Track and Noise Separation Based on the Universal Codebook and Enhanced Speech Recognition Using Hybrid Deep Learning Method
The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training data by creating robust algorithms. It is also possible to separate the noise from original speech as well as the separation of tracks in pa...
Saved in:
Published in | IEEE access Vol. 11; pp. 120707 - 120720 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training data by creating robust algorithms. It is also possible to separate the noise from original speech as well as the separation of tracks in particular audio signal with the help of machine learning algorithms. In this paper, the implementation is applicable for voice assistant to separate the tracks and the noises from the multiple original audio which reproduces simultaneously using the speech enhancement and universal code book. For that, the Hybrid Deep Learning Algorithm has been developed and the training data sets are also created and achieve the accuracy in the speech recognition for the variety of voice assistants. Most of the time, the voice assistant recognizes the voice with noises and musical audio which results in the malfunction of devices which can be controlled by the same voice assistant. The Generative adversarial networks from Deep learning and the blind source separation method from multi-channel model are combined to form this proposed hybrid deep learning model. |
---|---|
AbstractList | The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training data by creating robust algorithms. It is also possible to separate the noise from original speech as well as the separation of tracks in particular audio signal with the help of machine learning algorithms. In this paper, the implementation is applicable for voice assistant to separate the tracks and the noises from the multiple original audio which reproduces simultaneously using the speech enhancement and universal code book. For that, the Hybrid Deep Learning Algorithm has been developed and the training data sets are also created and achieve the accuracy in the speech recognition for the variety of voice assistants. Most of the time, the voice assistant recognizes the voice with noises and musical audio which results in the malfunction of devices which can be controlled by the same voice assistant. The Generative adversarial networks from Deep learning and the blind source separation method from multi-channel model are combined to form this proposed hybrid deep learning model. |
Author | Mohan, E. Natarajan, Balaji Gogu, Lakshmi Bharath Kumer, S. V. Aswin Maloji, Suman Sambasivam, G. Tyagi, Vaibhav Bhushan |
Author_xml | – sequence: 1 givenname: S. V. Aswin orcidid: 0000-0002-0511-3085 surname: Kumer fullname: Kumer, S. V. Aswin organization: Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India – sequence: 2 givenname: Lakshmi Bharath surname: Gogu fullname: Gogu, Lakshmi Bharath organization: Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India – sequence: 3 givenname: E. orcidid: 0000-0001-7362-6993 surname: Mohan fullname: Mohan, E. organization: Department of ECE, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India – sequence: 4 givenname: Suman surname: Maloji fullname: Maloji, Suman organization: Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India – sequence: 5 givenname: Balaji orcidid: 0000-0003-0040-9271 surname: Natarajan fullname: Natarajan, Balaji organization: Department of Computer Science and Engineering, Sri Venkateshwaraa College of Engineering and Technology, Ariyur, Puducherry, India – sequence: 6 givenname: G. orcidid: 0000-0002-7407-4796 surname: Sambasivam fullname: Sambasivam, G. organization: School of Computing and Data Science, Xiamen University Malaysia, Sepang, Selangor, Malaysia – sequence: 7 givenname: Vaibhav Bhushan orcidid: 0000-0001-8153-3607 surname: Tyagi fullname: Tyagi, Vaibhav Bhushan email: tyagi.fict@isbatuniversity.com organization: Faculty of Engineering, ISBAT University, Kampala, Uganda |
BookMark | eNpNkU9vEzEQxS1UJErpJ4CDJc5Jvfb637EsgVYKIJHmbM16ZxOHYC_2FqkSH76bboU6lxk9ze_NSO8tOYspIiHvK7asKmavrptmtdksOeNiKQQ3nJlX5JxXyi6EFOrsxfyGXJZyYFOZSZL6nPy7y-B_UYgd_Z5CQbrBATKMIUX6CQp2dBrGPdJtDH8xFzjSJnXYpjRDq7iH6Ke1zYDo9_Qn-rSL4YnflhB39OahzaGjnxEHukbI8SR-w3GfunfkdQ_HgpfP_YJsv6zumpvF-sfX2-Z6vfBC2nFRG8-1MVZXXvRCo1SqlVJXWtVcVbwHDdoKDr01sgdsrfceZAtWA4BgWlyQ29m3S3BwQw6_IT-4BME9CSnvHOQx-CM64blsW1aznvV1VyvodD8pimkFLYKZvD7OXkNOf-6xjO6Q7nOc3nfcGKlkZevTRTFv-ZxKydj_v1oxd0rNzam5U2ruObWJ-jBTARFfENwazo14BL4LlSk |
CODEN | IAECCG |
Cites_doi | 10.23919/APSIPAASC55919.2022.9979953 10.1109/IWAENC.2018.8521278 10.1109/TASLP.2022.3145304 10.1109/TSIPN.2022.3183498 10.1109/TASLP.2023.3275033 10.1109/ASRU51503.2021.9688310 10.1109/ICASSP.2016.7472675 10.1109/ECCE57851.2023.10101546 10.1109/TASLP.2023.3250846 10.1109/WASPAA.2019.8937250 10.1109/LSP.2021.3134939 10.1016/j.procs.2015.06.066 10.1109/ICSPCC.2015.7338795 10.1109/ICSPCC.2017.8242542 10.1109/ICASSP.2017.7953225 10.1109/TASLP.2022.3231700 10.1109/ACCESS.2023.3250820 10.1109/TSA.2005.854113 10.1109/TSP.2023.3255552 10.1109/IECBES.2016.7843458 10.1109/ICASSP.2015.7177963 10.1109/LSP.2023.3264570 10.1109/TASLP.2020.2997118 10.1109/ICASSP43922.2022.9746902 10.1109/TASLP.2023.3265202 10.1109/TASLP.2015.2450491 10.1109/TASLP.2022.3205757 10.1109/ICASSP.2017.8005295 10.1109/TASLP.2022.3225649 10.1109/TASLP.2020.3036783 10.1109/TASLP.2023.3260711 10.1109/ACCESS.2022.3150248 10.1109/TASLP.2019.2941592 10.1109/TASLP.2019.2937174 10.1109/ACCESS.2023.3236242 10.1109/IWAENC.2018.8521410 10.1016/0167-6393(93)90095-3 10.1109/ICASSP.2016.7471631 10.1016/j.csl.2016.11.005 10.1109/ICASSP43922.2022.9746609 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3328208 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 120720 |
ExternalDocumentID | oai_doaj_org_article_3c25bb040f0f4d46ad7f25b6076abea8 10_1109_ACCESS_2023_3328208 10298228 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-48c2788971c3f37e566b55717642612fa7a7932af985faeb9ccca5ba97aaa3073 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:16:11 EDT 2024 Thu Oct 10 19:06:18 EDT 2024 Fri Aug 23 01:01:44 EDT 2024 Mon Nov 04 11:48:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-48c2788971c3f37e566b55717642612fa7a7932af985faeb9ccca5ba97aaa3073 |
ORCID | 0000-0002-0511-3085 0000-0001-7362-6993 0000-0002-7407-4796 0000-0003-0040-9271 0000-0001-8153-3607 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10298228 |
PQID | 2885651947 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10298228 doaj_primary_oai_doaj_org_article_3c25bb040f0f4d46ad7f25b6076abea8 proquest_journals_2885651947 crossref_primary_10_1109_ACCESS_2023_3328208 |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref40 doi: 10.23919/APSIPAASC55919.2022.9979953 – ident: ref8 doi: 10.1109/IWAENC.2018.8521278 – ident: ref35 doi: 10.1109/TASLP.2022.3145304 – ident: ref34 doi: 10.1109/TSIPN.2022.3183498 – ident: ref22 doi: 10.1109/TASLP.2023.3275033 – ident: ref19 doi: 10.1109/ASRU51503.2021.9688310 – ident: ref3 doi: 10.1109/ICASSP.2016.7472675 – ident: ref21 doi: 10.1109/ECCE57851.2023.10101546 – ident: ref28 doi: 10.1109/TASLP.2023.3250846 – ident: ref2 doi: 10.1109/WASPAA.2019.8937250 – ident: ref36 doi: 10.1109/LSP.2021.3134939 – ident: ref14 doi: 10.1016/j.procs.2015.06.066 – ident: ref11 doi: 10.1109/ICSPCC.2015.7338795 – ident: ref5 doi: 10.1109/ICSPCC.2017.8242542 – ident: ref12 doi: 10.1109/ICASSP.2017.7953225 – ident: ref26 doi: 10.1109/TASLP.2022.3231700 – ident: ref25 doi: 10.1109/ACCESS.2023.3250820 – ident: ref15 doi: 10.1109/TSA.2005.854113 – ident: ref37 doi: 10.1109/TSP.2023.3255552 – ident: ref13 doi: 10.1109/IECBES.2016.7843458 – ident: ref9 doi: 10.1109/ICASSP.2015.7177963 – ident: ref38 doi: 10.1109/LSP.2023.3264570 – ident: ref10 doi: 10.1109/TASLP.2020.2997118 – ident: ref18 doi: 10.1109/ICASSP43922.2022.9746902 – ident: ref27 doi: 10.1109/TASLP.2023.3265202 – ident: ref4 doi: 10.1109/TASLP.2015.2450491 – ident: ref29 doi: 10.1109/TASLP.2022.3205757 – ident: ref7 doi: 10.1109/ICASSP.2017.8005295 – ident: ref30 doi: 10.1109/TASLP.2022.3225649 – ident: ref16 doi: 10.1109/TASLP.2020.3036783 – ident: ref23 doi: 10.1109/TASLP.2023.3260711 – ident: ref39 doi: 10.1109/ACCESS.2022.3150248 – ident: ref6 doi: 10.1109/TASLP.2019.2941592 – ident: ref1 doi: 10.1109/TASLP.2019.2937174 – ident: ref24 doi: 10.1109/ACCESS.2023.3236242 – ident: ref17 doi: 10.1109/IWAENC.2018.8521410 – ident: ref32 doi: 10.1016/0167-6393(93)90095-3 – ident: ref33 doi: 10.1109/ICASSP.2016.7471631 – ident: ref31 doi: 10.1016/j.csl.2016.11.005 – ident: ref20 doi: 10.1109/ICASSP43922.2022.9746609 |
SSID | ssj0000816957 |
Score | 2.3228235 |
Snippet | The concept of Deep learning is a part of machine learning which is very useful nowadays to achieve accurate voice and speech recognition based on the training... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 120707 |
SubjectTerms | Algorithms Blind source separation Blind source separation (BSS) method Codes Deep learning deep learning method Generative adversarial networks generative adversarial networks (GAN) Machine learning multi-channel method Noise measurement noise separation Speech coding Speech enhancement Speech processing Speech recognition Task analysis track separation voice assistant Voice recognition |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YSUmTOI7HtrSqkNqBUqmb5ScgpLSCMiDx4zk_iiIxsLBFTpzEvrPvPvv8HULXlTWONguQKlE0KUxRJLKX6oSpwA9HUunWO6azcrIo7pdk2Uj15WLCAj1w6LjbXGVESlA1m9pCF6XQ1EJJCfhbSCPCMd-UNcCUn4OrXskIjTRDcP-2PxxCi7ouW3g3zwFouISSDVPkGftjipVf87I3NuMDtB-9RNwPf3eIdkx9hPYa3IHH6AusjHrFotZ4tnp5N3huAo33qsYDME0awwV4dziGXsDrhivt90Z9pVH97Df_8XxtjHrGD9tIIqjm4wjw5NOd5sJ3xqxxpGF9wlOfcbqNFuPR43CSxFQKicoJ2yRFpTIAu4z2VG5zasCJk4QAlCsdhMqsoAIGaiYsq4gVRjIFkiVSMCqEcNPACWrVq9qcIsxyZXWpqVCVdVIRJhVEy1SBMwLeRtpBN9te5evAmME90kgZD0LgTgg8CqGDBq7nfx51dNe-AJSARyXgfylBB7Wd3BrfyxwvIZRfbAXJ49h851lVgRfbYwU9-49vn6Nd156wLHOBWpu3D3MJjspGXnmd_AZjXOOG priority: 102 providerName: Directory of Open Access Journals |
Title | Track and Noise Separation Based on the Universal Codebook and Enhanced Speech Recognition Using Hybrid Deep Learning Method |
URI | https://ieeexplore.ieee.org/document/10298228 https://www.proquest.com/docview/2885651947 https://doaj.org/article/3c25bb040f0f4d46ad7f25b6076abea8 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgBYrYUiofOJLgTew4PrbbViuk7oFSqTfLjzFFlZIV3T1Q9cczfmy1AiFxi6z4kcyMPTOe-YaQj32ACJuFlqpwsuLAeWWnzFfKZXw4wWz0d1wuuvk1_3IjbkqyesqFAYAUfAZ1fEx3-X506-gqQwlvItxcv0N2pFI5WevJoRIrSCghC7LQlKnPJ7MZfkQdC4TXbYu2RawhuXX6JJD-UlXlr604nS8Xe2SxWVkOK7mr1ytbu4c_QBv_e-n75GXRNOlJZo1X5BkMr8mLLfzBN-QRTyp3R83g6WL8cQ_0CjIU-DjQUzzePMUH1BBpCd_A4WajT_erqdP5cJsCCOjVEsDd0q-baCTslmIR6PxXzAijZwBLWqBcv9PLVLX6gFxfnH-bzatSjqFyrVCriveuQYNZyalrQysBFUErBJqDXTTDmmCkQWFvTFC9CAascsgdwholjTFxK3lLdodxgHeEqtYF33lpXB84C8wAM8Jb5lChwb_EJuTThkx6mVE3dLJWmNKZqjpSVReqTshpJOXTqxEyOzUgCXSRQN26RljL4nSBe94ZLwO2dEx2xoLBQQ4i2bbmyxSbkKMNZ-gi3_e66XvUhKeKy8N_dHtPnsclZm_NEdld_VzDB9RfVvY42f3HiXt_A7lz7dc |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoOdAeeLZioYAPHEnwJnYcH9ul1QLdPdBW6s3yY9yiSsmq3T2A-PGMHW-1AiFxi6z4kcyMPTOe-YaQ922ACJuFlqpwsuDAeWHHzBfKDfhwgtno75jNm-kF_3IpLnOyesqFAYAUfAZlfEx3-b53q-gqQwmvItxcu0UeomLdNkO61r1LJdaQUEJmbKExUx8PJxP8jDKWCC_rGq2LWEVy4_xJMP25rspfm3E6YU6ekPl6bUNgyU25WtrS_fwDtvG_F_-UPM66Jj0cmOMZeQDdc7K7gUD4gvzCs8rdUNN5Ou-_3wE9gwEMvO_oER5wnuID6og0B3DgcJPepxvW1Om4u04hBPRsAeCu6bd1PBJ2S9EIdPoj5oTRTwALmsFcr-gs1a3eIxcnx-eTaZELMhSuFmpZ8NZVaDIrOXZ1qCWgKmiFQIOwiYZYFYw0KO6VCaoVwYBVDvlDWKOkMSZuJvtku-s7eEmoql3wjZfGtYGzwAwwI7xlDlUa_EtsRD6syaQXA-6GTvYKU3qgqo5U1ZmqI3IUSXn_agTNTg1IAp1lUNeuEtayOF3gnjfGy4AtDZONsWBwkL1Ito35BoqNyMGaM3SW8DtdtS3qwmPF5at_dHtHHk3PZ6f69PP862uyE5c7-G4OyPbydgVvUJtZ2reJh38DrVLwLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Track+and+Noise+Separation+Based+on+the+Universal+Codebook+and+Enhanced+Speech+Recognition+Using+Hybrid+Deep+Learning+Method&rft.jtitle=IEEE+access&rft.au=Kumer%2C+S.+V.+Aswin&rft.au=Gogu%2C+Lakshmi+Bharath&rft.au=Mohan%2C+E.&rft.au=Maloji%2C+Suman&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=120707&rft.epage=120720&rft_id=info:doi/10.1109%2FACCESS.2023.3328208&rft.externalDocID=10298228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |