Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part I: Experimental evaluation
Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) e...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 98; pp. 317 - 326 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-6161 1878-0180 1878-0180 |
DOI | 10.1016/j.jmbbm.2019.06.029 |
Cover
Loading…
Abstract | Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging −380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application.
•Scaffolds exhibited multiaxial stiffnesses similar to native annulus fibrosus.•Equibiaxial mechanics similar to annulus fibrosus between 30° and 35° fiber angles.•A stiffness asymptote in global equibiaxial loading exhibited large variability.•No scaffold group matched all multiaxial annulus fibrosus targets simultaneously. |
---|---|
AbstractList | Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EE
= 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EE
ranging -380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application. Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging −380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application. •Scaffolds exhibited multiaxial stiffnesses similar to native annulus fibrosus.•Equibiaxial mechanics similar to annulus fibrosus between 30° and 35° fiber angles.•A stiffness asymptote in global equibiaxial loading exhibited large variability.•No scaffold group matched all multiaxial annulus fibrosus targets simultaneously. Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging -380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application.Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging -380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application. |
Author | Baer, Kenzie Schon, Ben Mekhileri, Naveen Puttlitz, Christian Page, Mitchell Woodfield, Tim |
Author_xml | – sequence: 1 givenname: Mitchell surname: Page fullname: Page, Mitchell organization: Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA – sequence: 2 givenname: Kenzie surname: Baer fullname: Baer, Kenzie organization: Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA – sequence: 3 givenname: Ben surname: Schon fullname: Schon, Ben organization: Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch, 8011, New Zealand – sequence: 4 givenname: Naveen surname: Mekhileri fullname: Mekhileri, Naveen organization: Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch, 8011, New Zealand – sequence: 5 givenname: Tim surname: Woodfield fullname: Woodfield, Tim organization: Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch, 8011, New Zealand – sequence: 6 givenname: Christian surname: Puttlitz fullname: Puttlitz, Christian email: puttlitz@engr.colostate.edu organization: Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31301603$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uFiEYRompsT96BSaGpZsZYZgZwMSF_dMmTdzomjDwUvkyAyMwTevVS_tVFy50BYFzXsjzHKODEAMg9JqSlhI6vtu1u2WalrYjVLZkbEknn6EjKrhoCBXkoO75QJuRjvQQHee8I2QkRIgX6JBRVicQdoR-nnp95_WMFzDfdfAm4-gwO8fOT5CwhTVmX8Didb5vZr34oAvgbLRzcbYZu5hwjq7g4nPeAEO48QEg-XCDV50KvnqPL-7WerBAKPUduNXzpouP4SV67vSc4dXTeoK-XV58PfvcXH_5dHX28boxbJCl6bmzUuiecD4QIa1jxjGQljronaw3RjjTaamF46af9NSPfOBsYqJnI6n4CXq7n7um-GODXNTis4F51gHillXXDZxTMjBZ0TdP6DYtYNVav63TvfqdVwXYHjAp5pzA_UEoUQ-tqJ16bEU9tKLIqGor1ZJ_WcaXxwxK0n7-j_th70KN6NZDUtl4CAasT2CKstH_0_8Foq2q9w |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2021_109401 crossref_primary_10_1016_j_jmbbm_2019_103395 crossref_primary_10_1002_jsp2_1152 crossref_primary_10_1016_j_jmbbm_2020_104144 crossref_primary_10_1016_j_jmbbm_2024_106795 crossref_primary_10_3390_polym14040686 crossref_primary_10_2139_ssrn_3959607 crossref_primary_10_1016_j_actbio_2025_01_060 crossref_primary_10_1016_j_heliyon_2022_e09312 crossref_primary_10_3389_fbioe_2022_1018257 crossref_primary_10_1089_ten_tea_2022_29025_abstracts |
Cites_doi | 10.1039/c3tb20562b 10.1089/ten.teb.2012.0437 10.1007/s00114-002-0344-9 10.1097/00007632-199106001-00016 10.1115/1.4032353 10.1016/S1534-5807(04)00075-9 10.1088/1758-5090/aa9ef1 10.1016/j.jbiomech.2009.06.047 10.1007/s00586-015-4061-4 10.22203/eCM.v025a01 10.1021/acs.biomac.5b01316 10.1007/s10237-011-0328-9 10.1007/BF00299448 10.1007/s10856-013-5123-y 10.1080/10255842.2010.493517 10.1016/j.cell.2006.06.044 10.1016/j.clinbiomech.2007.07.008 10.1016/j.jbiomech.2005.04.007 10.1002/ar.1092200402 10.1097/00007632-199106001-00015 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J 10.1007/s00586-008-0745-3 10.1016/S0195-5616(92)50081-X 10.1016/j.biomaterials.2005.05.056 10.1089/ten.tea.2008.0215 10.1002/adma.201705388 10.1002/jor.20384 10.1007/BF02324725 10.1096/fj.01-0656fje 10.1002/jor.22312 10.1115/1.1374202 10.1038/boneres.2015.12 10.1097/00007632-199506000-00022 10.1089/107632701753337645 10.1002/jbm.a.33216 10.1016/j.addr.2007.08.014 10.1016/j.biomaterials.2003.10.056 10.1016/j.spinee.2012.12.002 10.1073/pnas.1107094108 10.1097/00003086-199810001-00006 10.1097/00007632-199602150-00009 10.1038/nmat2558 10.3109/03008208909103905 10.1038/s41598-018-19502-y 10.1002/term.2250 10.1016/j.jbiomech.2009.12.001 10.1016/j.biomaterials.2014.11.049 10.1007/s10439-008-9629-2 10.1097/00007632-199512150-00010 10.1016/j.biomaterials.2005.07.023 10.1016/j.jmbbm.2014.08.012 10.1016/j.progpolymsci.2011.11.007 10.1088/1758-5082/3/2/021001 10.1016/j.jmbbm.2016.05.003 10.1016/j.orthres.2003.12.012 10.1002/app.1981.070261124 10.1093/rb/rbx021 10.1114/B:ABME.0000039357.70905.94 10.1115/1.3212104 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jmbbm.2019.06.029 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
EndPage | 326 |
ExternalDocumentID | 31301603 10_1016_j_jmbbm_2019_06_029 S1751616118317053 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SSM SST SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c359t-47fd98a40775089df3cf3e9d1fe4f998ac8fc2a9a8f7c4bab467573b384360df3 |
IEDL.DBID | .~1 |
ISSN | 1751-6161 1878-0180 |
IngestDate | Thu Jul 10 20:57:01 EDT 2025 Thu Apr 03 07:08:09 EDT 2025 Tue Jul 01 02:19:09 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Sun Apr 06 06:54:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biaxial mechanics Annulus fibrosus Angle-ply laminate Scaffold Tissue engineering Intervertebral disc |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-47fd98a40775089df3cf3e9d1fe4f998ac8fc2a9a8f7c4bab467573b384360df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31301603 |
PQID | 2257710539 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2257710539 pubmed_primary_31301603 crossref_primary_10_1016_j_jmbbm_2019_06_029 crossref_citationtrail_10_1016_j_jmbbm_2019_06_029 elsevier_sciencedirect_doi_10_1016_j_jmbbm_2019_06_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationTitleAlternate | J Mech Behav Biomed Mater |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Uden, Silva-Correia, Correlo, Oliveira, Reis (bib59) 2015; 7 Guterl, See, Blanquer, Pandit, Ferguson, Benneker, Grijpma, Sakai, Eglin, Alini, Iatridis, Grad (bib20) 2013; 25 Koepsell, Remund, Bao, Neufeld, Fong, Deng (bib28) 2011; 99A Ebara, Iatridis, Setton, Foster, Mow, Weidenbaum (bib14) 1996; 21 Isaacs, Vresilovic, Sarkar, Marcolongo (bib26) 2014; 40 Humzah, Soames (bib23) 1988; 220 Haudenschild, Hsieh, Kapila, Lotz (bib21) 2009; 37 Liu, Tang, Zhao, Chai, Kang (bib32) 2018; 30 Acaroglu, Iatridis, Setton, Foster, Mow, Weidenbaum (bib1) 1995; 20 Liu, Zhu, Li, Zhou, Chen, Yang, Li (bib31) 2015; 3 McGuire, Borem, Mercuri (bib37) 2017; 11 Pitt, Chasalow, Hibionada, Klimas, Schindler (bib52) 2003; 26 Nerurkar, Elliott, Mauck (bib44) 2010; 43 Hutmacher (bib24) 2000 Nerurkar, Baker, Sen, Wible, Elliott, Mauck (bib43) 2009; 8 Agrawal, Ray (bib2) 2001; 55 Buckwalter (bib7) 1995; 20 Ringe, Kaps, Burmester, Sittinger (bib53) 2002; 89 Moroni, de Wijn, van Blitterswijk (bib41) 2006; 27 Simpson (bib57) 1992; 22 Michalek, Buckley, Bonassar, Cohen, Iatridis (bib40) 2009; 42 McBeath, Pirone, Nelson, Bhadriraju, Chen (bib36) 2004; 6 Nerurkar, Elliott, Mauck (bib42) 2007; 25 Lee, Langrana, Parsons, Zimmerman (bib30) 1991; 16 Kang, Le, Li, Lysdahl, Chen, Besenbacher, Bünger (bib27) 2013; 1 Schmidt, Kettler, Rohlmann, Claes, Wilke (bib54) 2007; 22 Strange, Tonsomboon, Oyen (bib58) 2014; 25 Cassidy, Hiltner, Baer (bib9) 1989; 23 Shan, Li, Liu, Mamuti, Wang, Zhao (bib56) 2015; 24 Carter, Beaupré, Giori, Helms (bib8) 1998 Makinde, Thibodeau, Neale (bib35) 1992; 32 Ayturk, Puttlitz (bib4) 2011; 14 Bass, Ashford, Segal, Lotz (bib5) 2004; 32 Guerin, Elliott (bib19) 2006; 39 Driscoll, Nakasone, Szczesny, Elliott, Mauck (bib13) 2013; 31 Elliott, Setton (bib15) 2001; 123 Pei, Wang, Fan, Wang, Watari, Li (bib50) 2017; 4 Iatridis, Nicoll, Michalek, Walter, Gupta (bib25) 2013; 13 Melchels, Domingos, Klein, Malda, Bartolo, Hutmacher (bib39) 2012; 37 Green, Adams, Dolan (bib18) 1993; 2 Page, Puttlitz (bib48) 2018 Engler, Sen, Sweeney, Discher (bib16) 2006; 126 Long, Torre, Hom, Assael, Iatridis (bib34) 2016; 138 O'Connell, Guerin, Elliott (bib46) 2009; 131 Yang, Leong, Du, Chua (bib63) 2001; 7 Chan, Leong (bib11) 2008; 17 Park, Gil, Cho, Mandal, Tien, Min, Kaplan (bib49) 2011; 18 Mekhileri, Lim, Brown, Mutreja, Schon, Hooper, Woodfield (bib38) 2018; 10 Loh, Choong (bib33) 2013; 19 Bowles, Gebhard, Härtl, Bonassar (bib6) 2011; 108 Wagner, Lotz (bib60) 2004; 22 Schuurman, Khristov, Pot, Weeren, Dhert, Malda (bib55) 2011; 3 O'Connell, Sen, Elliott (bib47) 2012; 11 Chen, Hochleitner, Woodfield, Groll, Dalton, Amsden (bib12) 2016; 17 Waldman, Lee (bib61) 2005; 26 Castilho, Hochleitner, Wilson, Rietbergen, Dalton, Groll, Malda, Ito (bib10) 2018; 8 Woodfield, Malda, de Wijn, Péters, Riesle, van Blitterswijk (bib62) 2004; 25 Pirvu, Blanquer, Benneker, Grijpma, Richards, Alini, Eglin, Grad, Li (bib51) 2015; 42 Ghosh, Ingber (bib17) 2007; 59 Nesti, Li, Shanti, Jiang, Jackson, Freedman, Kuklo, Giuliani, Tuan (bib45) 2008; 14 Labus, Puttlitz (bib29) 2016; 62 Hedman, Kostuik, Fernie, Hellier (bib22) 1991; 16 Altman, Horan, Martin, Farhadi, Stark, Volloch, Vunjak-Novakovic, Richmond, Kaplan (bib3) 2001; 16 Long (10.1016/j.jmbbm.2019.06.029_bib34) 2016; 138 Pitt (10.1016/j.jmbbm.2019.06.029_bib52) 2003; 26 Makinde (10.1016/j.jmbbm.2019.06.029_bib35) 1992; 32 Pei (10.1016/j.jmbbm.2019.06.029_bib50) 2017; 4 Iatridis (10.1016/j.jmbbm.2019.06.029_bib25) 2013; 13 Isaacs (10.1016/j.jmbbm.2019.06.029_bib26) 2014; 40 Pirvu (10.1016/j.jmbbm.2019.06.029_bib51) 2015; 42 Labus (10.1016/j.jmbbm.2019.06.029_bib29) 2016; 62 O'Connell (10.1016/j.jmbbm.2019.06.029_bib47) 2012; 11 Melchels (10.1016/j.jmbbm.2019.06.029_bib39) 2012; 37 Guterl (10.1016/j.jmbbm.2019.06.029_bib20) 2013; 25 Kang (10.1016/j.jmbbm.2019.06.029_bib27) 2013; 1 Loh (10.1016/j.jmbbm.2019.06.029_bib33) 2013; 19 Acaroglu (10.1016/j.jmbbm.2019.06.029_bib1) 1995; 20 Yang (10.1016/j.jmbbm.2019.06.029_bib63) 2001; 7 Woodfield (10.1016/j.jmbbm.2019.06.029_bib62) 2004; 25 Uden (10.1016/j.jmbbm.2019.06.029_bib59) 2015; 7 Cassidy (10.1016/j.jmbbm.2019.06.029_bib9) 1989; 23 Haudenschild (10.1016/j.jmbbm.2019.06.029_bib21) 2009; 37 Nerurkar (10.1016/j.jmbbm.2019.06.029_bib42) 2007; 25 Ringe (10.1016/j.jmbbm.2019.06.029_bib53) 2002; 89 Shan (10.1016/j.jmbbm.2019.06.029_bib56) 2015; 24 Liu (10.1016/j.jmbbm.2019.06.029_bib32) 2018; 30 Castilho (10.1016/j.jmbbm.2019.06.029_bib10) 2018; 8 Nesti (10.1016/j.jmbbm.2019.06.029_bib45) 2008; 14 Bowles (10.1016/j.jmbbm.2019.06.029_bib6) 2011; 108 Elliott (10.1016/j.jmbbm.2019.06.029_bib15) 2001; 123 Simpson (10.1016/j.jmbbm.2019.06.029_bib57) 1992; 22 Carter (10.1016/j.jmbbm.2019.06.029_bib8) 1998 Chan (10.1016/j.jmbbm.2019.06.029_bib11) 2008; 17 Schuurman (10.1016/j.jmbbm.2019.06.029_bib55) 2011; 3 Ebara (10.1016/j.jmbbm.2019.06.029_bib14) 1996; 21 Guerin (10.1016/j.jmbbm.2019.06.029_bib19) 2006; 39 Page (10.1016/j.jmbbm.2019.06.029_bib48) 2018 McBeath (10.1016/j.jmbbm.2019.06.029_bib36) 2004; 6 Nerurkar (10.1016/j.jmbbm.2019.06.029_bib43) 2009; 8 O'Connell (10.1016/j.jmbbm.2019.06.029_bib46) 2009; 131 McGuire (10.1016/j.jmbbm.2019.06.029_bib37) 2017; 11 Waldman (10.1016/j.jmbbm.2019.06.029_bib61) 2005; 26 Altman (10.1016/j.jmbbm.2019.06.029_bib3) 2001; 16 Lee (10.1016/j.jmbbm.2019.06.029_bib30) 1991; 16 Bass (10.1016/j.jmbbm.2019.06.029_bib5) 2004; 32 Agrawal (10.1016/j.jmbbm.2019.06.029_bib2) 2001; 55 Schmidt (10.1016/j.jmbbm.2019.06.029_bib54) 2007; 22 Strange (10.1016/j.jmbbm.2019.06.029_bib58) 2014; 25 Ayturk (10.1016/j.jmbbm.2019.06.029_bib4) 2011; 14 Park (10.1016/j.jmbbm.2019.06.029_bib49) 2011; 18 Hedman (10.1016/j.jmbbm.2019.06.029_bib22) 1991; 16 Hutmacher (10.1016/j.jmbbm.2019.06.029_bib24) 2000 Moroni (10.1016/j.jmbbm.2019.06.029_bib41) 2006; 27 Liu (10.1016/j.jmbbm.2019.06.029_bib31) 2015; 3 Driscoll (10.1016/j.jmbbm.2019.06.029_bib13) 2013; 31 Nerurkar (10.1016/j.jmbbm.2019.06.029_bib44) 2010; 43 Humzah (10.1016/j.jmbbm.2019.06.029_bib23) 1988; 220 Wagner (10.1016/j.jmbbm.2019.06.029_bib60) 2004; 22 Buckwalter (10.1016/j.jmbbm.2019.06.029_bib7) 1995; 20 Engler (10.1016/j.jmbbm.2019.06.029_bib16) 2006; 126 Michalek (10.1016/j.jmbbm.2019.06.029_bib40) 2009; 42 Mekhileri (10.1016/j.jmbbm.2019.06.029_bib38) 2018; 10 Green (10.1016/j.jmbbm.2019.06.029_bib18) 1993; 2 Chen (10.1016/j.jmbbm.2019.06.029_bib12) 2016; 17 Koepsell (10.1016/j.jmbbm.2019.06.029_bib28) 2011; 99A Ghosh (10.1016/j.jmbbm.2019.06.029_bib17) 2007; 59 |
References_xml | – volume: 3 year: 2011 ident: bib55 article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties publication-title: Biofabrication – volume: 37 start-page: 492 year: 2009 end-page: 502 ident: bib21 article-title: Pressure and distortion regulate human mesenchymal stem cell gene expression publication-title: Ann. Biomed. Eng. – volume: 42 start-page: 2279 year: 2009 end-page: 2285 ident: bib40 article-title: Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content publication-title: J. Biomech. – volume: 131 start-page: 111007 year: 2009 ident: bib46 article-title: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration publication-title: J. Biomech. Eng. – volume: 6 start-page: 483 year: 2004 end-page: 495 ident: bib36 article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment publication-title: Dev. Cell – year: 2018 ident: bib48 article-title: Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering Part II: finite element analyses publication-title: J. Mech. Behav. Biomed. Mater. – volume: 138 year: 2016 ident: bib34 article-title: Design requirements for annulus fibrosus repair: review of forces, displacements, and material properties of the intervertebral disk and a summary of candidate hydrogels for repair publication-title: J. Biomech. Eng. – volume: 11 start-page: 493 year: 2012 end-page: 503 ident: bib47 article-title: Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration publication-title: Biomechanics Model. Mechanobiol. – volume: 1 start-page: 5462 year: 2013 end-page: 5468 ident: bib27 article-title: Engineered three-dimensional nanofibrous multi-lamellar structure for annulus fibrosus repair publication-title: J. Mater. Chem. B – volume: 27 start-page: 974 year: 2006 end-page: 985 ident: bib41 