Cellular proliferation biases clonal lineage tracing and trajectory inference

Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, ho...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 40; no. 8
Main Authors Bonham-Carter, Becca, Schiebinger, Geoffrey
Format Journal Article
LanguageEnglish
Published England 02.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent. We demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias. Source code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones. Supplementary data are available at Bioinfomatics online.
AbstractList Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent. We demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias. Source code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones. Supplementary data are available at Bioinfomatics online.
Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent.MOTIVATIONLineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent.We demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias.RESULTSWe demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias.Source code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones.AVAILABILITY AND IMPLEMENTATIONSource code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones.
Author Bonham-Carter, Becca
Schiebinger, Geoffrey
Author_xml – sequence: 1
  givenname: Becca
  orcidid: 0000-0003-0163-4673
  surname: Bonham-Carter
  fullname: Bonham-Carter, Becca
– sequence: 2
  givenname: Geoffrey
  orcidid: 0000-0002-8290-7997
  surname: Schiebinger
  fullname: Schiebinger, Geoffrey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39102821$$D View this record in MEDLINE/PubMed
BookMark eNqFkD9PwzAQxS1UREvhK1QZWULtOLETiQVV_JOKWGC2HOdcuXLsYqdDvz0ubSVgYbob3rt773eJRs47QGhG8C3BDZ23xhunfejlYFSct4OEsqZnaEIo43lZEzL6sY_RZYxrjHGFK3aBxrQhuKgLMkGvC7B2a2XINsFboyGkg95lrZERYqasd9Jm1jiQK8iGIJVxq0y6br-vQQ0-7LKUBAI4BVfoXEsb4fo4p-jj8eF98Zwv355eFvfLXNGqGfKyLBRucQWM100Jui4wp4pS0hQVB64rTXXNGG8pLTFhXael1C2HIqVWnAGdopvD3RT6cwtxEL2JKjWRDvw2CorrJlVt6ipJZ0fptu2hE5tgehl24oQgCe4OAhV8jAG0UGb4hpAaGisIFnvi4jdxcSSe7OyP_fThH-MXWTWOAg
CitedBy_id crossref_primary_10_1016_j_cels_2024_11_001
Cites_doi 10.1038/s41586-018-0744-4
10.1038/s41587-020-0509-0
10.1038/s41586-019-0969-x
10.1038/s41467-021-23518-w
10.1038/s41587-019-0071-9
10.1073/pnas.1714723115
10.1016/j.cell.2019.01.006
10.1038/s41580-019-0186-3
10.1016/j.stem.2019.12.009
10.1038/s41587-022-01209-1
10.1186/s12864-018-4772-0
10.1016/j.stem.2018.04.014
10.1016/j.cell.2020.04.048
10.1126/science.aaw3381
10.1038/s41467-019-09670-4
10.1126/science.aar3131
10.1093/bioinformatics/btz296
10.1242/dev.169730
10.1038/s41576-020-0223-2
10.1038/s41467-020-16821-5
10.1242/dev.170506
10.1038/s41587-019-0068-4
10.1038/s41467-021-25133-1
10.1002/bies.201800056
10.1371/journal.pcbi.1009466
10.1038/nbt.4124
10.1186/s13059-019-1663-x
10.1038/nbt.4103
10.1038/nbt.3569
10.1371/journal.pcbi.1008205
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btae483
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 39102821
10_1093_bioinformatics_btae483
Genre Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
NPM
7X8
ID FETCH-LOGICAL-c359t-442c0b05e67894ef82073c3319257e7f5f3f8667b334016ddfaafb7e2102c76e3
ISSN 1367-4811
IngestDate Fri Jul 11 00:43:37 EDT 2025
Mon Jul 21 06:05:14 EDT 2025
Tue Jul 01 02:34:05 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Single Cell
Lineage Tracing
Sampling
Statistics
Trajectory Inference
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-442c0b05e67894ef82073c3319257e7f5f3f8667b334016ddfaafb7e2102c76e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0163-4673
0000-0002-8290-7997
OpenAccessLink https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae483/58739188/btae483.pdf
PMID 39102821
PQID 3089505985
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3089505985
pubmed_primary_39102821
crossref_citationtrail_10_1093_bioinformatics_btae483
crossref_primary_10_1093_bioinformatics_btae483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240802
PublicationDateYYYYMMDD 2024-08-02
PublicationDate_xml – month: 08
  year: 2024
  text: 20240802
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2024
References Kim (2024081723155823200_btae483-B12) 2020; 33
Schiebinger (2024081723155823200_btae483-B21) 2019; 176
Lin (2024081723155823200_btae483-B14) 2019; 35
Chen (2024081723155823200_btae483-B5) 2019; 10
Wolf (2024081723155823200_btae483-B34) 2019; 20
Farrell (2024081723155823200_btae483-B6) 2018; 360
Sakata (2024081723155823200_btae483-B20) 2020; 38
He (2024081723155823200_btae483-B9) 2021
Michaels (2024081723155823200_btae483-B16) 2023
Weinreb (2024081723155823200_btae483-B32) 2018; 115
Zafar (2024081723155823200_btae483-B36) 2020; 11
Setty (2024081723155823200_btae483-B22) 2016; 34
Forrow (2024081723155823200_btae483-B8) 2021; 12
Prasad (2024081723155823200_btae483-B17) 2020
Kester (2024081723155823200_btae483-B11) 2018; 23
Spanjaard (2024081723155823200_btae483-B24) 2018; 36
Tran (2024081723155823200_btae483-B28) 2020; 16
Weinreb (2024081723155823200_btae483-B33) 2020; 367
Street (2024081723155823200_btae483-B25) 2018; 19
Bowling (2024081723155823200_btae483-B3) 2020; 181
Raj (2024081723155823200_btae483-B18) 2018; 36
Hurley (2024081723155823200_btae483-B10) 2020; 26
Tong (2024081723155823200_btae483-B27) 2020
Setty (2024081723155823200_btae483-B23) 2019; 37
Fletcher (2024081723155823200_btae483-B7) 2018; 40
Lange (2024081723155823200_btae483-B13) 2021
Taherkhani (2024081723155823200_btae483-B26) 2021
Tritschler (2024081723155823200_btae483-B29) 2019; 146
Zhang (2024081723155823200_btae483-B37) 2021; 17
Wang (2024081723155823200_btae483-B31) 2022; 40
Cao (2024081723155823200_btae483-B4) 2019; 566
Baron (2024081723155823200_btae483-B1) 2019; 20
Yeo (2024081723155823200_btae483-B35) 2021; 12
Wagner (2024081723155823200_btae483-B30) 2020; 21
Biddy (2024081723155823200_btae483-B2) 2018; 564
McKenna (2024081723155823200_btae483-B15) 2019; 146
Saelens (2024081723155823200_btae483-B19) 2019; 37
References_xml – volume: 564
  start-page: 219
  year: 2018
  ident: 2024081723155823200_btae483-B2
  article-title: Single-cell mapping of lineage and identity in direct reprogramming
  publication-title: Nature
  doi: 10.1038/s41586-018-0744-4
– volume: 38
  start-page: 865
  year: 2020
  ident: 2024081723155823200_btae483-B20
  article-title: Base editors for simultaneous introduction of C-to-T and A-to-G mutations
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0509-0
– volume: 566
  start-page: 496
  year: 2019
  ident: 2024081723155823200_btae483-B4
  article-title: The single-cell transcriptional landscape of mammalian organogenesis
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 12
  start-page: 3222
  year: 2021
  ident: 2024081723155823200_btae483-B35
  article-title: Generative modeling of single-cell time series with prescient enables prediction of cell trajectories with interventions
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23518-w
– volume: 37
  start-page: 547
  year: 2019
  ident: 2024081723155823200_btae483-B19
  article-title: A comparison of single-cell trajectory inference methods
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0071-9
– volume: 115
  start-page: E2467
  year: 2018
  ident: 2024081723155823200_btae483-B32
  article-title: Fundamental limits on dynamic inference from single-cell snapshots
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1714723115
– start-page: 9526
  year: 2020
  ident: 2024081723155823200_btae483-B27
– volume: 176
  start-page: 928
  year: 2019
  ident: 2024081723155823200_btae483-B21
  article-title: Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.006
– volume: 20
  start-page: 753
  year: 2019
  ident: 2024081723155823200_btae483-B1
  article-title: Unravelling cellular relationships during development and regeneration using genetic lineage tracing
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-019-0186-3
– volume: 26
  start-page: 593
  year: 2020
  ident: 2024081723155823200_btae483-B10
  article-title: Reconstructed single-cell fate trajectories define lineage plasticity windows during differentiation of human psc-derived distal lung progenitors
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.12.009
– volume: 40
  start-page: 1066
  year: 2022
  ident: 2024081723155823200_btae483-B31
  article-title: CoSpar identifies early cell fate biases from single-cell transcriptomic and lineage information
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-022-01209-1
– volume: 19
  start-page: 477
  year: 2018
  ident: 2024081723155823200_btae483-B25
  article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4772-0
– volume: 23
  start-page: 166
  year: 2018
  ident: 2024081723155823200_btae483-B11
  article-title: Single-cell transcriptomics meets lineage tracing
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.04.014
– start-page: 6930
  year: 2021
  ident: 2024081723155823200_btae483-B9
– volume: 33
  start-page: 14567
  year: 2020
  ident: 2024081723155823200_btae483-B12
  article-title: Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning
  publication-title: Adv Neural Inf Process Syst
– volume: 181
  start-page: 1410
  year: 2020
  ident: 2024081723155823200_btae483-B3
  article-title: An engineered crispr-cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.048
– volume: 367
  start-page: eaaw3381
  year: 2020
  ident: 2024081723155823200_btae483-B33
  article-title: Lineage tracing on transcriptional landscapes links state to fate during differentiation
  publication-title: Science
  doi: 10.1126/science.aaw3381
– volume: 10
  start-page: 1903
  year: 2019
  ident: 2024081723155823200_btae483-B5
  article-title: Single-cell trajectories reconstruction, exploration and mapping of omics data with stream
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09670-4
– volume: 360
  start-page: eaar3131
  year: 2018
  ident: 2024081723155823200_btae483-B6
  article-title: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis
  publication-title: Science
  doi: 10.1126/science.aar3131
– volume: 35
  start-page: 4707
  year: 2019
  ident: 2024081723155823200_btae483-B14
  article-title: Continuous-state hmms for modeling time-series single-cell rna-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz296
– volume: 146
  start-page: dev169730
  year: 2019
  ident: 2024081723155823200_btae483-B15
  article-title: Recording development with single cell dynamic lineage tracing
  publication-title: Development
  doi: 10.1242/dev.169730
– volume: 21
  start-page: 410
  year: 2020
  ident: 2024081723155823200_btae483-B30
  article-title: Lineage tracing meets single-cell omics: opportunities and challenges
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-020-0223-2
– volume: 11
  start-page: 3055
  year: 2020
  ident: 2024081723155823200_btae483-B36
  article-title: Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16821-5
– volume: 146
  start-page: dev170506
  year: 2019
  ident: 2024081723155823200_btae483-B29
  article-title: Concepts and limitations for learning developmental trajectories from single cell genomics
  publication-title: Development
  doi: 10.1242/dev.170506
– volume: 37
  start-page: 451
  year: 2019
  ident: 2024081723155823200_btae483-B23
  article-title: Characterization of cell fate probabilities in single-cell data with palantir
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0068-4
– year: 2020
  ident: 2024081723155823200_btae483-B17
– start-page: 12267
  year: 2021
  ident: 2024081723155823200_btae483-B26
– volume: 12
  start-page: 4940
  year: 2021
  ident: 2024081723155823200_btae483-B8
  article-title: LineageOT is a unified framework for lineage tracing and trajectory inference
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25133-1
– volume: 40
  start-page: 1800056
  year: 2018
  ident: 2024081723155823200_btae483-B7
  article-title: Creating lineage trajectory maps via integration of single-cell RNA-sequencing and lineage tracing: integrating transgenic lineage tracing and single-cell RNA-sequencing is a robust approach for mapping developmental lineage trajectories and cell fate changes
  publication-title: BioEssays
  doi: 10.1002/bies.201800056
– volume: 17
  start-page: e1009466
  year: 2021
  ident: 2024081723155823200_btae483-B37
  article-title: Optimal transport analysis reveals trajectories in steady-state systems
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1009466
– volume: 36
  start-page: 469
  year: 2018
  ident: 2024081723155823200_btae483-B24
  article-title: Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4124
– year: 2021
  ident: 2024081723155823200_btae483-B13
– year: 2023
  ident: 2024081723155823200_btae483-B16
  article-title: Time- and lineage-resolved transcriptional profiling uncovers gene expression programs and clonal relationships that underlie human T lineage specification
  publication-title: bioRxiv
– volume: 20
  start-page: 59
  year: 2019
  ident: 2024081723155823200_btae483-B34
  article-title: PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1663-x
– volume: 36
  start-page: 442
  year: 2018
  ident: 2024081723155823200_btae483-B18
  article-title: Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4103
– volume: 34
  start-page: 637
  year: 2016
  ident: 2024081723155823200_btae483-B22
  article-title: Wishbone identifies bifurcating developmental trajectories from single-cell data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3569
– volume: 16
  start-page: e1008205
  year: 2020
  ident: 2024081723155823200_btae483-B28
  article-title: Tempora: cell trajectory inference using time-series single-cell RNA sequencing data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008205
SSID ssj0005056
Score 2.4617167
Snippet Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
Title Cellular proliferation biases clonal lineage tracing and trajectory inference
URI https://www.ncbi.nlm.nih.gov/pubmed/39102821
https://www.proquest.com/docview/3089505985
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6alEIuJekjcdKWDeRWFEva1WOPrWkIhfSUQG5Cu5olLo5sEhni_vrMPiRZxW2aXoRY0NjW93l2ZnYehJyEMmVRUkVBrgUE3BwSlhxkECutZMRUlNpamIsf6fkV_36dXPf587a6pJGn6tfGupL_QRXXEFdTJfsMZDuhuID3iC9eEWG8_hPGE5jNbBrpwsze0eDRlFPcmu4_q5mN8hk70iTmNHelaisS8f6nDdevbDaWrfgbHO9O576jqu3ibFqSPrRZ8H7sx1oI4eu8vilvg4lND7WEMYj1Rzw3U5A2euiD8LZ2bD3cEHOb7LYWgTQt3gKeew0JG9a8WnVdmDx98o3a2nWykoOfZBaaErgbbzNskP3bxtWlE7qDdFYMJRVezhZ5iRTs_e02_ye0o327796Wjws2HsoZezlDy-UP7og1Sy53yWvvT9Avjhx75AXUb8grN2F09ZZctBShA4pQRxHqKEI9RainCEV4aU8R2lHkHbk6-3Y5OQ_8BI1AsUQ0AeexCmWYAJokgoNGcy9jiqHaRU0NmU4003maZpIx9LPTqtJlqWUGJg6gshTYe7Jdz2s4IDQENOwgZ1UWCS4yyHErUCpGh1ilVZTBiCTt2ymUby9vppzMir-jMyLj7rmFa7Dy5BPH7csvUBeaA66yhvnyvmBhLhBWkScjsu9Q6WQyYUzpODp89ucdkZ3-j_CBbDd3S_iIlmgjP1lGPQLid5N-
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+proliferation+biases+clonal+lineage+tracing+and+trajectory+inference&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Bonham-Carter%2C+Becca&rft.au=Schiebinger%2C+Geoffrey&rft.date=2024-08-02&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=40&rft.issue=8&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae483&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btae483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon