.2009.5332635
– ident: 344_CR19
– ident: 344_CR28
  doi: 10.1109/IMWS3.2011.6061896
– ident: 344_CR30
  doi: 10.1109/TMTT.2013.2247620
– ident: 344_CR32
  doi: 10.1109/RWS.2009.4957278
– ident: 344_CR29
  doi: 10.1109/ISMICT.2014.6825209
– volume: 61
  start-page: 830
  issue: 3
  year: 2012
  ident: 344_CR33
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2011.2171589
– volume: 65
  start-page: 255
  issue: 2
  year: 2016
  ident: 344_CR14
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2015.2482230
– ident: 344_CR1
  doi: 10.1063/1.4916954
– ident: 344_CR36
  doi: 10.1145/2942358.2942381
– ident: 344_CR44
  doi: 10.1016/j.jhydrol.2012.11.017
– volume: 61
  start-page: 2046
  issue: 5
  year: 2013
  ident: 344_CR22
  publication-title: IEEE Transactions on microwave theory and techniques
  doi: 10.1109/TMTT.2013.2256924
– volume: 11
  start-page: 1702
  year: 2012
  ident: 344_CR31
  publication-title: IEEE Antennas and Wireless Propagation Letters
  doi: 10.1109/LAWP.2013.2239957
– volume: 12
  start-page: 602
  issue: 3
  year: 2012
  ident: 344_CR27
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2011.2118198
– ident: 344_CR46
  doi: 10.5539/jas.v4n12p125
– volume: 8
  start-page: 30
  year: 2015
  ident: 344_CR12
  publication-title: IEEE reviews in biomedical engineering
  doi: 10.1109/RBME.2015.2414661
– volume: 44
  start-page: 835
  issue: 9
  year: 2006
  ident: 344_CR5
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/s11517-006-0091-8
– volume: 59
  start-page: 687
  issue: 3
  year: 2010
  ident: 344_CR20
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2009.2025986
– ident: 344_CR26
  doi: 10.1109/EMBC.2012.6346652
– ident: 344_CR18
  doi: 10.1109/IEMBS.2007.4352624
– volume: 52
  start-page: 192
  year: 2010
  ident: 344_CR42
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.24877
– ident: 344_CR7
  doi: 10.1109/IEEE-IWS.2013.6616776
– volume: 25
  start-page: 690
  issue: 10
  year: 2015
  ident: 344_CR9
  publication-title: IEEE Microwave and Wireless Components Letters
  doi: 10.1109/LMWC.2015.2463214
– volume: 6
  start-page: 704
  issue: 07
  year: 2013
  ident: 344_CR4
  publication-title: Journal of Biomedical Science and Engineering
  doi: 10.4236/jbise.2013.67086
– ident: 344_CR39
SSID ssj0064496
Score 2.2290936
Snippet In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote...
In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 548
SubjectTerms Antenna arrays
Antenna design
Classical Electrodynamics
Doppler radar
Electrical Engineering
Electronics and Microelectronics
Engineering
Heart rate
Instrumentation
Patch antennas
Radar beams
Remote monitoring
Respiration
Signal transmission
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BjtMwELWgvXCBZQFRKGgOewJZpI3txKdVu-1Scaiqhe72Fjm2I5BWaUnDgX79ziQOFUj0nLET5dkzb8bjGcYuXBKrPNaOi7xIuZCR5amVmou40EUux9a3CbJLtViLLxu5CQG3fUir7HRio6jd1lKM_BOuO93UTleXu5-cukbR6WpoofGY9VEFp-h89afz5eqm08Vo7JsOXVTVjatUj7tzzfbyHCoCdKXRo46F4Ie_LdORbv5zQtoYnusz9jQwRpi0ED9nj3x5zp4F9ghhb-5fsGp9X1eG3_1wHlaoYL_DhNLTS4NDK_MbZk2uBpgaVASfFweYmtIBcla48YiXh1vqHwJfSajd6fQ9QIFamG3xdR4ljTMVrLoA_Uu2vp5_u1rw0FGB21jqGgGJVOTQcAkrksIWaOCpIZUfo6PqfC4TJ1SutDY-dSNjvBs5bZ3xiTNEvEz8ivXKbelfM_DNtVYkDEmiRBqjHA6ThZKWasorOWBR9zczG8qNU9eL--xYKJkAyCjFjADIDgP24c-QXVtr45TwsIMoC9tunx0XyYB97GA7Pv7vZG9OT_aWPRmTNW_yHIesV1e__DvkInX-Piy4B84f2Xo
  priority: 102
  providerName: ProQuest
Title Ultra-Wide Patch Antenna Array Design at 60 GHz Band for Remote Vital Sign Monitoring with Doppler Radar Principle
URI https://link.springer.com/article/10.1007/s10762-016-0344-z
https://www.proquest.com/docview/2259620456
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW1wfSw6elEBtk7Q5rus-UJBFXR-nkiYpCkuV3Xpwf42_xV_mpNu6Kip4KrSTKWQyr2TyDcC-CQORBNJQlqQRZdzTNNJcUhakMk24r-2kQPZcdPvs9Jbflve4R1W1e3UkWVjqT5fdUHEx9cUMOGCMjmdhnrvUHRdx329U5hf9e9GUywG5URFJvzrK_InFV2c0jTC_HYoWvqa9AktlkEgaE6muwozN1mC5DBhJqY6jNVj8hCa4DqP-IB8qevNgLOmhhb0nDVefnilkNFQv5KQo1iAqJ8J7e-10x-RYZYZg1EouLErMkmvXQYRcOqqJrjvGxG3VkpNH_LtFSmXUkPSqLfoN6LdbV80uLXsqUB1wmaNIPOEZdF1MszDVKbp415LK-piqGpvw0DCRCCmVjcyRUtYcGamNsqFRLvRSwSbMZY-Z3QJii4utGDKEoWBRgHQ4jKeCa4cqL3gNvGpyY10Cjru-F4N4CpXs5BG7IjMnj3hcg4OPIU8TtI2_iHcricWl4o1iNE-ygNgXNTispDj9_Cuz7X9R78CC79x7Ufi4C3P58NnuYXCSJ3WYjdqdOsw3OndnLXwet857F_i2KZr1YqG-A1LZ39o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8SWAj7ABWSRxo_EB4QKy3ZLS1VBF3oLju2ISlW2ZINQ90fxG5lJYlYg0VvPGTuWZ_z5s2c8A_DUZ0KXwnguyyrnUiWO504ZLkVlqlKlLvQBsgd6OpPvj9XxGvyKb2EorDJiYgfUfu7ojvwl2p3pcqfr12ffOVWNIu9qLKHRm8VeOP-JR7bFq90x6vdZmk7eHb2d8qGqAHdCmRYHlejEI3hLJ7PKVbjJUVGmkOJhzYdSZV7qUhtjQ-63rA1-yxvnbci8JfJhBfZ7Ba5KIQytqHyyE5EfqUVXD4xyyHGdmzR6Ufunegg7eHDH87uQki__3gdX5PYff2y3zU1uwY2Bn7Lt3qBuw1qo78DNgauyAQkWd6GZnbaN5V9OfGCHCOff2DYFw9cWmzb2nI27yBBmW6YTtjNdsje29gwZMvsY0DoC-0zVStgnEupxhcbD6FqYjef4u4CS1tuGHUZ3wD2YXcpM34f1el6HB8BC94gW6UmWaZkLlMNmqtLKUQZ7rUaQxNks3JDcnGpsnBartMykgIIC2kgBxXIEz_80Oesze1wkvBlVVAyLfFGsTHIEL6LaVp__29nGxZ09gWvTow_7xf7uwd5DuJ4Sj-giLDdhvW1-hEfIgtrycWd6DL5etq3_BsDYFdE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOvBHjmQMnUERZk7Q5wsYYD6EJGHCr0iQVSKigrRzYr-G38Mtw-mCAAIlzXVftV8d27HwG2DKBL2JfGsriJKSMe5qGmkvK_EQmMa9rWzTInot2l53c8ttyzmm_6navSpLFmQbH0pRmu08m2f108A2NGNNgzIZ9xuhgFMYxUcnrtA3RqJZi9PX5gC5H6kZFKOtVWfMnFV8d0zDa_FYgzf1Oaxamy4CR7BcIz8GITedhpgweSWma_XmY-sQsuAD97kPWU_Tm3ljSwdX2juy790sVKuqpF9LMGzeIyojw3l6P2gNyoFJDMIIlFxbRs-TaTRMhl06qsHunmLhtW9J8xKdblFRG9Uin2q5fhG7r8KrRpuV8Bap9LjOExxOeQTfGNAsSnaC7d-OpbB3TVmNjHhgmYiGlsqHZU8qaPSO1UTYwyoVhyl-CsfQxtctAbH7IFcOHIBAs9FEOb-OJ4NoxzAteA6_6uJEuycfdDIyHaEib7PCIXMOZwyMa1GD745angnnjL-G1CrGoNMJ-hEuVzOn2RQ12KhSHl39VtvIv6U2Y6DRb0dnx-ekqTNad18_7IddgLOs923WMWbJ4I_8v3wFmVeIC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Wide+Patch+Antenna+Array+Design+at+60%C2%A0GHz+Band+for+Remote+Vital+Sign+Monitoring+with+Doppler+Radar+Principle&rft.jtitle=Journal+of+infrared%2C+millimeter+and+terahertz+waves&rft.au=Rabbani%2C+Muhammad+Saqib&rft.au=Ghafouri-Shiraz%2C+Hooshang&rft.date=2017-05-01&rft.issn=1866-6892&rft.eissn=1866-6906&rft.volume=38&rft.issue=5&rft.spage=548&rft.epage=566&rft_id=info:doi/10.1007%2Fs10762-016-0344-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10762_016_0344_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6892&client=summon