Track and Noise Separation Based on the Universal Codebook and Enhanced Speech Recognition Using Hybrid Deep Learning Method

The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training data by creating robust algorithms. It is also possible to separate the noise from original speech as well as the separation of tracks in pa...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 120707 - 120720
Main Authors Kumer, S. V. Aswin, Gogu, Lakshmi Bharath, Mohan, E., Maloji, Suman, Natarajan, Balaji, Sambasivam, G., Tyagi, Vaibhav Bhushan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training data by creating robust algorithms. It is also possible to separate the noise from original speech as well as the separation of tracks in particular audio signal with the help of machine learning algorithms. In this paper, the implementation is applicable for voice assistant to separate the tracks and the noises from the multiple original audio which reproduces simultaneously using the speech enhancement and universal code book. For that, the Hybrid Deep Learning Algorithm has been developed and the training data sets are also created and achieve the accuracy in the speech recognition for the variety of voice assistants. Most of the time, the voice assistant recognizes the voice with noises and musical audio which results in the malfunction of devices which can be controlled by the same voice assistant. The Generative adversarial networks from Deep learning and the blind source separation method from multi-channel model are combined to form this proposed hybrid deep learning model.
AbstractList The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training data by creating robust algorithms. It is also possible to separate the noise from original speech as well as the separation of tracks in particular audio signal with the help of machine learning algorithms. In this paper, the implementation is applicable for voice assistant to separate the tracks and the noises from the multiple original audio which reproduces simultaneously using the speech enhancement and universal code book. For that, the Hybrid Deep Learning Algorithm has been developed and the training data sets are also created and achieve the accuracy in the speech recognition for the variety of voice assistants. Most of the time, the voice assistant recognizes the voice with noises and musical audio which results in the malfunction of devices which can be controlled by the same voice assistant. The Generative adversarial networks from Deep learning and the blind source separation method from multi-channel model are combined to form this proposed hybrid deep learning model.
Author Mohan, E.
Natarajan, Balaji
Gogu, Lakshmi Bharath
Kumer, S. V. Aswin
Maloji, Suman
Sambasivam, G.
Tyagi, Vaibhav Bhushan
Author_xml – sequence: 1
  givenname: S. V. Aswin
  orcidid: 0000-0002-0511-3085
  surname: Kumer
  fullname: Kumer, S. V. Aswin
  organization: Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
– sequence: 2
  givenname: Lakshmi Bharath
  surname: Gogu
  fullname: Gogu, Lakshmi Bharath
  organization: Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
– sequence: 3
  givenname: E.
  orcidid: 0000-0001-7362-6993
  surname: Mohan
  fullname: Mohan, E.
  organization: Department of ECE, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
– sequence: 4
  givenname: Suman
  surname: Maloji
  fullname: Maloji, Suman
  organization: Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
– sequence: 5
  givenname: Balaji
  orcidid: 0000-0003-0040-9271
  surname: Natarajan
  fullname: Natarajan, Balaji
  organization: Department of Computer Science and Engineering, Sri Venkateshwaraa College of Engineering and Technology, Ariyur, Puducherry, India
– sequence: 6
  givenname: G.
  orcidid: 0000-0002-7407-4796
  surname: Sambasivam
  fullname: Sambasivam, G.
  organization: School of Computing and Data Science, Xiamen University Malaysia, Sepang, Selangor, Malaysia
– sequence: 7
  givenname: Vaibhav Bhushan
  orcidid: 0000-0001-8153-3607
  surname: Tyagi
  fullname: Tyagi, Vaibhav Bhushan
  email: tyagi.fict@isbatuniversity.com
  organization: Faculty of Engineering, ISBAT University, Kampala, Uganda
BookMark eNpNkU9vEzEQxS1UJErpJ4CDJc5Jvfb637EsgVYKIJHmbM16ZxOHYC_2FqkSH76bboU6lxk9ze_NSO8tOYspIiHvK7asKmavrptmtdksOeNiKQQ3nJlX5JxXyi6EFOrsxfyGXJZyYFOZSZL6nPy7y-B_UYgd_Z5CQbrBATKMIUX6CQp2dBrGPdJtDH8xFzjSJnXYpjRDq7iH6Ke1zYDo9_Qn-rSL4YnflhB39OahzaGjnxEHukbI8SR-w3GfunfkdQ_HgpfP_YJsv6zumpvF-sfX2-Z6vfBC2nFRG8-1MVZXXvRCo1SqlVJXWtVcVbwHDdoKDr01sgdsrfceZAtWA4BgWlyQ29m3S3BwQw6_IT-4BME9CSnvHOQx-CM64blsW1aznvV1VyvodD8pimkFLYKZvD7OXkNOf-6xjO6Q7nOc3nfcGKlkZevTRTFv-ZxKydj_v1oxd0rNzam5U2ruObWJ-jBTARFfENwazo14BL4LlSk
CODEN IAECCG
Cites_doi 10.23919/APSIPAASC55919.2022.9979953
10.1109/IWAENC.2018.8521278
10.1109/TASLP.2022.3145304
10.1109/TSIPN.2022.3183498
10.1109/TASLP.2023.3275033
10.1109/ASRU51503.2021.9688310
10.1109/ICASSP.2016.7472675
10.1109/ECCE57851.2023.10101546
10.1109/TASLP.2023.3250846
10.1109/WASPAA.2019.8937250
10.1109/LSP.2021.3134939
10.1016/j.procs.2015.06.066
10.1109/ICSPCC.2015.7338795
10.1109/ICSPCC.2017.8242542
10.1109/ICASSP.2017.7953225
10.1109/TASLP.2022.3231700
10.1109/ACCESS.2023.3250820
10.1109/TSA.2005.854113
10.1109/TSP.2023.3255552
10.1109/IECBES.2016.7843458
10.1109/ICASSP.2015.7177963
10.1109/LSP.2023.3264570
10.1109/TASLP.2020.2997118
10.1109/ICASSP43922.2022.9746902
10.1109/TASLP.2023.3265202
10.1109/TASLP.2015.2450491
10.1109/TASLP.2022.3205757
10.1109/ICASSP.2017.8005295
10.1109/TASLP.2022.3225649
10.1109/TASLP.2020.3036783
10.1109/TASLP.2023.3260711
10.1109/ACCESS.2022.3150248
10.1109/TASLP.2019.2941592
10.1109/TASLP.2019.2937174
10.1109/ACCESS.2023.3236242
10.1109/IWAENC.2018.8521410
10.1016/0167-6393(93)90095-3
10.1109/ICASSP.2016.7471631
10.1016/j.csl.2016.11.005
10.1109/ICASSP43922.2022.9746609
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3328208
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 120720
ExternalDocumentID oai_doaj_org_article_3c25bb040f0f4d46ad7f25b6076abea8
10_1109_ACCESS_2023_3328208
10298228
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-48c2788971c3f37e566b55717642612fa7a7932af985faeb9ccca5ba97aaa3073
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:16:11 EDT 2024
Thu Oct 10 19:06:18 EDT 2024
Fri Aug 23 01:01:44 EDT 2024
Mon Nov 04 11:48:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-48c2788971c3f37e566b55717642612fa7a7932af985faeb9ccca5ba97aaa3073
ORCID 0000-0002-0511-3085
0000-0001-7362-6993
0000-0002-7407-4796
0000-0003-0040-9271
0000-0001-8153-3607
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10298228
PQID 2885651947
PQPubID 4845423
PageCount 14
ParticipantIDs ieee_primary_10298228
doaj_primary_oai_doaj_org_article_3c25bb040f0f4d46ad7f25b6076abea8
proquest_journals_2885651947
crossref_primary_10_1109_ACCESS_2023_3328208
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref40
  doi: 10.23919/APSIPAASC55919.2022.9979953
– ident: ref8
  doi: 10.1109/IWAENC.2018.8521278
– ident: ref35
  doi: 10.1109/TASLP.2022.3145304
– ident: ref34
  doi: 10.1109/TSIPN.2022.3183498
– ident: ref22
  doi: 10.1109/TASLP.2023.3275033
– ident: ref19
  doi: 10.1109/ASRU51503.2021.9688310
– ident: ref3
  doi: 10.1109/ICASSP.2016.7472675
– ident: ref21
  doi: 10.1109/ECCE57851.2023.10101546
– ident: ref28
  doi: 10.1109/TASLP.2023.3250846
– ident: ref2
  doi: 10.1109/WASPAA.2019.8937250
– ident: ref36
  doi: 10.1109/LSP.2021.3134939
– ident: ref14
  doi: 10.1016/j.procs.2015.06.066
– ident: ref11
  doi: 10.1109/ICSPCC.2015.7338795
– ident: ref5
  doi: 10.1109/ICSPCC.2017.8242542
– ident: ref12
  doi: 10.1109/ICASSP.2017.7953225
– ident: ref26
  doi: 10.1109/TASLP.2022.3231700
– ident: ref25
  doi: 10.1109/ACCESS.2023.3250820
– ident: ref15
  doi: 10.1109/TSA.2005.854113
– ident: ref37
  doi: 10.1109/TSP.2023.3255552
– ident: ref13
  doi: 10.1109/IECBES.2016.7843458
– ident: ref9
  doi: 10.1109/ICASSP.2015.7177963
– ident: ref38
  doi: 10.1109/LSP.2023.3264570
– ident: ref10
  doi: 10.1109/TASLP.2020.2997118
– ident: ref18
  doi: 10.1109/ICASSP43922.2022.9746902
– ident: ref27
  doi: 10.1109/TASLP.2023.3265202
– ident: ref4
  doi: 10.1109/TASLP.2015.2450491
– ident: ref29
  doi: 10.1109/TASLP.2022.3205757
– ident: ref7
  doi: 10.1109/ICASSP.2017.8005295
– ident: ref30
  doi: 10.1109/TASLP.2022.3225649
– ident: ref16
  doi: 10.1109/TASLP.2020.3036783
– ident: ref23
  doi: 10.1109/TASLP.2023.3260711
– ident: ref39
  doi: 10.1109/ACCESS.2022.3150248
– ident: ref6
  doi: 10.1109/TASLP.2019.2941592
– ident: ref1
  doi: 10.1109/TASLP.2019.2937174
– ident: ref24
  doi: 10.1109/ACCESS.2023.3236242
– ident: ref17
  doi: 10.1109/IWAENC.2018.8521410
– ident: ref32
  doi: 10.1016/0167-6393(93)90095-3
– ident: ref33
  doi: 10.1109/ICASSP.2016.7471631
– ident: ref31
  doi: 10.1016/j.csl.2016.11.005
– ident: ref20
  doi: 10.1109/ICASSP43922.2022.9746609
SSID ssj0000816957
Score 2.3228235
Snippet The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 120707
SubjectTerms Algorithms
Blind source separation
Blind source separation (BSS) method
Codes
Deep learning
deep learning method
Generative adversarial networks
generative adversarial networks (GAN)
Machine learning
multi-channel method
Noise measurement
noise separation
Speech coding
Speech enhancement
Speech processing
Speech recognition
Task analysis
track separation
voice assistant
Voice recognition
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YSUmTOI7HtrSqkNqBUqmb5ScgpLSCMiDx4zk_iiIxsLBFTpzEvrPvPvv8HULXlTWONguQKlE0KUxRJLKX6oSpwA9HUunWO6azcrIo7pdk2Uj15WLCAj1w6LjbXGVESlA1m9pCF6XQ1EJJCfhbSCPCMd-UNcCUn4OrXskIjTRDcP-2PxxCi7ouW3g3zwFouISSDVPkGftjipVf87I3NuMDtB-9RNwPf3eIdkx9hPYa3IHH6AusjHrFotZ4tnp5N3huAo33qsYDME0awwV4dziGXsDrhivt90Z9pVH97Df_8XxtjHrGD9tIIqjm4wjw5NOd5sJ3xqxxpGF9wlOfcbqNFuPR43CSxFQKicoJ2yRFpTIAu4z2VG5zasCJk4QAlCsdhMqsoAIGaiYsq4gVRjIFkiVSMCqEcNPACWrVq9qcIsxyZXWpqVCVdVIRJhVEy1SBMwLeRtpBN9te5evAmME90kgZD0LgTgg8CqGDBq7nfx51dNe-AJSARyXgfylBB7Wd3BrfyxwvIZRfbAXJ49h851lVgRfbYwU9-49vn6Nd156wLHOBWpu3D3MJjspGXnmd_AZjXOOG
  priority: 102
  providerName: Directory of Open Access Journals
Title Track and Noise Separation Based on the Universal Codebook and Enhanced Speech Recognition Using Hybrid Deep Learning Method
URI https://ieeexplore.ieee.org/document/10298228
https://www.proquest.com/docview/2885651947
https://doaj.org/article/3c25bb040f0f4d46ad7f25b6076abea8
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgBYrYUiofOJLgTew4PrbbViuk7oFSqTfLjzFFlZIV3T1Q9cczfmy1AiFxi6z4kcyMPTOe-YaQj32ACJuFlqpwsuLAeWWnzFfKZXw4wWz0d1wuuvk1_3IjbkqyesqFAYAUfAZ1fEx3-X506-gqQwlvItxcv0N2pFI5WevJoRIrSCghC7LQlKnPJ7MZfkQdC4TXbYu2RawhuXX6JJD-UlXlr604nS8Xe2SxWVkOK7mr1ytbu4c_QBv_e-n75GXRNOlJZo1X5BkMr8mLLfzBN-QRTyp3R83g6WL8cQ_0CjIU-DjQUzzePMUH1BBpCd_A4WajT_erqdP5cJsCCOjVEsDd0q-baCTslmIR6PxXzAijZwBLWqBcv9PLVLX6gFxfnH-bzatSjqFyrVCriveuQYNZyalrQysBFUErBJqDXTTDmmCkQWFvTFC9CAascsgdwholjTFxK3lLdodxgHeEqtYF33lpXB84C8wAM8Jb5lChwb_EJuTThkx6mVE3dLJWmNKZqjpSVReqTshpJOXTqxEyOzUgCXSRQN26RljL4nSBe94ZLwO2dEx2xoLBQQ4i2bbmyxSbkKMNZ-gi3_e66XvUhKeKy8N_dHtPnsclZm_NEdld_VzDB9RfVvY42f3HiXt_A7lz7dc
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoOdAeeLZioYAPHEnwJnYcH9ul1QLdPdBW6s3yY9yiSsmq3T2A-PGMHW-1AiFxi6z4kcyMPTOe-YaQ922ACJuFlqpwsuDAeWHHzBfKDfhwgtno75jNm-kF_3IpLnOyesqFAYAUfAZlfEx3-b53q-gqQwmvItxcu0UeomLdNkO61r1LJdaQUEJmbKExUx8PJxP8jDKWCC_rGq2LWEVy4_xJMP25rspfm3E6YU6ekPl6bUNgyU25WtrS_fwDtvG_F_-UPM66Jj0cmOMZeQDdc7K7gUD4gvzCs8rdUNN5Ou-_3wE9gwEMvO_oER5wnuID6og0B3DgcJPepxvW1Om4u04hBPRsAeCu6bd1PBJ2S9EIdPoj5oTRTwALmsFcr-gs1a3eIxcnx-eTaZELMhSuFmpZ8NZVaDIrOXZ1qCWgKmiFQIOwiYZYFYw0KO6VCaoVwYBVDvlDWKOkMSZuJvtku-s7eEmoql3wjZfGtYGzwAwwI7xlDlUa_EtsRD6syaQXA-6GTvYKU3qgqo5U1ZmqI3IUSXn_agTNTg1IAp1lUNeuEtayOF3gnjfGy4AtDZONsWBwkL1Ito35BoqNyMGaM3SW8DtdtS3qwmPF5at_dHtHHk3PZ6f69PP862uyE5c7-G4OyPbydgVvUJtZ2reJh38DrVLwLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Track+and+Noise+Separation+Based+on+the+Universal+Codebook+and+Enhanced+Speech+Recognition+Using+Hybrid+Deep+Learning+Method&rft.jtitle=IEEE+access&rft.au=Kumer%2C+S.+V.+Aswin&rft.au=Gogu%2C+Lakshmi+Bharath&rft.au=Mohan%2C+E.&rft.au=Maloji%2C+Suman&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=120707&rft.epage=120720&rft_id=info:doi/10.1109%2FACCESS.2023.3328208&rft.externalDocID=10298228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon