Ultra-Wide Patch Antenna Array Design at 60 GHz Band for Remote Vital Sign Monitoring with Doppler Radar Principle
In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed clo...
Saved in:
Published in | Journal of infrared, millimeter and terahertz waves Vol. 38; no. 5; pp. 548 - 566 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1866-6892 1866-6906 |
DOI | 10.1007/s10762-016-0344-z |
Cover
Loading…
Abstract | In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject’s body area. |
---|---|
AbstractList | In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject’s body area. In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject’s body area. |
Author | Rabbani, Muhammad Saqib Ghafouri-Shiraz, Hooshang |
Author_xml | – sequence: 1 givenname: Muhammad Saqib surname: Rabbani fullname: Rabbani, Muhammad Saqib organization: School of Electronic Electrical and System Engineering, University of Birmingham – sequence: 2 givenname: Hooshang surname: Ghafouri-Shiraz fullname: Ghafouri-Shiraz, Hooshang email: ghafourh@bham.ac.uk organization: School of Electronic Electrical and System Engineering, University of Birmingham |
BookMark | eNp9kMFOAyEQhompiVZ9AG8knleBpWz3WFutJjUatXok04VVzAorYEz7ND6LTybNakxM9MQE_m-G-fqoZ53VCO1TckgJKY4CJYVgGaEiIznn2WoDbdOhEJkoieh918OSbaF-CE-ECM5LsY3CvIkesnujNL6CWD3ikY3aWsAj72GJJzqYB4shYkE-3qdnK3wMVuHaeXytn13U-M5EaPDNOnXhrInOG_uA30x8xBPXto1OSVDg8VV6qEy62EWbNTRB732dO2h-enI7Pstml9Pz8WiWVfmgjBlfEEFUzimveFFXNWE0LUM1y_Oh0otBobhYiLIEPVQUQCuqykqBLhTkjDPId9BB17f17uVVhyif3Ku3aaRkbFAKRvhApFTRpSrvQvC6llXaKBpnkxjTSErk2rDsDMtkWK4Ny1Ui6S-y9eYZ_PJfhnVMaNeetP_509_QJ1wskQo |
CitedBy_id | crossref_primary_10_3390_s21113737 crossref_primary_10_3390_jimaging7080122 crossref_primary_10_3390_app9204474 crossref_primary_10_1017_S1759078722000095 crossref_primary_10_1109_TAP_2021_3049233 crossref_primary_10_3390_s23084059 crossref_primary_10_1371_journal_pone_0309690 crossref_primary_10_1016_j_sna_2018_08_035 crossref_primary_10_1109_OJAP_2022_3201630 crossref_primary_10_3390_electronics8111294 crossref_primary_10_1109_JSEN_2020_3036039 crossref_primary_10_1049_el_2017_0559 crossref_primary_10_1007_s11276_023_03610_3 crossref_primary_10_1007_s11277_020_07505_w crossref_primary_10_1051_e3sconf_202122901030 crossref_primary_10_1615_TelecomRadEng_2023047497 |
Cites_doi | 10.1145/2702123.2702200 10.1504/IJHST.2015.069279 10.1002/met.1533 10.1109/MWSYM.2003.1210539 10.1109/BIOWIRELESS.2015.7152126 10.3390/s16081169 10.1109/MWSYM.2007.380556 10.1049/iet-map.2015.0672 10.1109/RWS.2007.351823 10.1109/TIM.2009.2028208 10.1109/RFIC.2012.6242318 10.1109/TBME.2011.2122335 10.1002/mop.27152 10.1109/TBCAS.2015.2411732 10.1002/mop.29400 10.1049/htl.2014.0077 10.1007/s11517-008-0408-x 10.1109/RADAR.2009.4977021 10.1049/SBEW048E 10.1109/LMWC.2008.925112 10.1109/IEMBS.2009.5332635 10.1109/IMWS3.2011.6061896 10.1109/TMTT.2013.2247620 10.1109/RWS.2009.4957278 10.1109/ISMICT.2014.6825209 10.1109/TIM.2011.2171589 10.1109/TIM.2015.2482230 10.1063/1.4916954 10.1145/2942358.2942381 10.1016/j.jhydrol.2012.11.017 10.1109/TMTT.2013.2256924 10.1109/LAWP.2013.2239957 10.1109/JSEN.2011.2118198 10.5539/jas.v4n12p125 10.1109/RBME.2015.2414661 10.1007/s11517-006-0091-8 10.1109/TIM.2009.2025986 10.1109/EMBC.2012.6346652 10.1109/IEMBS.2007.4352624 10.1002/mop.24877 10.1109/IEEE-IWS.2013.6616776 10.1109/LMWC.2015.2463214 10.4236/jbise.2013.67086 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Journal of Infrared, Millimeter, and Terahertz Waves is a copyright of Springer, (2016). All Rights Reserved. © 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2016 – notice: Journal of Infrared, Millimeter, and Terahertz Waves is a copyright of Springer, (2016). All Rights Reserved. © 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s10762-016-0344-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1866-6906 |
EndPage | 566 |
ExternalDocumentID | 10_1007_s10762_016_0344_z |
GrantInformation_xml | – fundername: University of Birmingham funderid: http://dx.doi.org/10.13039/501100000855 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCEE ARMRJ AXYYD AYJHY AZFZN B-. BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9G O9J OAM P62 P9T PF0 PT4 QOS R89 R9I ROL RSV S16 S3B SAP SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c359t-4b060d3414c47fcf0216901e2338deb57d46b699ae8d1aaed1d9cdae7da3242a3 |
IEDL.DBID | U2A |
ISSN | 1866-6892 |
IngestDate | Sun Jul 13 04:09:58 EDT 2025 Thu Jul 03 08:32:59 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Non-contact vital signs monitoring 60 GHz antenna arrays Doppler radar Remote vital sign monitoring Microstrip antenna Ultra-wide patch arrays |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-4b060d3414c47fcf0216901e2338deb57d46b699ae8d1aaed1d9cdae7da3242a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s10762-016-0344-z |
PQID | 2259620456 |
PQPubID | 2044290 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2259620456 crossref_citationtrail_10_1007_s10762_016_0344_z crossref_primary_10_1007_s10762_016_0344_z springer_journals_10_1007_s10762_016_0344_z |
PublicationCentury | 2000 |
PublicationDate | 20170500 2017-5-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 5 year: 2017 text: 20170500 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of infrared, millimeter and terahertz waves |
PublicationTitleAbbrev | J Infrared Milli Terahz Waves |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | KazemiSGhorbaniAAmindavarHMorganDRVital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar SystemIEEE Transactions on Instrumentation and Measurement201665225526310.1109/TIM.2015.2482230 ChuangH-RKuoH-CLinF-LHuangT-HKuoC-SOuY-W60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoringIEEE Sensors Journal201212360260910.1109/JSEN.2011.2118198 ShenT-MKaoT-YJHuangT-YTuJLinJWuR-BAntenna design of 60-GHz micro-radar system-in-package for noncontact vital sign detectionIEEE Antennas and Wireless Propagation Letters2012111702170510.1109/LAWP.2013.2239957 ObeidDSadekSZahariaGZeinGEMultitunable microwave system for touchless heartbeat detection and heart rate variability extractionMicrow. Opt. Technol. Lett.20105219219810.1002/mop.24877 M. Valipour, Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorological Applications, 23(1), 2016, pp.91-100. SuzukiSMatsuiTKagawaMAsaoTKotaniKAn approach to a non-contact vital sign monitoring using dual-frequency microwave radars for elderly careJournal of Biomedical Science and Engineering201360770410.4236/jbise.2013.67086 R. Bancroft, Microstrip and printed antenna design [electronic resource]. Raleigh, NC, SciTech Pub. (2009) BakhtiariSElmerTWCoxNMGopalsamiNRaptisACLiaoSMikhelsonISahakianAVCompact millimeter-wave sensor for remote monitoring of vital signsIEEE Transactions on Instrumentation and Measurement201261383084110.1109/TIM.2011.2171589 D. T. Petkie, C. Benton and E. Bryan, Millimeter wave radar for remote measurement of vital signs, (2009): 1. M. Valipour, M. A. G. Sefidkouhi and S. Eslamian, Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology, 5(1), 2015, pp.51-70. Rahman, E. Yavari, X. Gao, V. Lubecke and O. Boric-Lubecke, Signal processing techniques for vital sign monitoring using mobile short range Doppler radar, In Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2015 I.E. Topical Conference on, pp. 1-3. IEEE, (2015) M. S. Rabbani, and H. Ghafouri‐Shiraz, Improvement of Microstrip Patch Antenna Gain and Bandwidth at 60GHz and X Bands for Wireless Application, IET Microwaves, Antennas & Propagation, DOI: 10.1049/iet-map.2015.0672, 2016. LiCLingJLiJLinJAccurate Doppler radar noncontact vital sign detection using the RELAX algorithmIEEE Transactions on Instrumentation and Measurement201059368769510.1109/TIM.2009.2025986 Yang, Z., Pathak, P.H., Zeng, Y., Liran, X. and Mohapatra, P., Monitoring Vital Signs Using Millimeter Wave. DOI: http://dx.doi.org/10.1145/2942358.2942381 [Online] Available at: [http://www.phpathak.com/files/mmvital-mobihoc.pdf], accessed on October the 1th, 2016 T-Y. J. Kao, Y. Yan, T-M. Shen, A. Y-K. Chen and J. Lin, Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection, IEEE Transactions on Microwave Theory and Techniques 61, no. 4 (2013): 1649-1659 Analog Devices, MT-094: Microstrip and Stripline Design - Analog Devices, [Online] Available at: http://www.analog.com/static/imported-files/tutorials/MT-094.pdf, accessed on July the 7th, 2016 μm CMOS for non-contact vital sign detection, In 2009 I.E. Radio Frequency Integrated Circuits Symposium, pp. 97-100. IEEE, (2009) HuangM-CLiuJJXuWGuCLiCSarrafzadehMA self-calibrating radar sensor system for measuring vital signsIEEE transactions on biomedical circuits and systems201610235236310.1109/TBCAS.2015.2411732 T-Y. J. Kao, A. Y-K. Chen, Y. Yan, T-M. Shen and J. Lin, A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections, In 2012 I.E. Radio Frequency Integrated Circuits Symposium, pp. 443-446. IEEE, (2012) H-C. Kuo and H-R. Chuang, Investigation of carrier frequency effect on detection performance of Doppler sensor systems for noncontact human vital-signs sensing, In 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1-4. IEEE, (2014) N. Birsan and D-P. Munteanu, Non-contact cardiopulmonary monitoring algorithm for a 24 GHz Doppler radar, In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3227-3230. IEEE, 2012 RenLKooYSWangHWangYLiuQFathyAENoncontact Multiple Heartbeats Detection and Subject Localization Using UWB Impulse Doppler RadarIEEE Microwave and Wireless Components Letters2015251069069210.1109/LMWC.2015.2463214 LiCXiaoYLinJA 5GHz Double-Sideband Radar Sensor Chip in 0.18 m CMOS for Non-Contact Vital Sign DetectionIEEE Microwave and Wireless Components Letters2008187494496246819610.1109/LMWC.2008.925112 J. Gao, K. Li, T. Sato, J. Wang, H. Harada S. and Kato, January. Implementation considerations of patch antenna array for 60GHz beam steering system applications. In 2009 I.E. Radio and Wireless Symposium(pp. 35-38). IEEE, 2009 M. Valipour, Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. Journal of Agricultural Science,4(12), 2012, p.125 D. Obeid, G. Zaharia, S. Sadek and G. El Zein, 2012. Microwave doppler radar for heartbeat detection vs electrocardiogram. Microwave and Optical Technology Letters, 54(11), pp.2610-2617. F. Adib, H. Mao, Z. Kabelac, D. Katabi and R. C. Miller, Smart homes that monitor breathing and heart rate, In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837-846. ACM, (2015) C. Gu, Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors, 16(8), 2016, p.1169. C. Li and J. Lin, Non-contact measurement of periodic movements by a 22-40GHz radar sensor using nonlinear phase modulation, In 2007 IEEE/MTT-S International Microwave Symposium, pp. 579-582. IEEE, (2007) A. D. Droitcour, T. B. Seto, B-K. Park, S. Yamada, A. Vergara, C. E. Hourani, T. Shing, A.Yuen, V. M. Lubecke, and O. Boric-Lubecke, Non-contact respiratory rate measurement validation for hospitalized patients, In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4812-4815. IEEE, (2009) C. Li, Y. Xiao and J. Lin, Design guidelines for radio frequency non-contact vital sign detection, In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1651-1654. IEEE, (2007) BakhtiariSLiaoSElmerTRaptisACA real-time heart rate analysis for a remote millimeter wave IQ sensorIEEE Transactions on Biomedical Engineering20115861839184510.1109/TBME.2011.2122335 Kao, T.Y.J. and Lin, J., 2013, April. Vital sign detection using 60-GHz Doppler radar system. In Wireless Symposium (IWS), 2013 I.E. International (pp. 1-4). IEEE. LiCLubeckeVMBoric-LubeckeOLinJA review on recent advances in Doppler radar sensors for noncontact healthcare monitoringIEEE Transactions on microwave theory and techniques20136152046206010.1109/TMTT.2013.2256924 RabbaniMSGhafouri-ShirazHSize improvement of rectangular microstrip patch antenna at MM-wave and terahertz frequenciesMicrowave and Optical Technology Letters20155711258525893710.1002/mop.29400 BrüserCAntinkCHWartzekTWalterMLeonhardtSAmbient and Unobtrusive Cardiorespiratory Monitoring TechniquesIEEE reviews in biomedical engineering20158304310.1109/RBME.2015.2414661 NHS. Online at: http://www.nhs.uk/chq/Pages/2024.aspx, accessed on July the 7th, 2016 GuCLiCLinJLongJHuangfuJRanLInstrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architectureIEEE Transactions on Instrumentation and Measurement20105961580158810.1109/TIM.2009.2028208 VillarroelMGuazziAJorgeJDavisSWatkinsonPGreenGShenviAMcCormickKTarassenkoLContinuous non-contact vital sign monitoring in neonatal intensive care unitHealthcare technology letters2014138710.1049/htl.2014.0077 C. Li and J. Lin, Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection, In Microwave Symposium Digest, 2008 I.E. MTT-S International, pp. 567-570. IEEE, (2008) M. Valipour, M. E. Banihabib and S. M. R. Behbahani, Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of hydrology,476, 2013, pp.433-441. UenoyamaMMatsuiTYamadaKSuzukiSTakaseBSuzukiSIshiharaMKawakamiMNon-contact respiratory monitoring system using a ceiling-attached microwave antennaMedical and Biological Engineering and Computing200644983584010.1007/s11517-006-0091-8 SuzukiSMatsuiTKawaharaHIchikiHShimizuJKondoYGotohSYuraHTakaseBIshiharaMA non-contact vital sign monitoring system for ambulances using dual-frequency microwave radarsMedical & biological engineering & computing200947110110510.1007/s11517-008-0408-x C. Li and J. Lin, Optimal carrier frequency of non-contact vital sign detectors, In 2007 I.E. Radio and Wireless Symposium, pp. 281-284. IEEE, (2007) H-C. Kuo, H-H. Wang, P-C. Wang, H-R. Chuang, and F-L. Lin, 60-GHz millimeter-wave life detection system with clutter canceller for remote human vital-signal sensing, In Microwave Workshop Series on Millimeter Wave Integration Technologies (IMWS), 2011 I.E. MTT-S International, pp. 93-96. IEEE, (2011) L. Sun, Y. Li, H. Hong, F. Xi, W. Cai, X. Zhu, Super-resolution spectral estimation in short-time non-contact vital sign measurement, Review of Scientific Instruments, 2015 Apr 1;86(4):044708 A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. E. N. S. H. A. N. Lin and G. T. A. Kovacs, Range correlation effect on ISM band I/Q CMOS radar for non-contact vital signs sensing, In Microwave Symposium Digest, 2003 I.E. MTT-S International, vol. 3, pp. 1945-1948. IEEE, (2003) 344_CR40 MS Rabbani (344_CR37) 2015; 57 D Obeid (344_CR42) 2010; 52 C Li (344_CR20) 2010; 59 344_CR25 344_CR47 344_CR26 344_CR23 344_CR45 S Suzuki (344_CR4) 2013; 6 344_CR24 344_CR46 344_CR21 344_CR43 S Suzuki (344_CR11) 2009; 47 344_CR44 M Uenoyama (344_CR5) 2006; 44 S Bakhtiari (344_CR33) 2012; 61 344_CR18 H-R Chuang (344_CR27) 2012; 12 M-C Huang (344_CR16) 2016; 10 344_CR19 344_CR38 344_CR17 344_CR39 L Ren (344_CR9) 2015; 25 T-M Shen (344_CR31) 2012; 11 C Li (344_CR13) 2008; 18 S Bakhtiari (344_CR34) 2011; 58 M Villarroel (344_CR3) 2014; 1 344_CR36 344_CR15 344_CR35 344_CR10 344_CR32 344_CR30 C Gu (344_CR41) 2010; 59 344_CR1 344_CR29 344_CR2 C Li (344_CR22) 2013; 61 344_CR28 C Brüser (344_CR12) 2015; 8 S Kazemi (344_CR14) 2016; 65 344_CR6 344_CR7 344_CR8 |
References_xml | – reference: LiCXiaoYLinJA 5GHz Double-Sideband Radar Sensor Chip in 0.18 m CMOS for Non-Contact Vital Sign DetectionIEEE Microwave and Wireless Components Letters2008187494496246819610.1109/LMWC.2008.925112 – reference: C. Li, Y. Xiao and J. Lin, Design guidelines for radio frequency non-contact vital sign detection, In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1651-1654. IEEE, (2007) – reference: RenLKooYSWangHWangYLiuQFathyAENoncontact Multiple Heartbeats Detection and Subject Localization Using UWB Impulse Doppler RadarIEEE Microwave and Wireless Components Letters2015251069069210.1109/LMWC.2015.2463214 – reference: H-C. Kuo and H-R. Chuang, Investigation of carrier frequency effect on detection performance of Doppler sensor systems for noncontact human vital-signs sensing, In 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1-4. IEEE, (2014) – reference: R. Bancroft, Microstrip and printed antenna design [electronic resource]. Raleigh, NC, SciTech Pub. (2009) – reference: ChuangH-RKuoH-CLinF-LHuangT-HKuoC-SOuY-W60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoringIEEE Sensors Journal201212360260910.1109/JSEN.2011.2118198 – reference: Analog Devices, MT-094: Microstrip and Stripline Design - Analog Devices, [Online] Available at: http://www.analog.com/static/imported-files/tutorials/MT-094.pdf, accessed on July the 7th, 2016 – reference: C. Li and J. Lin, Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection, In Microwave Symposium Digest, 2008 I.E. MTT-S International, pp. 567-570. IEEE, (2008) – reference: C. Li and J. Lin, Non-contact measurement of periodic movements by a 22-40GHz radar sensor using nonlinear phase modulation, In 2007 IEEE/MTT-S International Microwave Symposium, pp. 579-582. IEEE, (2007) – reference: BakhtiariSElmerTWCoxNMGopalsamiNRaptisACLiaoSMikhelsonISahakianAVCompact millimeter-wave sensor for remote monitoring of vital signsIEEE Transactions on Instrumentation and Measurement201261383084110.1109/TIM.2011.2171589 – reference: N. Birsan and D-P. Munteanu, Non-contact cardiopulmonary monitoring algorithm for a 24 GHz Doppler radar, In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3227-3230. IEEE, 2012 – reference: HuangM-CLiuJJXuWGuCLiCSarrafzadehMA self-calibrating radar sensor system for measuring vital signsIEEE transactions on biomedical circuits and systems201610235236310.1109/TBCAS.2015.2411732 – reference: Yang, Z., Pathak, P.H., Zeng, Y., Liran, X. and Mohapatra, P., Monitoring Vital Signs Using Millimeter Wave. DOI: http://dx.doi.org/10.1145/2942358.2942381 [Online] Available at: [http://www.phpathak.com/files/mmvital-mobihoc.pdf], accessed on October the 1th, 2016 – reference: RabbaniMSGhafouri-ShirazHSize improvement of rectangular microstrip patch antenna at MM-wave and terahertz frequenciesMicrowave and Optical Technology Letters20155711258525893710.1002/mop.29400 – reference: A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. E. N. S. H. A. N. Lin and G. T. A. Kovacs, Range correlation effect on ISM band I/Q CMOS radar for non-contact vital signs sensing, In Microwave Symposium Digest, 2003 I.E. MTT-S International, vol. 3, pp. 1945-1948. IEEE, (2003) – reference: M. S. Rabbani, and H. Ghafouri‐Shiraz, Improvement of Microstrip Patch Antenna Gain and Bandwidth at 60GHz and X Bands for Wireless Application, IET Microwaves, Antennas & Propagation, DOI: 10.1049/iet-map.2015.0672, 2016. – reference: VillarroelMGuazziAJorgeJDavisSWatkinsonPGreenGShenviAMcCormickKTarassenkoLContinuous non-contact vital sign monitoring in neonatal intensive care unitHealthcare technology letters2014138710.1049/htl.2014.0077 – reference: L. Sun, Y. Li, H. Hong, F. Xi, W. Cai, X. Zhu, Super-resolution spectral estimation in short-time non-contact vital sign measurement, Review of Scientific Instruments, 2015 Apr 1;86(4):044708 – reference: J. Gao, K. Li, T. Sato, J. Wang, H. Harada S. and Kato, January. Implementation considerations of patch antenna array for 60GHz beam steering system applications. In 2009 I.E. Radio and Wireless Symposium(pp. 35-38). IEEE, 2009 – reference: C. Li and J. Lin, Optimal carrier frequency of non-contact vital sign detectors, In 2007 I.E. Radio and Wireless Symposium, pp. 281-284. IEEE, (2007) – reference: A. D. Droitcour, T. B. Seto, B-K. Park, S. Yamada, A. Vergara, C. E. Hourani, T. Shing, A.Yuen, V. M. Lubecke, and O. Boric-Lubecke, Non-contact respiratory rate measurement validation for hospitalized patients, In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4812-4815. IEEE, (2009) – reference: Rahman, E. Yavari, X. Gao, V. Lubecke and O. Boric-Lubecke, Signal processing techniques for vital sign monitoring using mobile short range Doppler radar, In Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2015 I.E. Topical Conference on, pp. 1-3. IEEE, (2015) – reference: μm CMOS for non-contact vital sign detection, In 2009 I.E. Radio Frequency Integrated Circuits Symposium, pp. 97-100. IEEE, (2009) – reference: T-Y. J. Kao, A. Y-K. Chen, Y. Yan, T-M. Shen and J. Lin, A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections, In 2012 I.E. Radio Frequency Integrated Circuits Symposium, pp. 443-446. IEEE, (2012) – reference: T-Y. J. Kao, Y. Yan, T-M. Shen, A. Y-K. Chen and J. Lin, Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection, IEEE Transactions on Microwave Theory and Techniques 61, no. 4 (2013): 1649-1659 – reference: ObeidDSadekSZahariaGZeinGEMultitunable microwave system for touchless heartbeat detection and heart rate variability extractionMicrow. Opt. Technol. Lett.20105219219810.1002/mop.24877 – reference: M. Valipour, Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. Journal of Agricultural Science,4(12), 2012, p.125 – reference: BrüserCAntinkCHWartzekTWalterMLeonhardtSAmbient and Unobtrusive Cardiorespiratory Monitoring TechniquesIEEE reviews in biomedical engineering20158304310.1109/RBME.2015.2414661 – reference: KazemiSGhorbaniAAmindavarHMorganDRVital-Sign Extraction Using Bootstrap-Based Generalized Warblet Transform in Heart and Respiration Monitoring Radar SystemIEEE Transactions on Instrumentation and Measurement201665225526310.1109/TIM.2015.2482230 – reference: D. T. Petkie, C. Benton and E. Bryan, Millimeter wave radar for remote measurement of vital signs, (2009): 1. – reference: F. Adib, H. Mao, Z. Kabelac, D. Katabi and R. C. Miller, Smart homes that monitor breathing and heart rate, In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837-846. ACM, (2015) – reference: SuzukiSMatsuiTKagawaMAsaoTKotaniKAn approach to a non-contact vital sign monitoring using dual-frequency microwave radars for elderly careJournal of Biomedical Science and Engineering201360770410.4236/jbise.2013.67086 – reference: Kao, T.Y.J. and Lin, J., 2013, April. Vital sign detection using 60-GHz Doppler radar system. In Wireless Symposium (IWS), 2013 I.E. International (pp. 1-4). IEEE. – reference: LiCLubeckeVMBoric-LubeckeOLinJA review on recent advances in Doppler radar sensors for noncontact healthcare monitoringIEEE Transactions on microwave theory and techniques20136152046206010.1109/TMTT.2013.2256924 – reference: NHS. Online at: http://www.nhs.uk/chq/Pages/2024.aspx, accessed on July the 7th, 2016 – reference: UenoyamaMMatsuiTYamadaKSuzukiSTakaseBSuzukiSIshiharaMKawakamiMNon-contact respiratory monitoring system using a ceiling-attached microwave antennaMedical and Biological Engineering and Computing200644983584010.1007/s11517-006-0091-8 – reference: BakhtiariSLiaoSElmerTRaptisACA real-time heart rate analysis for a remote millimeter wave IQ sensorIEEE Transactions on Biomedical Engineering20115861839184510.1109/TBME.2011.2122335 – reference: LiCLingJLiJLinJAccurate Doppler radar noncontact vital sign detection using the RELAX algorithmIEEE Transactions on Instrumentation and Measurement201059368769510.1109/TIM.2009.2025986 – reference: ShenT-MKaoT-YJHuangT-YTuJLinJWuR-BAntenna design of 60-GHz micro-radar system-in-package for noncontact vital sign detectionIEEE Antennas and Wireless Propagation Letters2012111702170510.1109/LAWP.2013.2239957 – reference: M. Valipour, M. E. Banihabib and S. M. R. Behbahani, Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of hydrology,476, 2013, pp.433-441. – reference: D. Obeid, G. Zaharia, S. Sadek and G. El Zein, 2012. Microwave doppler radar for heartbeat detection vs electrocardiogram. Microwave and Optical Technology Letters, 54(11), pp.2610-2617. – reference: M. Valipour, Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorological Applications, 23(1), 2016, pp.91-100. – reference: SuzukiSMatsuiTKawaharaHIchikiHShimizuJKondoYGotohSYuraHTakaseBIshiharaMA non-contact vital sign monitoring system for ambulances using dual-frequency microwave radarsMedical & biological engineering & computing200947110110510.1007/s11517-008-0408-x – reference: GuCLiCLinJLongJHuangfuJRanLInstrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architectureIEEE Transactions on Instrumentation and Measurement20105961580158810.1109/TIM.2009.2028208 – reference: M. Valipour, M. A. G. Sefidkouhi and S. Eslamian, Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology, 5(1), 2015, pp.51-70. – reference: H-C. Kuo, H-H. Wang, P-C. Wang, H-R. Chuang, and F-L. Lin, 60-GHz millimeter-wave life detection system with clutter canceller for remote human vital-signal sensing, In Microwave Workshop Series on Millimeter Wave Integration Technologies (IMWS), 2011 I.E. MTT-S International, pp. 93-96. IEEE, (2011) – reference: C. Gu, Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors, 16(8), 2016, p.1169. – ident: 344_CR10 doi: 10.1145/2702123.2702200 – ident: 344_CR45 doi: 10.1504/IJHST.2015.069279 – ident: 344_CR43 doi: 10.1002/met.1533 – ident: 344_CR15 doi: 10.1109/MWSYM.2003.1210539 – ident: 344_CR21 doi: 10.1109/BIOWIRELESS.2015.7152126 – ident: 344_CR8 doi: 10.3390/s16081169 – ident: 344_CR25 doi: 10.1109/MWSYM.2007.380556 – ident: 344_CR40 doi: 10.1049/iet-map.2015.0672 – ident: 344_CR24 doi: 10.1109/RWS.2007.351823 – volume: 59 start-page: 1580 issue: 6 year: 2010 ident: 344_CR41 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2009.2028208 – ident: 344_CR47 – ident: 344_CR23 doi: 10.1109/RFIC.2012.6242318 – volume: 58 start-page: 1839 issue: 6 year: 2011 ident: 344_CR34 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2011.2122335 – ident: 344_CR6 doi: 10.1002/mop.27152 – volume: 10 start-page: 352 issue: 2 year: 2016 ident: 344_CR16 publication-title: IEEE transactions on biomedical circuits and systems doi: 10.1109/TBCAS.2015.2411732 – volume: 57 start-page: 2585 issue: 11 year: 2015 ident: 344_CR37 publication-title: Microwave and Optical Technology Letters doi: 10.1002/mop.29400 – volume: 1 start-page: 87 issue: 3 year: 2014 ident: 344_CR3 publication-title: Healthcare technology letters doi: 10.1049/htl.2014.0077 – volume: 47 start-page: 101 issue: 1 year: 2009 ident: 344_CR11 publication-title: Medical & biological engineering & computing doi: 10.1007/s11517-008-0408-x – ident: 344_CR35 doi: 10.1109/RADAR.2009.4977021 – ident: 344_CR38 doi: 10.1049/SBEW048E – volume: 18 start-page: 494 issue: 7 year: 2008 ident: 344_CR13 publication-title: IEEE Microwave and Wireless Components Letters doi: 10.1109/LMWC.2008.925112 – ident: 344_CR17 – ident: 344_CR2 doi: 10.1109/IEMBS.2009.5332635 – ident: 344_CR19 – ident: 344_CR28 doi: 10.1109/IMWS3.2011.6061896 – ident: 344_CR30 doi: 10.1109/TMTT.2013.2247620 – ident: 344_CR32 doi: 10.1109/RWS.2009.4957278 – ident: 344_CR29 doi: 10.1109/ISMICT.2014.6825209 – volume: 61 start-page: 830 issue: 3 year: 2012 ident: 344_CR33 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2011.2171589 – volume: 65 start-page: 255 issue: 2 year: 2016 ident: 344_CR14 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2015.2482230 – ident: 344_CR1 doi: 10.1063/1.4916954 – ident: 344_CR36 doi: 10.1145/2942358.2942381 – ident: 344_CR44 doi: 10.1016/j.jhydrol.2012.11.017 – volume: 61 start-page: 2046 issue: 5 year: 2013 ident: 344_CR22 publication-title: IEEE Transactions on microwave theory and techniques doi: 10.1109/TMTT.2013.2256924 – volume: 11 start-page: 1702 year: 2012 ident: 344_CR31 publication-title: IEEE Antennas and Wireless Propagation Letters doi: 10.1109/LAWP.2013.2239957 – volume: 12 start-page: 602 issue: 3 year: 2012 ident: 344_CR27 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2011.2118198 – ident: 344_CR46 doi: 10.5539/jas.v4n12p125 – volume: 8 start-page: 30 year: 2015 ident: 344_CR12 publication-title: IEEE reviews in biomedical engineering doi: 10.1109/RBME.2015.2414661 – volume: 44 start-page: 835 issue: 9 year: 2006 ident: 344_CR5 publication-title: Medical and Biological Engineering and Computing doi: 10.1007/s11517-006-0091-8 – volume: 59 start-page: 687 issue: 3 year: 2010 ident: 344_CR20 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2009.2025986 – ident: 344_CR26 doi: 10.1109/EMBC.2012.6346652 – ident: 344_CR18 doi: 10.1109/IEMBS.2007.4352624 – volume: 52 start-page: 192 year: 2010 ident: 344_CR42 publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.24877 – ident: 344_CR7 doi: 10.1109/IEEE-IWS.2013.6616776 – volume: 25 start-page: 690 issue: 10 year: 2015 ident: 344_CR9 publication-title: IEEE Microwave and Wireless Components Letters doi: 10.1109/LMWC.2015.2463214 – volume: 6 start-page: 704 issue: 07 year: 2013 ident: 344_CR4 publication-title: Journal of Biomedical Science and Engineering doi: 10.4236/jbise.2013.67086 – ident: 344_CR39 |
SSID | ssj0064496 |
Score | 2.2290936 |
Snippet | In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote... In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24–65.88 GHz) with improved gain and beam-width capabilities for remote... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 548 |
SubjectTerms | Antenna arrays Antenna design Classical Electrodynamics Doppler radar Electrical Engineering Electronics and Microelectronics Engineering Heart rate Instrumentation Patch antennas Radar beams Remote monitoring Respiration Signal transmission |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BjtMwELWgvXCBZQFRKGgOewJZpI3txKdVu-1Scaiqhe72Fjm2I5BWaUnDgX79ziQOFUj0nLET5dkzb8bjGcYuXBKrPNaOi7xIuZCR5amVmou40EUux9a3CbJLtViLLxu5CQG3fUir7HRio6jd1lKM_BOuO93UTleXu5-cukbR6WpoofGY9VEFp-h89afz5eqm08Vo7JsOXVTVjatUj7tzzfbyHCoCdKXRo46F4Ie_LdORbv5zQtoYnusz9jQwRpi0ED9nj3x5zp4F9ghhb-5fsGp9X1eG3_1wHlaoYL_DhNLTS4NDK_MbZk2uBpgaVASfFweYmtIBcla48YiXh1vqHwJfSajd6fQ9QIFamG3xdR4ljTMVrLoA_Uu2vp5_u1rw0FGB21jqGgGJVOTQcAkrksIWaOCpIZUfo6PqfC4TJ1SutDY-dSNjvBs5bZ3xiTNEvEz8ivXKbelfM_DNtVYkDEmiRBqjHA6ThZKWasorOWBR9zczG8qNU9eL--xYKJkAyCjFjADIDgP24c-QXVtr45TwsIMoC9tunx0XyYB97GA7Pv7vZG9OT_aWPRmTNW_yHIesV1e__DvkInX-Piy4B84f2Xo priority: 102 providerName: ProQuest |
Title | Ultra-Wide Patch Antenna Array Design at 60 GHz Band for Remote Vital Sign Monitoring with Doppler Radar Principle |
URI | https://link.springer.com/article/10.1007/s10762-016-0344-z https://www.proquest.com/docview/2259620456 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW1wfSw6elEBtk7Q5rus-UJBFXR-nkiYpCkuV3Xpwf42_xV_mpNu6Kip4KrSTKWQyr2TyDcC-CQORBNJQlqQRZdzTNNJcUhakMk24r-2kQPZcdPvs9Jbflve4R1W1e3UkWVjqT5fdUHEx9cUMOGCMjmdhnrvUHRdx329U5hf9e9GUywG5URFJvzrK_InFV2c0jTC_HYoWvqa9AktlkEgaE6muwozN1mC5DBhJqY6jNVj8hCa4DqP-IB8qevNgLOmhhb0nDVefnilkNFQv5KQo1iAqJ8J7e-10x-RYZYZg1EouLErMkmvXQYRcOqqJrjvGxG3VkpNH_LtFSmXUkPSqLfoN6LdbV80uLXsqUB1wmaNIPOEZdF1MszDVKbp415LK-piqGpvw0DCRCCmVjcyRUtYcGamNsqFRLvRSwSbMZY-Z3QJii4utGDKEoWBRgHQ4jKeCa4cqL3gNvGpyY10Cjru-F4N4CpXs5BG7IjMnj3hcg4OPIU8TtI2_iHcricWl4o1iNE-ygNgXNTispDj9_Cuz7X9R78CC79x7Ufi4C3P58NnuYXCSJ3WYjdqdOsw3OndnLXwet857F_i2KZr1YqG-A1LZ39o |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8SWAj7ABWSRxo_EB4QKy3ZLS1VBF3oLju2ISlW2ZINQ90fxG5lJYlYg0VvPGTuWZ_z5s2c8A_DUZ0KXwnguyyrnUiWO504ZLkVlqlKlLvQBsgd6OpPvj9XxGvyKb2EorDJiYgfUfu7ojvwl2p3pcqfr12ffOVWNIu9qLKHRm8VeOP-JR7bFq90x6vdZmk7eHb2d8qGqAHdCmRYHlejEI3hLJ7PKVbjJUVGmkOJhzYdSZV7qUhtjQ-63rA1-yxvnbci8JfJhBfZ7Ba5KIQytqHyyE5EfqUVXD4xyyHGdmzR6Ufunegg7eHDH87uQki__3gdX5PYff2y3zU1uwY2Bn7Lt3qBuw1qo78DNgauyAQkWd6GZnbaN5V9OfGCHCOff2DYFw9cWmzb2nI27yBBmW6YTtjNdsje29gwZMvsY0DoC-0zVStgnEupxhcbD6FqYjef4u4CS1tuGHUZ3wD2YXcpM34f1el6HB8BC94gW6UmWaZkLlMNmqtLKUQZ7rUaQxNks3JDcnGpsnBartMykgIIC2kgBxXIEz_80Oesze1wkvBlVVAyLfFGsTHIEL6LaVp__29nGxZ09gWvTow_7xf7uwd5DuJ4Sj-giLDdhvW1-hEfIgtrycWd6DL5etq3_BsDYFdE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOvBHjmQMnUERZk7Q5wsYYD6EJGHCr0iQVSKigrRzYr-G38Mtw-mCAAIlzXVftV8d27HwG2DKBL2JfGsriJKSMe5qGmkvK_EQmMa9rWzTInot2l53c8ttyzmm_6navSpLFmQbH0pRmu08m2f108A2NGNNgzIZ9xuhgFMYxUcnrtA3RqJZi9PX5gC5H6kZFKOtVWfMnFV8d0zDa_FYgzf1Oaxamy4CR7BcIz8GITedhpgweSWma_XmY-sQsuAD97kPWU_Tm3ljSwdX2juy790sVKuqpF9LMGzeIyojw3l6P2gNyoFJDMIIlFxbRs-TaTRMhl06qsHunmLhtW9J8xKdblFRG9Uin2q5fhG7r8KrRpuV8Bap9LjOExxOeQTfGNAsSnaC7d-OpbB3TVmNjHhgmYiGlsqHZU8qaPSO1UTYwyoVhyl-CsfQxtctAbH7IFcOHIBAs9FEOb-OJ4NoxzAteA6_6uJEuycfdDIyHaEib7PCIXMOZwyMa1GD745angnnjL-G1CrGoNMJ-hEuVzOn2RQ12KhSHl39VtvIv6U2Y6DRb0dnx-ekqTNad18_7IddgLOs923WMWbJ4I_8v3wFmVeIC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Wide+Patch+Antenna+Array+Design+at+60%C2%A0GHz+Band+for+Remote+Vital+Sign+Monitoring+with+Doppler+Radar+Principle&rft.jtitle=Journal+of+infrared%2C+millimeter+and+terahertz+waves&rft.au=Rabbani%2C+Muhammad+Saqib&rft.au=Ghafouri-Shiraz%2C+Hooshang&rft.date=2017-05-01&rft.issn=1866-6892&rft.eissn=1866-6906&rft.volume=38&rft.issue=5&rft.spage=548&rft.epage=566&rft_id=info:doi/10.1007%2Fs10762-016-0344-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10762_016_0344_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6892&client=summon |