article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties publication-title: Biomaterials – volume: 42 start-page: 11 year: 2015 end-page: 19 ident: bib51 article-title: A combined biomaterial and cellular approach for annulus fibrosus rupture repair publication-title: Biomaterials – volume: 7 start-page: 679 year: 2001 end-page: 689 ident: bib63 article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors publication-title: Tissue Eng. – volume: 40 start-page: 75 year: 2014 end-page: 84 ident: bib26 article-title: Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties publication-title: J. Mech. Behav. Biomed. Mater. – volume: 8 start-page: 986 year: 2009 end-page: 992 ident: bib43 article-title: Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus publication-title: Nat. Mater. – volume: 17 start-page: 467 year: 2008 end-page: 479 ident: bib11 article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations publication-title: Eur. Spine J. – volume: 20 start-page: 1307 year: 1995 end-page: 1314 ident: bib7 article-title: Aging and degeneration of the human intervertebral disc publication-title: Spine (Phila Pa 1976) – volume: 14 start-page: 1527 year: 2008 end-page: 1537 ident: bib45 article-title: Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam publication-title: Tissue Eng. A – volume: 17 start-page: 208 year: 2016 end-page: 214 ident: bib12 article-title: Additive manufacturing of a photo-cross-linkable polymer via direct melt electrospinning writing for producing high strength structures publication-title: Biomacromolecules – volume: 123 start-page: 256 year: 2001 end-page: 263 ident: bib15 article-title: Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions publication-title: J. Biomech. Eng. – volume: 62 start-page: 195 year: 2016 end-page: 208 ident: bib29 article-title: “An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships publication-title: J. Mech. Behav. Biomed. Mater. – volume: 3 start-page: 15012 year: 2015 ident: bib31 article-title: The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells publication-title: Bone Res. – volume: 108 start-page: 13106 year: 2011 end-page: 13111 ident: bib6 article-title: Tissue-engineered intervertebral discs produce New matrix, maintain disc height, and restore biomechanical function to the rodent spine publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 25 start-page: 1 year: 2013 end-page: 21 ident: bib20 article-title: Challenges and strategies in the repair of ruptured annulus fibrosus publication-title: Eur. Cells Mater. – volume: 25 start-page: 4149 year: 2004 end-page: 4161 ident: bib62 article-title: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique publication-title: Biomaterials – volume: 16 start-page: S256 year: 1991 end-page: S260 ident: bib22 article-title: Design of an intervertebral disc prosthesis publication-title: Spine – volume: 18 start-page: 447 year: 2011 end-page: 458 ident: bib49 article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds publication-title: Tissue Eng. – volume: 8 start-page: 1245 year: 2018 ident: bib10 article-title: Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds publication-title: Sci. Rep. – volume: 220 start-page: 337 year: 1988 end-page: 356 ident: bib23 article-title: Human intervertebral disc: structure and function publication-title: Anat. Rec. – volume: 31 start-page: 864 year: 2013 end-page: 870 ident: bib13 article-title: Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering publication-title: J. Orthop. Res. – volume: 126 start-page: 677 year: 2006 end-page: 689 ident: bib16 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell – volume: 13 start-page: 243 year: 2013 end-page: 262 ident: bib25 article-title: Role of biomechanics on intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? publication-title: Spine J. – volume: 22 start-page: 901 year: 2004 end-page: 909 ident: bib60 article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus publication-title: J. Orthop. Res. – volume: 26 start-page: 7504 year: 2005 end-page: 7513 ident: bib61 article-title: Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues publication-title: Biomaterials – volume: 99A start-page: 564 year: 2011 end-page: 575 ident: bib28 article-title: Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers publication-title: J. Biomed. Mater. Res. – volume: 24 start-page: 1909 year: 2015 end-page: 1916 ident: bib56 article-title: Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings publication-title: Eur. Spine J. – volume: 25 start-page: 1018 year: 2007 end-page: 1028 ident: bib42 article-title: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering publication-title: J. Orthop. Res. – volume: 32 start-page: 138 year: 1992 end-page: 144 ident: bib35 article-title: Development of an apparatus for biaxial testing using cruciform specimens publication-title: Exp. Mech. – volume: 4 start-page: 257 year: 2017 end-page: 268 ident: bib50 article-title: Fiber-reinforced scaffolds in soft tissue engineering publication-title: Regen. Biomater. – volume: 21 start-page: 452 year: 1996 end-page: 461 ident: bib14 article-title: Tensile properties of nondegenerate human lumbar anulus fibrosus publication-title: Spine – volume: 22 start-page: 988 year: 2007 end-page: 998 ident: bib54 article-title: The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis publication-title: Clin. Biomech. – volume: 37 start-page: 1079 year: 2012 end-page: 1104 ident: bib39 article-title: Additive manufacturing of tissues and organs publication-title: Prog. Polym. Sci. – start-page: S41 year: 1998 end-page: S55 ident: bib8 article-title: Mechanobiology of skeletal regeneration, publication-title: Clin. Orthop. Relat. Res. – volume: 2 start-page: 209 year: 1993 end-page: 214 ident: bib18 article-title: Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life publication-title: Eur. Spine J. – volume: 26 start-page: 3779 year: 2003 end-page: 3787 ident: bib52 article-title: “Aliphatic polyesters. I. The degradation of poly(Ε‐caprolactone) in vivo publication-title: J. Appl. Polym. Sci. – volume: 20 start-page: 2690 year: 1995 end-page: 2701 ident: bib1 article-title: Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus publication-title: Spine – volume: 16 start-page: 270 year: 2001 end-page: 272 ident: bib3 article-title: Cell differentiation by mechanical stress publication-title: FASEB J. – volume: 43 start-page: 1017 year: 2010 end-page: 1030 ident: bib44 article-title: Mechanical design criteria for intervertebral disc tissue engineering publication-title: J. Biomech. – volume: 30 start-page: 1705388 year: 2018 ident: bib32 article-title: Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine publication-title: Adv. Mater. – volume: 7 year: 2015 ident: bib59 article-title: Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement publication-title: Biofabrication – volume: 55 start-page: 141 year: 2001 end-page: 150 ident: bib2 article-title: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering publication-title: J. Biomed. Mater. Res. – volume: 19 start-page: 485 year: 2013 end-page: 502 ident: bib33 article-title: Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size publication-title: Tissue Eng. B Rev. – volume: 25 start-page: 681 year: 2014 end-page: 690 ident: bib58 article-title: Mechanical behaviour of electrospun fibre-reinforced hydrogels publication-title: J. Mater. Sci. Mater. Med. – volume: 39 start-page: 1410 year: 2006 end-page: 1418 ident: bib19 article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load publication-title: J. Biomech. – volume: 16 start-page: S253 year: 1991 end-page: S255 ident: bib30 article-title: Development of a prosthetic intervertebral disc publication-title: Spine – volume: 59 start-page: 1306 year: 2007 end-page: 1318 ident: bib17 article-title: Micromechanical control of cell and tissue development: implications for tissue engineering publication-title: Adv. Drug Deliv. Rev. – volume: 22 start-page: 889 year: 1992 end-page: 897 ident: bib57 article-title: Intervertebral disc disease publication-title: Vet. Clin. Small Anim. Pract. – volume: 23 start-page: 75 year: 1989 end-page: 88 ident: bib9 article-title: Hierarchical structure of the intervertebral disc publication-title: Connect. Tissue Res. – volume: 89 start-page: 338 year: 2002 end-page: 351 ident: bib53 article-title: Stem cells for regenerative medicine: advances in the engineering of tissues and organs publication-title: Naturwissenschaften – start-page: 175 year: 2000 end-page: 189 ident: bib24 publication-title: “Scaffolds in Tissue Engineering Bone and Cartilage,” – volume: 10 year: 2018 ident: bib38 article-title: Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs publication-title: Biofabrication – volume: 11 start-page: 3488 year: 2017 end-page: 3493 ident: bib37 article-title: The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair publication-title: J. Tissue Eng. Regenerat. Med. – volume: 32 start-page: 1231 year: 2004 end-page: 1242 ident: bib5 article-title: Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation publication-title: Ann. Biomed. Eng. – volume: 14 start-page: 695 year: 2011 end-page: 705 ident: bib4 article-title: Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 1 start-page: 5462 issue: 40 year: 2013 ident: 10.1016/j.jmbbm.2019.06.029_bib27 article-title: Engineered three-dimensional nanofibrous multi-lamellar structure for annulus fibrosus repair publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20562b – volume: 19 start-page: 485 issue: 6 year: 2013 ident: 10.1016/j.jmbbm.2019.06.029_bib33 article-title: Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size publication-title: Tissue Eng. B Rev. doi: 10.1089/ten.teb.2012.0437 – volume: 89 start-page: 338 issue: 8 year: 2002 ident: 10.1016/j.jmbbm.2019.06.029_bib53 article-title: Stem cells for regenerative medicine: advances in the engineering of tissues and organs publication-title: Naturwissenschaften doi: 10.1007/s00114-002-0344-9 – volume: 16 start-page: S256 issue: 6 Suppl. l year: 1991 ident: 10.1016/j.jmbbm.2019.06.029_bib22 article-title: Design of an intervertebral disc prosthesis publication-title: Spine doi: 10.1097/00007632-199106001-00016 – volume: 138 issue: 2 year: 2016 ident: 10.1016/j.jmbbm.2019.06.029_bib34 article-title: Design requirements for annulus fibrosus repair: review of forces, displacements, and material properties of the intervertebral disk and a summary of candidate hydrogels for repair publication-title: J. Biomech. Eng. doi: 10.1115/1.4032353 – volume: 6 start-page: 483 issue: 4 year: 2004 ident: 10.1016/j.jmbbm.2019.06.029_bib36 article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment publication-title: Dev. Cell doi: 10.1016/S1534-5807(04)00075-9 – volume: 10 issue: 2 year: 2018 ident: 10.1016/j.jmbbm.2019.06.029_bib38 article-title: Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs publication-title: Biofabrication doi: 10.1088/1758-5090/aa9ef1 – volume: 18 start-page: 447 issue: 5–6 year: 2011 ident: 10.1016/j.jmbbm.2019.06.029_bib49 article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds publication-title: Tissue Eng. – volume: 42 start-page: 2279 issue: 14 year: 2009 ident: 10.1016/j.jmbbm.2019.06.029_bib40 article-title: Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.06.047 – volume: 24 start-page: 1909 issue: 9 year: 2015 ident: 10.1016/j.jmbbm.2019.06.029_bib56 article-title: Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings publication-title: Eur. Spine J. doi: 10.1007/s00586-015-4061-4 – start-page: 175 year: 2000 ident: 10.1016/j.jmbbm.2019.06.029_bib24 – volume: 25 start-page: 1 year: 2013 ident: 10.1016/j.jmbbm.2019.06.029_bib20 article-title: Challenges and strategies in the repair of ruptured annulus fibrosus publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v025a01 – volume: 17 start-page: 208 issue: 1 year: 2016 ident: 10.1016/j.jmbbm.2019.06.029_bib12 article-title: Additive manufacturing of a photo-cross-linkable polymer via direct melt electrospinning writing for producing high strength structures publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01316 – volume: 11 start-page: 493 issue: 3–4 year: 2012 ident: 10.1016/j.jmbbm.2019.06.029_bib47 article-title: Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration publication-title: Biomechanics Model. Mechanobiol. doi: 10.1007/s10237-011-0328-9 – volume: 2 start-page: 209 issue: 4 year: 1993 ident: 10.1016/j.jmbbm.2019.06.029_bib18 article-title: Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life publication-title: Eur. Spine J. doi: 10.1007/BF00299448 – volume: 25 start-page: 681 issue: 3 year: 2014 ident: 10.1016/j.jmbbm.2019.06.029_bib58 article-title: Mechanical behaviour of electrospun fibre-reinforced hydrogels publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-013-5123-y – volume: 14 start-page: 695 issue: 8 year: 2011 ident: 10.1016/j.jmbbm.2019.06.029_bib4 article-title: Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2010.493517 – volume: 126 start-page: 677 issue: 4 year: 2006 ident: 10.1016/j.jmbbm.2019.06.029_bib16 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell doi: 10.1016/j.cell.2006.06.044 – volume: 22 start-page: 988 issue: 9 year: 2007 ident: 10.1016/j.jmbbm.2019.06.029_bib54 article-title: The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.07.008 – volume: 39 start-page: 1410 issue: 8 year: 2006 ident: 10.1016/j.jmbbm.2019.06.029_bib19 article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.04.007 – volume: 220 start-page: 337 issue: 4 year: 1988 ident: 10.1016/j.jmbbm.2019.06.029_bib23 article-title: Human intervertebral disc: structure and function publication-title: Anat. Rec. doi: 10.1002/ar.1092200402 – volume: 16 start-page: S253 issue: 6 Suppl. l year: 1991 ident: 10.1016/j.jmbbm.2019.06.029_bib30 article-title: Development of a prosthetic intervertebral disc publication-title: Spine doi: 10.1097/00007632-199106001-00015 – volume: 55 start-page: 141 issue: 2 year: 2001 ident: 10.1016/j.jmbbm.2019.06.029_bib2 article-title: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J – volume: 17 start-page: 467 issue: 4 year: 2008 ident: 10.1016/j.jmbbm.2019.06.029_bib11 article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations publication-title: Eur. Spine J. doi: 10.1007/s00586-008-0745-3 – volume: 22 start-page: 889 issue: 4 year: 1992 ident: 10.1016/j.jmbbm.2019.06.029_bib57 article-title: Intervertebral disc disease publication-title: Vet. Clin. Small Anim. Pract. doi: 10.1016/S0195-5616(92)50081-X – volume: 26 start-page: 7504 issue: 35 year: 2005 ident: 10.1016/j.jmbbm.2019.06.029_bib61 article-title: Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.056 – volume: 14 start-page: 1527 issue: 9 year: 2008 ident: 10.1016/j.jmbbm.2019.06.029_bib45 article-title: Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2008.0215 – volume: 30 start-page: 1705388 issue: 17 year: 2018 ident: 10.1016/j.jmbbm.2019.06.029_bib32 article-title: Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine publication-title: Adv. Mater. doi: 10.1002/adma.201705388 – volume: 25 start-page: 1018 issue: 8 year: 2007 ident: 10.1016/j.jmbbm.2019.06.029_bib42 article-title: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering publication-title: J. Orthop. Res. doi: 10.1002/jor.20384 – volume: 32 start-page: 138 issue: 2 year: 1992 ident: 10.1016/j.jmbbm.2019.06.029_bib35 article-title: Development of an apparatus for biaxial testing using cruciform specimens publication-title: Exp. Mech. doi: 10.1007/BF02324725 – volume: 16 start-page: 270 issue: 2 year: 2001 ident: 10.1016/j.jmbbm.2019.06.029_bib3 article-title: Cell differentiation by mechanical stress publication-title: FASEB J. doi: 10.1096/fj.01-0656fje – volume: 31 start-page: 864 issue: 6 year: 2013 ident: 10.1016/j.jmbbm.2019.06.029_bib13 article-title: Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering publication-title: J. Orthop. Res. doi: 10.1002/jor.22312 – volume: 123 start-page: 256 issue: 3 year: 2001 ident: 10.1016/j.jmbbm.2019.06.029_bib15 article-title: Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions publication-title: J. Biomech. Eng. doi: 10.1115/1.1374202 – volume: 3 start-page: 15012 year: 2015 ident: 10.1016/j.jmbbm.2019.06.029_bib31 article-title: The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells publication-title: Bone Res. doi: 10.1038/boneres.2015.12 – volume: 20 start-page: 1307 issue: 11 year: 1995 ident: 10.1016/j.jmbbm.2019.06.029_bib7 article-title: Aging and degeneration of the human intervertebral disc publication-title: Spine (Phila Pa 1976) doi: 10.1097/00007632-199506000-00022 – volume: 7 start-page: 679 issue: 6 year: 2001 ident: 10.1016/j.jmbbm.2019.06.029_bib63 article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors publication-title: Tissue Eng. doi: 10.1089/107632701753337645 – volume: 99A start-page: 564 issue: 4 year: 2011 ident: 10.1016/j.jmbbm.2019.06.029_bib28 article-title: Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.33216 – volume: 59 start-page: 1306 issue: 13 year: 2007 ident: 10.1016/j.jmbbm.2019.06.029_bib17 article-title: Micromechanical control of cell and tissue development: implications for tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2007.08.014 – volume: 25 start-page: 4149 issue: 18 year: 2004 ident: 10.1016/j.jmbbm.2019.06.029_bib62 article-title: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.10.056 – volume: 13 start-page: 243 issue: 3 year: 2013 ident: 10.1016/j.jmbbm.2019.06.029_bib25 article-title: Role of biomechanics on intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? publication-title: Spine J. doi: 10.1016/j.spinee.2012.12.002 – volume: 108 start-page: 13106 issue: 32 year: 2011 ident: 10.1016/j.jmbbm.2019.06.029_bib6 article-title: Tissue-engineered intervertebral discs produce New matrix, maintain disc height, and restore biomechanical function to the rodent spine publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1107094108 – start-page: S41 issue: 355 Suppl. l year: 1998 ident: 10.1016/j.jmbbm.2019.06.029_bib8 article-title: Mechanobiology of skeletal regeneration, publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-199810001-00006 – volume: 21 start-page: 452 issue: 4 year: 1996 ident: 10.1016/j.jmbbm.2019.06.029_bib14 article-title: Tensile properties of nondegenerate human lumbar anulus fibrosus publication-title: Spine doi: 10.1097/00007632-199602150-00009 – year: 2018 ident: 10.1016/j.jmbbm.2019.06.029_bib48 article-title: Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering Part II: finite element analyses publication-title: J. Mech. Behav. Biomed. Mater. – volume: 8 start-page: 986 issue: 12 year: 2009 ident: 10.1016/j.jmbbm.2019.06.029_bib43 article-title: Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus publication-title: Nat. Mater. doi: 10.1038/nmat2558 – volume: 23 start-page: 75 issue: 1 year: 1989 ident: 10.1016/j.jmbbm.2019.06.029_bib9 article-title: Hierarchical structure of the intervertebral disc publication-title: Connect. Tissue Res. doi: 10.3109/03008208909103905 – volume: 8 start-page: 1245 issue: 1 year: 2018 ident: 10.1016/j.jmbbm.2019.06.029_bib10 article-title: Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds publication-title: Sci. Rep. doi: 10.1038/s41598-018-19502-y – volume: 11 start-page: 3488 issue: 12 year: 2017 ident: 10.1016/j.jmbbm.2019.06.029_bib37 article-title: The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair publication-title: J. Tissue Eng. Regenerat. Med. doi: 10.1002/term.2250 – volume: 43 start-page: 1017 issue: 6 year: 2010 ident: 10.1016/j.jmbbm.2019.06.029_bib44 article-title: Mechanical design criteria for intervertebral disc tissue engineering publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.12.001 – volume: 42 start-page: 11 year: 2015 ident: 10.1016/j.jmbbm.2019.06.029_bib51 article-title: A combined biomaterial and cellular approach for annulus fibrosus rupture repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.11.049 – volume: 37 start-page: 492 issue: 3 year: 2009 ident: 10.1016/j.jmbbm.2019.06.029_bib21 article-title: Pressure and distortion regulate human mesenchymal stem cell gene expression publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9629-2 – volume: 20 start-page: 2690 issue: 24 year: 1995 ident: 10.1016/j.jmbbm.2019.06.029_bib1 article-title: Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus publication-title: Spine doi: 10.1097/00007632-199512150-00010 – volume: 27 start-page: 974 issue: 7 year: 2006 ident: 10.1016/j.jmbbm.2019.06.029_bib41 article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.023 – volume: 40 start-page: 75 year: 2014 ident: 10.1016/j.jmbbm.2019.06.029_bib26 article-title: Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2014.08.012 – volume: 37 start-page: 1079 issue: 8 year: 2012 ident: 10.1016/j.jmbbm.2019.06.029_bib39 article-title: Additive manufacturing of tissues and organs publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.11.007 – volume: 3 issue: 2 year: 2011 ident: 10.1016/j.jmbbm.2019.06.029_bib55 article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties publication-title: Biofabrication doi: 10.1088/1758-5082/3/2/021001 – volume: 7 issue: 1 year: 2015 ident: 10.1016/j.jmbbm.2019.06.029_bib59 article-title: Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement publication-title: Biofabrication – volume: 62 start-page: 195 year: 2016 ident: 10.1016/j.jmbbm.2019.06.029_bib29 article-title: “An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.05.003 – volume: 22 start-page: 901 issue: 4 year: 2004 ident: 10.1016/j.jmbbm.2019.06.029_bib60 article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus publication-title: J. Orthop. Res. doi: 10.1016/j.orthres.2003.12.012 – volume: 26 start-page: 3779 issue: 11 year: 2003 ident: 10.1016/j.jmbbm.2019.06.029_bib52 article-title: “Aliphatic polyesters. I. The degradation of poly(Ε‐caprolactone) in vivo publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1981.070261124 – volume: 4 start-page: 257 issue: 4 year: 2017 ident: 10.1016/j.jmbbm.2019.06.029_bib50 article-title: Fiber-reinforced scaffolds in soft tissue engineering publication-title: Regen. Biomater. doi: 10.1093/rb/rbx021 – volume: 32 start-page: 1231 issue: 9 year: 2004 ident: 10.1016/j.jmbbm.2019.06.029_bib5 article-title: Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation publication-title: Ann. Biomed. Eng. doi: 10.1114/B:ABME.0000039357.70905.94 – volume: 131 start-page: 111007 issue: 11 year: 2009 ident: 10.1016/j.jmbbm.2019.06.029_bib46 article-title: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration publication-title: J. Biomech. Eng. doi: 10.1115/1.3212104 |
SSID | ssj0060088 |
Score | 2.2666826 |
Snippet | Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 317 |
SubjectTerms | Angle-ply laminate Annulus fibrosus Biaxial mechanics Intervertebral disc Scaffold Tissue engineering |
Title | Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part I: Experimental evaluation |
URI | https://dx.doi.org/10.1016/j.jmbbm.2019.06.029 https://www.ncbi.nlm.nih.gov/pubmed/31301603 https://www.proquest.com/docview/2257710539 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcikHBJSPUlhNJY6E3aydxO6tlFbbIvYClXqzbMeWUm2zK7KVaA_97Z1xku0iwR44Jh4nlmcy86zMvGHso8_LjNuxSlTI6IBi0sRg1E2ktKbgAodzqnf-Ps0nF-L8MrvcYsd9LQylVXa-v_Xp0Vt3d4bdbg4XVTX8gYEP4UqOCJkTJwwxfhJ7Hdr05_tVmgfG89h7koQTku6Zh2KO19W1tVSOnqpI4hlx5l-j07_QZ4xCp8_Zsw4-wlG7whdsy9cv2dM1UsFddvelMr_RquDaU1Vv5RqYB-BfIVByCJQ-5mn5Ehaz2wTtoaoRbkLjTAjzWdkAolho0DnDMuoE_OPDYYFbA2eHcLLWFwAeCcNfsYvTk5_Hk6TrsJA4nqllIopQKmkE8eCNpCoDd4F7VabBi4AHMeNkcGOjjAyFE9ZYdKtZwS2XgucjFH_Ntut57d8ysCHPizJTznkcdKkMFpGCMEZan8qR2GPjfme16-jHqQvGTPd5Zlc6qkOTOjRl243VHvu0mrRo2Tc2i-e9yvQfRqQxPmyeeNArWOPnRf9MTO3nN41Gd1cgCMs4yrxpNb9aCcf4T1263_3va_fZDl21uYHv2fby143_gBhnaQfRiAfsydHZt8n0Ae_T_JQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2UPVdWmgHiWOj3aydxO4NKGi3wF4AiZtlO7YUtGRXzSK1_fUdOwkPqXDoNR4nlmcy81me-QZgx-VlxsxYJtJn4YCi00RT1E2EMLpgnIbzUO98Mssn5_zHRXaxBvt9LUxIq-x8f-vTo7fungy73Rwuq2p4SoGP4EpOCJkFThj2BNYDOxUfwPru9Ggy6x0yhfTYfjLIJ2FCTz4U07wur4wJFempjDyeEWr-M0A9BEBjIDp8CS86BIm77SJfwZqrX8PzO7yCb-DPXqV_kWHhlQuFvZVtcOGRfUcf8kOwdDFVy5W4nP9OyCSqmhAnNlZ7v5iXDRKQxYb8M66iWtDdvhyXtDs4_YYHd1oD4C1n-Fs4Pzw4258kXZOFxLJMrhJe-FIKzQMV3kjI0jPrmZNl6h33dBbTVng71lILX1hutCHPmhXMMMFZPiLxdzCoF7X7AGh8nhdlJq11NGhT4Q2BBa61MC4VI74B435nle0YyEMjjLnqU80uVVSHCupQIeFuLDfg682kZUvA8bh43qtM3bMjRSHi8YnbvYIV_WHh2kTXbnHdKPJ4BeGwjJHM-1bzNythBAFCo-6P__vZL_B0cnZyrI6ns6NP8CyMtKmCmzBY_bx2WwR5VuZzZ9J_AZD1_0U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biaxial+mechanics+of+3D+fiber+deposited+ply-laminate+scaffolds+for+soft+tissue+engineering+part+I%3A+Experimental+evaluation&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Page%2C+Mitchell&rft.au=Baer%2C+Kenzie&rft.au=Schon%2C+Ben&rft.au=Mekhileri%2C+Naveen&rft.date=2019-10-01&rft.issn=1751-6161&rft.volume=98&rft.spage=317&rft.epage=326&rft_id=info:doi/10.1016%2Fj.jmbbm.2019.06.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2019_06_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |