Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part I: Experimental evaluation

Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) e...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 98; pp. 317 - 326
Main Authors Page, Mitchell, Baer, Kenzie, Schon, Ben, Mekhileri, Naveen, Woodfield, Tim, Puttlitz, Christian
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text
ISSN1751-6161
1878-0180
1878-0180
DOI10.1016/j.jmbbm.2019.06.029

Cover

Loading…
Abstract Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging −380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application. •Scaffolds exhibited multiaxial stiffnesses similar to native annulus fibrosus.•Equibiaxial mechanics similar to annulus fibrosus between 30° and 35° fiber angles.•A stiffness asymptote in global equibiaxial loading exhibited large variability.•No scaffold group matched all multiaxial annulus fibrosus targets simultaneously.
AbstractList Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EE  = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EE ranging -380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application.
Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging −380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application. •Scaffolds exhibited multiaxial stiffnesses similar to native annulus fibrosus.•Equibiaxial mechanics similar to annulus fibrosus between 30° and 35° fiber angles.•A stiffness asymptote in global equibiaxial loading exhibited large variability.•No scaffold group matched all multiaxial annulus fibrosus targets simultaneously.
Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging -380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application.Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging -380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application.
Author Baer, Kenzie
Schon, Ben
Mekhileri, Naveen
Puttlitz, Christian
Page, Mitchell
Woodfield, Tim
Author_xml – sequence: 1
  givenname: Mitchell
  surname: Page
  fullname: Page, Mitchell
  organization: Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA
– sequence: 2
  givenname: Kenzie
  surname: Baer
  fullname: Baer, Kenzie
  organization: Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA
– sequence: 3
  givenname: Ben
  surname: Schon
  fullname: Schon, Ben
  organization: Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
– sequence: 4
  givenname: Naveen
  surname: Mekhileri
  fullname: Mekhileri, Naveen
  organization: Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
– sequence: 5
  givenname: Tim
  surname: Woodfield
  fullname: Woodfield, Tim
  organization: Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
– sequence: 6
  givenname: Christian
  surname: Puttlitz
  fullname: Puttlitz, Christian
  email: puttlitz@engr.colostate.edu
  organization: Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31301603$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uFiEYRompsT96BSaGpZsZYZgZwMSF_dMmTdzomjDwUvkyAyMwTevVS_tVFy50BYFzXsjzHKODEAMg9JqSlhI6vtu1u2WalrYjVLZkbEknn6EjKrhoCBXkoO75QJuRjvQQHee8I2QkRIgX6JBRVicQdoR-nnp95_WMFzDfdfAm4-gwO8fOT5CwhTVmX8Didb5vZr34oAvgbLRzcbYZu5hwjq7g4nPeAEO48QEg-XCDV50KvnqPL-7WerBAKPUduNXzpouP4SV67vSc4dXTeoK-XV58PfvcXH_5dHX28boxbJCl6bmzUuiecD4QIa1jxjGQljronaw3RjjTaamF46af9NSPfOBsYqJnI6n4CXq7n7um-GODXNTis4F51gHillXXDZxTMjBZ0TdP6DYtYNVav63TvfqdVwXYHjAp5pzA_UEoUQ-tqJ16bEU9tKLIqGor1ZJ_WcaXxwxK0n7-j_th70KN6NZDUtl4CAasT2CKstH_0_8Foq2q9w
CitedBy_id crossref_primary_10_1016_j_compositesb_2021_109401
crossref_primary_10_1016_j_jmbbm_2019_103395
crossref_primary_10_1002_jsp2_1152
crossref_primary_10_1016_j_jmbbm_2020_104144
crossref_primary_10_1016_j_jmbbm_2024_106795
crossref_primary_10_3390_polym14040686
crossref_primary_10_2139_ssrn_3959607
crossref_primary_10_1016_j_actbio_2025_01_060
crossref_primary_10_1016_j_heliyon_2022_e09312
crossref_primary_10_3389_fbioe_2022_1018257
crossref_primary_10_1089_ten_tea_2022_29025_abstracts
Cites_doi 10.1039/c3tb20562b
10.1089/ten.teb.2012.0437
10.1007/s00114-002-0344-9
10.1097/00007632-199106001-00016
10.1115/1.4032353
10.1016/S1534-5807(04)00075-9
10.1088/1758-5090/aa9ef1
10.1016/j.jbiomech.2009.06.047
10.1007/s00586-015-4061-4
10.22203/eCM.v025a01
10.1021/acs.biomac.5b01316
10.1007/s10237-011-0328-9
10.1007/BF00299448
10.1007/s10856-013-5123-y
10.1080/10255842.2010.493517
10.1016/j.cell.2006.06.044
10.1016/j.clinbiomech.2007.07.008
10.1016/j.jbiomech.2005.04.007
10.1002/ar.1092200402
10.1097/00007632-199106001-00015
10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J
10.1007/s00586-008-0745-3
10.1016/S0195-5616(92)50081-X
10.1016/j.biomaterials.2005.05.056
10.1089/ten.tea.2008.0215
10.1002/adma.201705388
10.1002/jor.20384
10.1007/BF02324725
10.1096/fj.01-0656fje
10.1002/jor.22312
10.1115/1.1374202
10.1038/boneres.2015.12
10.1097/00007632-199506000-00022
10.1089/107632701753337645
10.1002/jbm.a.33216
10.1016/j.addr.2007.08.014
10.1016/j.biomaterials.2003.10.056
10.1016/j.spinee.2012.12.002
10.1073/pnas.1107094108
10.1097/00003086-199810001-00006
10.1097/00007632-199602150-00009
10.1038/nmat2558
10.3109/03008208909103905
10.1038/s41598-018-19502-y
10.1002/term.2250
10.1016/j.jbiomech.2009.12.001
10.1016/j.biomaterials.2014.11.049
10.1007/s10439-008-9629-2
10.1097/00007632-199512150-00010
10.1016/j.biomaterials.2005.07.023
10.1016/j.jmbbm.2014.08.012
10.1016/j.progpolymsci.2011.11.007
10.1088/1758-5082/3/2/021001
10.1016/j.jmbbm.2016.05.003
10.1016/j.orthres.2003.12.012
10.1002/app.1981.070261124
10.1093/rb/rbx021
10.1114/B:ABME.0000039357.70905.94
10.1115/1.3212104
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jmbbm.2019.06.029
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
EndPage 326
ExternalDocumentID 31301603
10_1016_j_jmbbm_2019_06_029
S1751616118317053
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
ID FETCH-LOGICAL-c359t-47fd98a40775089df3cf3e9d1fe4f998ac8fc2a9a8f7c4bab467573b384360df3
IEDL.DBID .~1
ISSN 1751-6161
1878-0180
IngestDate Thu Jul 10 20:57:01 EDT 2025
Thu Apr 03 07:08:09 EDT 2025
Tue Jul 01 02:19:09 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Sun Apr 06 06:54:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biaxial mechanics
Annulus fibrosus
Angle-ply laminate
Scaffold
Tissue engineering
Intervertebral disc
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-47fd98a40775089df3cf3e9d1fe4f998ac8fc2a9a8f7c4bab467573b384360df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31301603
PQID 2257710539
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2257710539
pubmed_primary_31301603
crossref_primary_10_1016_j_jmbbm_2019_06_029
crossref_citationtrail_10_1016_j_jmbbm_2019_06_029
elsevier_sciencedirect_doi_10_1016_j_jmbbm_2019_06_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Uden, Silva-Correia, Correlo, Oliveira, Reis (bib59) 2015; 7
Guterl, See, Blanquer, Pandit, Ferguson, Benneker, Grijpma, Sakai, Eglin, Alini, Iatridis, Grad (bib20) 2013; 25
Koepsell, Remund, Bao, Neufeld, Fong, Deng (bib28) 2011; 99A
Ebara, Iatridis, Setton, Foster, Mow, Weidenbaum (bib14) 1996; 21
Isaacs, Vresilovic, Sarkar, Marcolongo (bib26) 2014; 40
Humzah, Soames (bib23) 1988; 220
Haudenschild, Hsieh, Kapila, Lotz (bib21) 2009; 37
Liu, Tang, Zhao, Chai, Kang (bib32) 2018; 30
Acaroglu, Iatridis, Setton, Foster, Mow, Weidenbaum (bib1) 1995; 20
Liu, Zhu, Li, Zhou, Chen, Yang, Li (bib31) 2015; 3
McGuire, Borem, Mercuri (bib37) 2017; 11
Pitt, Chasalow, Hibionada, Klimas, Schindler (bib52) 2003; 26
Nerurkar, Elliott, Mauck (bib44) 2010; 43
Hutmacher (bib24) 2000
Nerurkar, Baker, Sen, Wible, Elliott, Mauck (bib43) 2009; 8
Agrawal, Ray (bib2) 2001; 55
Buckwalter (bib7) 1995; 20
Ringe, Kaps, Burmester, Sittinger (bib53) 2002; 89
Moroni, de Wijn, van Blitterswijk (bib41) 2006; 27
Simpson (bib57) 1992; 22
Michalek, Buckley, Bonassar, Cohen, Iatridis (bib40) 2009; 42
McBeath, Pirone, Nelson, Bhadriraju, Chen (bib36) 2004; 6
Nerurkar, Elliott, Mauck (bib42) 2007; 25
Lee, Langrana, Parsons, Zimmerman (bib30) 1991; 16
Kang, Le, Li, Lysdahl, Chen, Besenbacher, Bünger (bib27) 2013; 1
Schmidt, Kettler, Rohlmann, Claes, Wilke (bib54) 2007; 22
Strange, Tonsomboon, Oyen (bib58) 2014; 25
Cassidy, Hiltner, Baer (bib9) 1989; 23
Shan, Li, Liu, Mamuti, Wang, Zhao (bib56) 2015; 24
Carter, Beaupré, Giori, Helms (bib8) 1998
Makinde, Thibodeau, Neale (bib35) 1992; 32
Ayturk, Puttlitz (bib4) 2011; 14
Bass, Ashford, Segal, Lotz (bib5) 2004; 32
Guerin, Elliott (bib19) 2006; 39
Driscoll, Nakasone, Szczesny, Elliott, Mauck (bib13) 2013; 31
Elliott, Setton (bib15) 2001; 123
Pei, Wang, Fan, Wang, Watari, Li (bib50) 2017; 4
Iatridis, Nicoll, Michalek, Walter, Gupta (bib25) 2013; 13
Melchels, Domingos, Klein, Malda, Bartolo, Hutmacher (bib39) 2012; 37
Green, Adams, Dolan (bib18) 1993; 2
Page, Puttlitz (bib48) 2018
Engler, Sen, Sweeney, Discher (bib16) 2006; 126
Long, Torre, Hom, Assael, Iatridis (bib34) 2016; 138
O'Connell, Guerin, Elliott (bib46) 2009; 131
Yang, Leong, Du, Chua (bib63) 2001; 7
Chan, Leong (bib11) 2008; 17
Park, Gil, Cho, Mandal, Tien, Min, Kaplan (bib49) 2011; 18
Mekhileri, Lim, Brown, Mutreja, Schon, Hooper, Woodfield (bib38) 2018; 10
Loh, Choong (bib33) 2013; 19
Bowles, Gebhard, Härtl, Bonassar (bib6) 2011; 108
Wagner, Lotz (bib60) 2004; 22
Schuurman, Khristov, Pot, Weeren, Dhert, Malda (bib55) 2011; 3
O'Connell, Sen, Elliott (bib47) 2012; 11
Chen, Hochleitner, Woodfield, Groll, Dalton, Amsden (bib12) 2016; 17
Waldman, Lee (bib61) 2005; 26
Castilho, Hochleitner, Wilson, Rietbergen, Dalton, Groll, Malda, Ito (bib10) 2018; 8
Woodfield, Malda, de Wijn, Péters, Riesle, van Blitterswijk (bib62) 2004; 25
Pirvu, Blanquer, Benneker, Grijpma, Richards, Alini, Eglin, Grad, Li (bib51) 2015; 42
Ghosh, Ingber (bib17) 2007; 59
Nesti, Li, Shanti, Jiang, Jackson, Freedman, Kuklo, Giuliani, Tuan (bib45) 2008; 14
Labus, Puttlitz (bib29) 2016; 62
Hedman, Kostuik, Fernie, Hellier (bib22) 1991; 16
Altman, Horan, Martin, Farhadi, Stark, Volloch, Vunjak-Novakovic, Richmond, Kaplan (bib3) 2001; 16
Long (10.1016/j.jmbbm.2019.06.029_bib34) 2016; 138
Pitt (10.1016/j.jmbbm.2019.06.029_bib52) 2003; 26
Makinde (10.1016/j.jmbbm.2019.06.029_bib35) 1992; 32
Pei (10.1016/j.jmbbm.2019.06.029_bib50) 2017; 4
Iatridis (10.1016/j.jmbbm.2019.06.029_bib25) 2013; 13
Isaacs (10.1016/j.jmbbm.2019.06.029_bib26) 2014; 40
Pirvu (10.1016/j.jmbbm.2019.06.029_bib51) 2015; 42
Labus (10.1016/j.jmbbm.2019.06.029_bib29) 2016; 62
O'Connell (10.1016/j.jmbbm.2019.06.029_bib47) 2012; 11
Melchels (10.1016/j.jmbbm.2019.06.029_bib39) 2012; 37
Guterl (10.1016/j.jmbbm.2019.06.029_bib20) 2013; 25
Kang (10.1016/j.jmbbm.2019.06.029_bib27) 2013; 1
Loh (10.1016/j.jmbbm.2019.06.029_bib33) 2013; 19
Acaroglu (10.1016/j.jmbbm.2019.06.029_bib1) 1995; 20
Yang (10.1016/j.jmbbm.2019.06.029_bib63) 2001; 7
Woodfield (10.1016/j.jmbbm.2019.06.029_bib62) 2004; 25
Uden (10.1016/j.jmbbm.2019.06.029_bib59) 2015; 7
Cassidy (10.1016/j.jmbbm.2019.06.029_bib9) 1989; 23
Haudenschild (10.1016/j.jmbbm.2019.06.029_bib21) 2009; 37
Nerurkar (10.1016/j.jmbbm.2019.06.029_bib42) 2007; 25
Ringe (10.1016/j.jmbbm.2019.06.029_bib53) 2002; 89
Shan (10.1016/j.jmbbm.2019.06.029_bib56) 2015; 24
Liu (10.1016/j.jmbbm.2019.06.029_bib32) 2018; 30
Castilho (10.1016/j.jmbbm.2019.06.029_bib10) 2018; 8
Nesti (10.1016/j.jmbbm.2019.06.029_bib45) 2008; 14
Bowles (10.1016/j.jmbbm.2019.06.029_bib6) 2011; 108
Elliott (10.1016/j.jmbbm.2019.06.029_bib15) 2001; 123
Simpson (10.1016/j.jmbbm.2019.06.029_bib57) 1992; 22
Carter (10.1016/j.jmbbm.2019.06.029_bib8) 1998
Chan (10.1016/j.jmbbm.2019.06.029_bib11) 2008; 17
Schuurman (10.1016/j.jmbbm.2019.06.029_bib55) 2011; 3
Ebara (10.1016/j.jmbbm.2019.06.029_bib14) 1996; 21
Guerin (10.1016/j.jmbbm.2019.06.029_bib19) 2006; 39
Page (10.1016/j.jmbbm.2019.06.029_bib48) 2018
McBeath (10.1016/j.jmbbm.2019.06.029_bib36) 2004; 6
Nerurkar (10.1016/j.jmbbm.2019.06.029_bib43) 2009; 8
O'Connell (10.1016/j.jmbbm.2019.06.029_bib46) 2009; 131
McGuire (10.1016/j.jmbbm.2019.06.029_bib37) 2017; 11
Waldman (10.1016/j.jmbbm.2019.06.029_bib61) 2005; 26
Altman (10.1016/j.jmbbm.2019.06.029_bib3) 2001; 16
Lee (10.1016/j.jmbbm.2019.06.029_bib30) 1991; 16
Bass (10.1016/j.jmbbm.2019.06.029_bib5) 2004; 32
Agrawal (10.1016/j.jmbbm.2019.06.029_bib2) 2001; 55
Schmidt (10.1016/j.jmbbm.2019.06.029_bib54) 2007; 22
Strange (10.1016/j.jmbbm.2019.06.029_bib58) 2014; 25
Ayturk (10.1016/j.jmbbm.2019.06.029_bib4) 2011; 14
Park (10.1016/j.jmbbm.2019.06.029_bib49) 2011; 18
Hedman (10.1016/j.jmbbm.2019.06.029_bib22) 1991; 16
Hutmacher (10.1016/j.jmbbm.2019.06.029_bib24) 2000
Moroni (10.1016/j.jmbbm.2019.06.029_bib41) 2006; 27
Liu (10.1016/j.jmbbm.2019.06.029_bib31) 2015; 3
Driscoll (10.1016/j.jmbbm.2019.06.029_bib13) 2013; 31
Nerurkar (10.1016/j.jmbbm.2019.06.029_bib44) 2010; 43
Humzah (10.1016/j.jmbbm.2019.06.029_bib23) 1988; 220
Wagner (10.1016/j.jmbbm.2019.06.029_bib60) 2004; 22
Buckwalter (10.1016/j.jmbbm.2019.06.029_bib7) 1995; 20
Engler (10.1016/j.jmbbm.2019.06.029_bib16) 2006; 126
Michalek (10.1016/j.jmbbm.2019.06.029_bib40) 2009; 42
Mekhileri (10.1016/j.jmbbm.2019.06.029_bib38) 2018; 10
Green (10.1016/j.jmbbm.2019.06.029_bib18) 1993; 2
Chen (10.1016/j.jmbbm.2019.06.029_bib12) 2016; 17
Koepsell (10.1016/j.jmbbm.2019.06.029_bib28) 2011; 99A
Ghosh (10.1016/j.jmbbm.2019.06.029_bib17) 2007; 59
References_xml – volume: 3
  year: 2011
  ident: bib55
  article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties
  publication-title: Biofabrication
– volume: 37
  start-page: 492
  year: 2009
  end-page: 502
  ident: bib21
  article-title: Pressure and distortion regulate human mesenchymal stem cell gene expression
  publication-title: Ann. Biomed. Eng.
– volume: 42
  start-page: 2279
  year: 2009
  end-page: 2285
  ident: bib40
  article-title: Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content
  publication-title: J. Biomech.
– volume: 131
  start-page: 111007
  year: 2009
  ident: bib46
  article-title: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration
  publication-title: J. Biomech. Eng.
– volume: 6
  start-page: 483
  year: 2004
  end-page: 495
  ident: bib36
  article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment
  publication-title: Dev. Cell
– year: 2018
  ident: bib48
  article-title: Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering Part II: finite element analyses
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 138
  year: 2016
  ident: bib34
  article-title: Design requirements for annulus fibrosus repair: review of forces, displacements, and material properties of the intervertebral disk and a summary of candidate hydrogels for repair
  publication-title: J. Biomech. Eng.
– volume: 11
  start-page: 493
  year: 2012
  end-page: 503
  ident: bib47
  article-title: Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration
  publication-title: Biomechanics Model. Mechanobiol.
– volume: 1
  start-page: 5462
  year: 2013
  end-page: 5468
  ident: bib27
  article-title: Engineered three-dimensional nanofibrous multi-lamellar structure for annulus fibrosus repair
  publication-title: J. Mater. Chem. B
– volume: 27
  start-page: 974
  year: 2006
  end-page: 985
  ident: bib41
  article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
  publication-title: Biomaterials
– volume: 42
  start-page: 11
  year: 2015
  end-page: 19
  ident: bib51
  article-title: A combined biomaterial and cellular approach for annulus fibrosus rupture repair
  publication-title: Biomaterials
– volume: 7
  start-page: 679
  year: 2001
  end-page: 689
  ident: bib63
  article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors
  publication-title: Tissue Eng.
– volume: 40
  start-page: 75
  year: 2014
  end-page: 84
  ident: bib26
  article-title: Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 8
  start-page: 986
  year: 2009
  end-page: 992
  ident: bib43
  article-title: Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus
  publication-title: Nat. Mater.
– volume: 17
  start-page: 467
  year: 2008
  end-page: 479
  ident: bib11
  article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations
  publication-title: Eur. Spine J.
– volume: 20
  start-page: 1307
  year: 1995
  end-page: 1314
  ident: bib7
  article-title: Aging and degeneration of the human intervertebral disc
  publication-title: Spine (Phila Pa 1976)
– volume: 14
  start-page: 1527
  year: 2008
  end-page: 1537
  ident: bib45
  article-title: Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam
  publication-title: Tissue Eng. A
– volume: 17
  start-page: 208
  year: 2016
  end-page: 214
  ident: bib12
  article-title: Additive manufacturing of a photo-cross-linkable polymer via direct melt electrospinning writing for producing high strength structures
  publication-title: Biomacromolecules
– volume: 123
  start-page: 256
  year: 2001
  end-page: 263
  ident: bib15
  article-title: Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions
  publication-title: J. Biomech. Eng.
– volume: 62
  start-page: 195
  year: 2016
  end-page: 208
  ident: bib29
  article-title: “An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 3
  start-page: 15012
  year: 2015
  ident: bib31
  article-title: The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells
  publication-title: Bone Res.
– volume: 108
  start-page: 13106
  year: 2011
  end-page: 13111
  ident: bib6
  article-title: Tissue-engineered intervertebral discs produce New matrix, maintain disc height, and restore biomechanical function to the rodent spine
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 25
  start-page: 1
  year: 2013
  end-page: 21
  ident: bib20
  article-title: Challenges and strategies in the repair of ruptured annulus fibrosus
  publication-title: Eur. Cells Mater.
– volume: 25
  start-page: 4149
  year: 2004
  end-page: 4161
  ident: bib62
  article-title: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
  publication-title: Biomaterials
– volume: 16
  start-page: S256
  year: 1991
  end-page: S260
  ident: bib22
  article-title: Design of an intervertebral disc prosthesis
  publication-title: Spine
– volume: 18
  start-page: 447
  year: 2011
  end-page: 458
  ident: bib49
  article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds
  publication-title: Tissue Eng.
– volume: 8
  start-page: 1245
  year: 2018
  ident: bib10
  article-title: Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds
  publication-title: Sci. Rep.
– volume: 220
  start-page: 337
  year: 1988
  end-page: 356
  ident: bib23
  article-title: Human intervertebral disc: structure and function
  publication-title: Anat. Rec.
– volume: 31
  start-page: 864
  year: 2013
  end-page: 870
  ident: bib13
  article-title: Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering
  publication-title: J. Orthop. Res.
– volume: 126
  start-page: 677
  year: 2006
  end-page: 689
  ident: bib16
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
– volume: 13
  start-page: 243
  year: 2013
  end-page: 262
  ident: bib25
  article-title: Role of biomechanics on intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair?
  publication-title: Spine J.
– volume: 22
  start-page: 901
  year: 2004
  end-page: 909
  ident: bib60
  article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus
  publication-title: J. Orthop. Res.
– volume: 26
  start-page: 7504
  year: 2005
  end-page: 7513
  ident: bib61
  article-title: Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues
  publication-title: Biomaterials
– volume: 99A
  start-page: 564
  year: 2011
  end-page: 575
  ident: bib28
  article-title: Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers
  publication-title: J. Biomed. Mater. Res.
– volume: 24
  start-page: 1909
  year: 2015
  end-page: 1916
  ident: bib56
  article-title: Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings
  publication-title: Eur. Spine J.
– volume: 25
  start-page: 1018
  year: 2007
  end-page: 1028
  ident: bib42
  article-title: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering
  publication-title: J. Orthop. Res.
– volume: 32
  start-page: 138
  year: 1992
  end-page: 144
  ident: bib35
  article-title: Development of an apparatus for biaxial testing using cruciform specimens
  publication-title: Exp. Mech.
– volume: 4
  start-page: 257
  year: 2017
  end-page: 268
  ident: bib50
  article-title: Fiber-reinforced scaffolds in soft tissue engineering
  publication-title: Regen. Biomater.
– volume: 21
  start-page: 452
  year: 1996
  end-page: 461
  ident: bib14
  article-title: Tensile properties of nondegenerate human lumbar anulus fibrosus
  publication-title: Spine
– volume: 22
  start-page: 988
  year: 2007
  end-page: 998
  ident: bib54
  article-title: The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis
  publication-title: Clin. Biomech.
– volume: 37
  start-page: 1079
  year: 2012
  end-page: 1104
  ident: bib39
  article-title: Additive manufacturing of tissues and organs
  publication-title: Prog. Polym. Sci.
– start-page: S41
  year: 1998
  end-page: S55
  ident: bib8
  article-title: Mechanobiology of skeletal regeneration,
  publication-title: Clin. Orthop. Relat. Res.
– volume: 2
  start-page: 209
  year: 1993
  end-page: 214
  ident: bib18
  article-title: Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life
  publication-title: Eur. Spine J.
– volume: 26
  start-page: 3779
  year: 2003
  end-page: 3787
  ident: bib52
  article-title: “Aliphatic polyesters. I. The degradation of poly(Ε‐caprolactone) in vivo
  publication-title: J. Appl. Polym. Sci.
– volume: 20
  start-page: 2690
  year: 1995
  end-page: 2701
  ident: bib1
  article-title: Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus
  publication-title: Spine
– volume: 16
  start-page: 270
  year: 2001
  end-page: 272
  ident: bib3
  article-title: Cell differentiation by mechanical stress
  publication-title: FASEB J.
– volume: 43
  start-page: 1017
  year: 2010
  end-page: 1030
  ident: bib44
  article-title: Mechanical design criteria for intervertebral disc tissue engineering
  publication-title: J. Biomech.
– volume: 30
  start-page: 1705388
  year: 2018
  ident: bib32
  article-title: Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine
  publication-title: Adv. Mater.
– volume: 7
  year: 2015
  ident: bib59
  article-title: Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement
  publication-title: Biofabrication
– volume: 55
  start-page: 141
  year: 2001
  end-page: 150
  ident: bib2
  article-title: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering
  publication-title: J. Biomed. Mater. Res.
– volume: 19
  start-page: 485
  year: 2013
  end-page: 502
  ident: bib33
  article-title: Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size
  publication-title: Tissue Eng. B Rev.
– volume: 25
  start-page: 681
  year: 2014
  end-page: 690
  ident: bib58
  article-title: Mechanical behaviour of electrospun fibre-reinforced hydrogels
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 39
  start-page: 1410
  year: 2006
  end-page: 1418
  ident: bib19
  article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load
  publication-title: J. Biomech.
– volume: 16
  start-page: S253
  year: 1991
  end-page: S255
  ident: bib30
  article-title: Development of a prosthetic intervertebral disc
  publication-title: Spine
– volume: 59
  start-page: 1306
  year: 2007
  end-page: 1318
  ident: bib17
  article-title: Micromechanical control of cell and tissue development: implications for tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
– volume: 22
  start-page: 889
  year: 1992
  end-page: 897
  ident: bib57
  article-title: Intervertebral disc disease
  publication-title: Vet. Clin. Small Anim. Pract.
– volume: 23
  start-page: 75
  year: 1989
  end-page: 88
  ident: bib9
  article-title: Hierarchical structure of the intervertebral disc
  publication-title: Connect. Tissue Res.
– volume: 89
  start-page: 338
  year: 2002
  end-page: 351
  ident: bib53
  article-title: Stem cells for regenerative medicine: advances in the engineering of tissues and organs
  publication-title: Naturwissenschaften
– start-page: 175
  year: 2000
  end-page: 189
  ident: bib24
  publication-title: “Scaffolds in Tissue Engineering Bone and Cartilage,”
– volume: 10
  year: 2018
  ident: bib38
  article-title: Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs
  publication-title: Biofabrication
– volume: 11
  start-page: 3488
  year: 2017
  end-page: 3493
  ident: bib37
  article-title: The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair
  publication-title: J. Tissue Eng. Regenerat. Med.
– volume: 32
  start-page: 1231
  year: 2004
  end-page: 1242
  ident: bib5
  article-title: Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation
  publication-title: Ann. Biomed. Eng.
– volume: 14
  start-page: 695
  year: 2011
  end-page: 705
  ident: bib4
  article-title: Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 1
  start-page: 5462
  issue: 40
  year: 2013
  ident: 10.1016/j.jmbbm.2019.06.029_bib27
  article-title: Engineered three-dimensional nanofibrous multi-lamellar structure for annulus fibrosus repair
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20562b
– volume: 19
  start-page: 485
  issue: 6
  year: 2013
  ident: 10.1016/j.jmbbm.2019.06.029_bib33
  article-title: Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size
  publication-title: Tissue Eng. B Rev.
  doi: 10.1089/ten.teb.2012.0437
– volume: 89
  start-page: 338
  issue: 8
  year: 2002
  ident: 10.1016/j.jmbbm.2019.06.029_bib53
  article-title: Stem cells for regenerative medicine: advances in the engineering of tissues and organs
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-002-0344-9
– volume: 16
  start-page: S256
  issue: 6 Suppl. l
  year: 1991
  ident: 10.1016/j.jmbbm.2019.06.029_bib22
  article-title: Design of an intervertebral disc prosthesis
  publication-title: Spine
  doi: 10.1097/00007632-199106001-00016
– volume: 138
  issue: 2
  year: 2016
  ident: 10.1016/j.jmbbm.2019.06.029_bib34
  article-title: Design requirements for annulus fibrosus repair: review of forces, displacements, and material properties of the intervertebral disk and a summary of candidate hydrogels for repair
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4032353
– volume: 6
  start-page: 483
  issue: 4
  year: 2004
  ident: 10.1016/j.jmbbm.2019.06.029_bib36
  article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(04)00075-9
– volume: 10
  issue: 2
  year: 2018
  ident: 10.1016/j.jmbbm.2019.06.029_bib38
  article-title: Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa9ef1
– volume: 18
  start-page: 447
  issue: 5–6
  year: 2011
  ident: 10.1016/j.jmbbm.2019.06.029_bib49
  article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds
  publication-title: Tissue Eng.
– volume: 42
  start-page: 2279
  issue: 14
  year: 2009
  ident: 10.1016/j.jmbbm.2019.06.029_bib40
  article-title: Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.047
– volume: 24
  start-page: 1909
  issue: 9
  year: 2015
  ident: 10.1016/j.jmbbm.2019.06.029_bib56
  article-title: Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-015-4061-4
– start-page: 175
  year: 2000
  ident: 10.1016/j.jmbbm.2019.06.029_bib24
– volume: 25
  start-page: 1
  year: 2013
  ident: 10.1016/j.jmbbm.2019.06.029_bib20
  article-title: Challenges and strategies in the repair of ruptured annulus fibrosus
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v025a01
– volume: 17
  start-page: 208
  issue: 1
  year: 2016
  ident: 10.1016/j.jmbbm.2019.06.029_bib12
  article-title: Additive manufacturing of a photo-cross-linkable polymer via direct melt electrospinning writing for producing high strength structures
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b01316
– volume: 11
  start-page: 493
  issue: 3–4
  year: 2012
  ident: 10.1016/j.jmbbm.2019.06.029_bib47
  article-title: Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration
  publication-title: Biomechanics Model. Mechanobiol.
  doi: 10.1007/s10237-011-0328-9
– volume: 2
  start-page: 209
  issue: 4
  year: 1993
  ident: 10.1016/j.jmbbm.2019.06.029_bib18
  article-title: Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life
  publication-title: Eur. Spine J.
  doi: 10.1007/BF00299448
– volume: 25
  start-page: 681
  issue: 3
  year: 2014
  ident: 10.1016/j.jmbbm.2019.06.029_bib58
  article-title: Mechanical behaviour of electrospun fibre-reinforced hydrogels
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-013-5123-y
– volume: 14
  start-page: 695
  issue: 8
  year: 2011
  ident: 10.1016/j.jmbbm.2019.06.029_bib4
  article-title: Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2010.493517
– volume: 126
  start-page: 677
  issue: 4
  year: 2006
  ident: 10.1016/j.jmbbm.2019.06.029_bib16
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.044
– volume: 22
  start-page: 988
  issue: 9
  year: 2007
  ident: 10.1016/j.jmbbm.2019.06.029_bib54
  article-title: The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.07.008
– volume: 39
  start-page: 1410
  issue: 8
  year: 2006
  ident: 10.1016/j.jmbbm.2019.06.029_bib19
  article-title: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.04.007
– volume: 220
  start-page: 337
  issue: 4
  year: 1988
  ident: 10.1016/j.jmbbm.2019.06.029_bib23
  article-title: Human intervertebral disc: structure and function
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092200402
– volume: 16
  start-page: S253
  issue: 6 Suppl. l
  year: 1991
  ident: 10.1016/j.jmbbm.2019.06.029_bib30
  article-title: Development of a prosthetic intervertebral disc
  publication-title: Spine
  doi: 10.1097/00007632-199106001-00015
– volume: 55
  start-page: 141
  issue: 2
  year: 2001
  ident: 10.1016/j.jmbbm.2019.06.029_bib2
  article-title: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J
– volume: 17
  start-page: 467
  issue: 4
  year: 2008
  ident: 10.1016/j.jmbbm.2019.06.029_bib11
  article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-008-0745-3
– volume: 22
  start-page: 889
  issue: 4
  year: 1992
  ident: 10.1016/j.jmbbm.2019.06.029_bib57
  article-title: Intervertebral disc disease
  publication-title: Vet. Clin. Small Anim. Pract.
  doi: 10.1016/S0195-5616(92)50081-X
– volume: 26
  start-page: 7504
  issue: 35
  year: 2005
  ident: 10.1016/j.jmbbm.2019.06.029_bib61
  article-title: Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.056
– volume: 14
  start-page: 1527
  issue: 9
  year: 2008
  ident: 10.1016/j.jmbbm.2019.06.029_bib45
  article-title: Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2008.0215
– volume: 30
  start-page: 1705388
  issue: 17
  year: 2018
  ident: 10.1016/j.jmbbm.2019.06.029_bib32
  article-title: Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705388
– volume: 25
  start-page: 1018
  issue: 8
  year: 2007
  ident: 10.1016/j.jmbbm.2019.06.029_bib42
  article-title: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20384
– volume: 32
  start-page: 138
  issue: 2
  year: 1992
  ident: 10.1016/j.jmbbm.2019.06.029_bib35
  article-title: Development of an apparatus for biaxial testing using cruciform specimens
  publication-title: Exp. Mech.
  doi: 10.1007/BF02324725
– volume: 16
  start-page: 270
  issue: 2
  year: 2001
  ident: 10.1016/j.jmbbm.2019.06.029_bib3
  article-title: Cell differentiation by mechanical stress
  publication-title: FASEB J.
  doi: 10.1096/fj.01-0656fje
– volume: 31
  start-page: 864
  issue: 6
  year: 2013
  ident: 10.1016/j.jmbbm.2019.06.029_bib13
  article-title: Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22312
– volume: 123
  start-page: 256
  issue: 3
  year: 2001
  ident: 10.1016/j.jmbbm.2019.06.029_bib15
  article-title: Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1374202
– volume: 3
  start-page: 15012
  year: 2015
  ident: 10.1016/j.jmbbm.2019.06.029_bib31
  article-title: The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells
  publication-title: Bone Res.
  doi: 10.1038/boneres.2015.12
– volume: 20
  start-page: 1307
  issue: 11
  year: 1995
  ident: 10.1016/j.jmbbm.2019.06.029_bib7
  article-title: Aging and degeneration of the human intervertebral disc
  publication-title: Spine (Phila Pa 1976)
  doi: 10.1097/00007632-199506000-00022
– volume: 7
  start-page: 679
  issue: 6
  year: 2001
  ident: 10.1016/j.jmbbm.2019.06.029_bib63
  article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors
  publication-title: Tissue Eng.
  doi: 10.1089/107632701753337645
– volume: 99A
  start-page: 564
  issue: 4
  year: 2011
  ident: 10.1016/j.jmbbm.2019.06.029_bib28
  article-title: Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.33216
– volume: 59
  start-page: 1306
  issue: 13
  year: 2007
  ident: 10.1016/j.jmbbm.2019.06.029_bib17
  article-title: Micromechanical control of cell and tissue development: implications for tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.08.014
– volume: 25
  start-page: 4149
  issue: 18
  year: 2004
  ident: 10.1016/j.jmbbm.2019.06.029_bib62
  article-title: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.056
– volume: 13
  start-page: 243
  issue: 3
  year: 2013
  ident: 10.1016/j.jmbbm.2019.06.029_bib25
  article-title: Role of biomechanics on intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair?
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2012.12.002
– volume: 108
  start-page: 13106
  issue: 32
  year: 2011
  ident: 10.1016/j.jmbbm.2019.06.029_bib6
  article-title: Tissue-engineered intervertebral discs produce New matrix, maintain disc height, and restore biomechanical function to the rodent spine
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1107094108
– start-page: S41
  issue: 355 Suppl. l
  year: 1998
  ident: 10.1016/j.jmbbm.2019.06.029_bib8
  article-title: Mechanobiology of skeletal regeneration,
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-199810001-00006
– volume: 21
  start-page: 452
  issue: 4
  year: 1996
  ident: 10.1016/j.jmbbm.2019.06.029_bib14
  article-title: Tensile properties of nondegenerate human lumbar anulus fibrosus
  publication-title: Spine
  doi: 10.1097/00007632-199602150-00009
– year: 2018
  ident: 10.1016/j.jmbbm.2019.06.029_bib48
  article-title: Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering Part II: finite element analyses
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 8
  start-page: 986
  issue: 12
  year: 2009
  ident: 10.1016/j.jmbbm.2019.06.029_bib43
  article-title: Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2558
– volume: 23
  start-page: 75
  issue: 1
  year: 1989
  ident: 10.1016/j.jmbbm.2019.06.029_bib9
  article-title: Hierarchical structure of the intervertebral disc
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008208909103905
– volume: 8
  start-page: 1245
  issue: 1
  year: 2018
  ident: 10.1016/j.jmbbm.2019.06.029_bib10
  article-title: Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19502-y
– volume: 11
  start-page: 3488
  issue: 12
  year: 2017
  ident: 10.1016/j.jmbbm.2019.06.029_bib37
  article-title: The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair
  publication-title: J. Tissue Eng. Regenerat. Med.
  doi: 10.1002/term.2250
– volume: 43
  start-page: 1017
  issue: 6
  year: 2010
  ident: 10.1016/j.jmbbm.2019.06.029_bib44
  article-title: Mechanical design criteria for intervertebral disc tissue engineering
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.12.001
– volume: 42
  start-page: 11
  year: 2015
  ident: 10.1016/j.jmbbm.2019.06.029_bib51
  article-title: A combined biomaterial and cellular approach for annulus fibrosus rupture repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.11.049
– volume: 37
  start-page: 492
  issue: 3
  year: 2009
  ident: 10.1016/j.jmbbm.2019.06.029_bib21
  article-title: Pressure and distortion regulate human mesenchymal stem cell gene expression
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9629-2
– volume: 20
  start-page: 2690
  issue: 24
  year: 1995
  ident: 10.1016/j.jmbbm.2019.06.029_bib1
  article-title: Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus
  publication-title: Spine
  doi: 10.1097/00007632-199512150-00010
– volume: 27
  start-page: 974
  issue: 7
  year: 2006
  ident: 10.1016/j.jmbbm.2019.06.029_bib41
  article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.023
– volume: 40
  start-page: 75
  year: 2014
  ident: 10.1016/j.jmbbm.2019.06.029_bib26
  article-title: Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2014.08.012
– volume: 37
  start-page: 1079
  issue: 8
  year: 2012
  ident: 10.1016/j.jmbbm.2019.06.029_bib39
  article-title: Additive manufacturing of tissues and organs
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.11.007
– volume: 3
  issue: 2
  year: 2011
  ident: 10.1016/j.jmbbm.2019.06.029_bib55
  article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/2/021001
– volume: 7
  issue: 1
  year: 2015
  ident: 10.1016/j.jmbbm.2019.06.029_bib59
  article-title: Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement
  publication-title: Biofabrication
– volume: 62
  start-page: 195
  year: 2016
  ident: 10.1016/j.jmbbm.2019.06.029_bib29
  article-title: “An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.05.003
– volume: 22
  start-page: 901
  issue: 4
  year: 2004
  ident: 10.1016/j.jmbbm.2019.06.029_bib60
  article-title: Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2003.12.012
– volume: 26
  start-page: 3779
  issue: 11
  year: 2003
  ident: 10.1016/j.jmbbm.2019.06.029_bib52
  article-title: “Aliphatic polyesters. I. The degradation of poly(Ε‐caprolactone) in vivo
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1981.070261124
– volume: 4
  start-page: 257
  issue: 4
  year: 2017
  ident: 10.1016/j.jmbbm.2019.06.029_bib50
  article-title: Fiber-reinforced scaffolds in soft tissue engineering
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbx021
– volume: 32
  start-page: 1231
  issue: 9
  year: 2004
  ident: 10.1016/j.jmbbm.2019.06.029_bib5
  article-title: Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/B:ABME.0000039357.70905.94
– volume: 131
  start-page: 111007
  issue: 11
  year: 2009
  ident: 10.1016/j.jmbbm.2019.06.029_bib46
  article-title: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3212104
SSID ssj0060088
Score 2.2666826
Snippet Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 317
SubjectTerms Angle-ply laminate
Annulus fibrosus
Biaxial mechanics
Intervertebral disc
Scaffold
Tissue engineering
Title Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part I: Experimental evaluation
URI https://dx.doi.org/10.1016/j.jmbbm.2019.06.029
https://www.ncbi.nlm.nih.gov/pubmed/31301603
https://www.proquest.com/docview/2257710539
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcikHBJSPUlhNJY6E3aydxO6tlFbbIvYClXqzbMeWUm2zK7KVaA_97Z1xku0iwR44Jh4nlmcy86zMvGHso8_LjNuxSlTI6IBi0sRg1E2ktKbgAodzqnf-Ps0nF-L8MrvcYsd9LQylVXa-v_Xp0Vt3d4bdbg4XVTX8gYEP4UqOCJkTJwwxfhJ7Hdr05_tVmgfG89h7koQTku6Zh2KO19W1tVSOnqpI4hlx5l-j07_QZ4xCp8_Zsw4-wlG7whdsy9cv2dM1UsFddvelMr_RquDaU1Vv5RqYB-BfIVByCJQ-5mn5Ehaz2wTtoaoRbkLjTAjzWdkAolho0DnDMuoE_OPDYYFbA2eHcLLWFwAeCcNfsYvTk5_Hk6TrsJA4nqllIopQKmkE8eCNpCoDd4F7VabBi4AHMeNkcGOjjAyFE9ZYdKtZwS2XgucjFH_Ntut57d8ysCHPizJTznkcdKkMFpGCMEZan8qR2GPjfme16-jHqQvGTPd5Zlc6qkOTOjRl243VHvu0mrRo2Tc2i-e9yvQfRqQxPmyeeNArWOPnRf9MTO3nN41Gd1cgCMs4yrxpNb9aCcf4T1263_3va_fZDl21uYHv2fby143_gBhnaQfRiAfsydHZt8n0Ae_T_JQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2UPVdWmgHiWOj3aydxO4NKGi3wF4AiZtlO7YUtGRXzSK1_fUdOwkPqXDoNR4nlmcy81me-QZgx-VlxsxYJtJn4YCi00RT1E2EMLpgnIbzUO98Mssn5_zHRXaxBvt9LUxIq-x8f-vTo7fungy73Rwuq2p4SoGP4EpOCJkFThj2BNYDOxUfwPru9Ggy6x0yhfTYfjLIJ2FCTz4U07wur4wJFempjDyeEWr-M0A9BEBjIDp8CS86BIm77SJfwZqrX8PzO7yCb-DPXqV_kWHhlQuFvZVtcOGRfUcf8kOwdDFVy5W4nP9OyCSqmhAnNlZ7v5iXDRKQxYb8M66iWtDdvhyXtDs4_YYHd1oD4C1n-Fs4Pzw4258kXZOFxLJMrhJe-FIKzQMV3kjI0jPrmZNl6h33dBbTVng71lILX1hutCHPmhXMMMFZPiLxdzCoF7X7AGh8nhdlJq11NGhT4Q2BBa61MC4VI74B435nle0YyEMjjLnqU80uVVSHCupQIeFuLDfg682kZUvA8bh43qtM3bMjRSHi8YnbvYIV_WHh2kTXbnHdKPJ4BeGwjJHM-1bzNythBAFCo-6P__vZL_B0cnZyrI6ns6NP8CyMtKmCmzBY_bx2WwR5VuZzZ9J_AZD1_0U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biaxial+mechanics+of+3D+fiber+deposited+ply-laminate+scaffolds+for+soft+tissue+engineering+part+I%3A+Experimental+evaluation&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Page%2C+Mitchell&rft.au=Baer%2C+Kenzie&rft.au=Schon%2C+Ben&rft.au=Mekhileri%2C+Naveen&rft.date=2019-10-01&rft.issn=1751-6161&rft.volume=98&rft.spage=317&rft.epage=326&rft_id=info:doi/10.1016%2Fj.jmbbm.2019.06.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2019_06_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon