Cellular proliferation biases clonal lineage tracing and trajectory inference
Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, ho...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 40; no. 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
02.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent.
We demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias.
Source code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones.
Supplementary data are available at Bioinfomatics online. |
---|---|
AbstractList | Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent.
We demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias.
Source code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones.
Supplementary data are available at Bioinfomatics online. Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent.MOTIVATIONLineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent.We demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias.RESULTSWe demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias.Source code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones.AVAILABILITY AND IMPLEMENTATIONSource code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones. |
Author | Bonham-Carter, Becca Schiebinger, Geoffrey |
Author_xml | – sequence: 1 givenname: Becca orcidid: 0000-0003-0163-4673 surname: Bonham-Carter fullname: Bonham-Carter, Becca – sequence: 2 givenname: Geoffrey orcidid: 0000-0002-8290-7997 surname: Schiebinger fullname: Schiebinger, Geoffrey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39102821$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD9PwzAQxS1UREvhK1QZWULtOLETiQVV_JOKWGC2HOdcuXLsYqdDvz0ubSVgYbob3rt773eJRs47QGhG8C3BDZ23xhunfejlYFSct4OEsqZnaEIo43lZEzL6sY_RZYxrjHGFK3aBxrQhuKgLMkGvC7B2a2XINsFboyGkg95lrZERYqasd9Jm1jiQK8iGIJVxq0y6br-vQQ0-7LKUBAI4BVfoXEsb4fo4p-jj8eF98Zwv355eFvfLXNGqGfKyLBRucQWM100Jui4wp4pS0hQVB64rTXXNGG8pLTFhXael1C2HIqVWnAGdopvD3RT6cwtxEL2JKjWRDvw2CorrJlVt6ipJZ0fptu2hE5tgehl24oQgCe4OAhV8jAG0UGb4hpAaGisIFnvi4jdxcSSe7OyP_fThH-MXWTWOAg |
CitedBy_id | crossref_primary_10_1016_j_cels_2024_11_001 |
Cites_doi | 10.1038/s41586-018-0744-4 10.1038/s41587-020-0509-0 10.1038/s41586-019-0969-x 10.1038/s41467-021-23518-w 10.1038/s41587-019-0071-9 10.1073/pnas.1714723115 10.1016/j.cell.2019.01.006 10.1038/s41580-019-0186-3 10.1016/j.stem.2019.12.009 10.1038/s41587-022-01209-1 10.1186/s12864-018-4772-0 10.1016/j.stem.2018.04.014 10.1016/j.cell.2020.04.048 10.1126/science.aaw3381 10.1038/s41467-019-09670-4 10.1126/science.aar3131 10.1093/bioinformatics/btz296 10.1242/dev.169730 10.1038/s41576-020-0223-2 10.1038/s41467-020-16821-5 10.1242/dev.170506 10.1038/s41587-019-0068-4 10.1038/s41467-021-25133-1 10.1002/bies.201800056 10.1371/journal.pcbi.1009466 10.1038/nbt.4124 10.1186/s13059-019-1663-x 10.1038/nbt.4103 10.1038/nbt.3569 10.1371/journal.pcbi.1008205 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/bioinformatics/btae483 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
ExternalDocumentID | 39102821 10_1093_bioinformatics_btae483 |
Genre | Journal Article |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM NPM 7X8 |
ID | FETCH-LOGICAL-c359t-442c0b05e67894ef82073c3319257e7f5f3f8667b334016ddfaafb7e2102c76e3 |
ISSN | 1367-4811 |
IngestDate | Fri Jul 11 00:43:37 EDT 2025 Mon Jul 21 06:05:14 EDT 2025 Tue Jul 01 02:34:05 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Single Cell Lineage Tracing Sampling Statistics Trajectory Inference |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-442c0b05e67894ef82073c3319257e7f5f3f8667b334016ddfaafb7e2102c76e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0163-4673 0000-0002-8290-7997 |
OpenAccessLink | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae483/58739188/btae483.pdf |
PMID | 39102821 |
PQID | 3089505985 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3089505985 pubmed_primary_39102821 crossref_citationtrail_10_1093_bioinformatics_btae483 crossref_primary_10_1093_bioinformatics_btae483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240802 |
PublicationDateYYYYMMDD | 2024-08-02 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240802 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2024 |
References | Kim (2024081723155823200_btae483-B12) 2020; 33 Schiebinger (2024081723155823200_btae483-B21) 2019; 176 Lin (2024081723155823200_btae483-B14) 2019; 35 Chen (2024081723155823200_btae483-B5) 2019; 10 Wolf (2024081723155823200_btae483-B34) 2019; 20 Farrell (2024081723155823200_btae483-B6) 2018; 360 Sakata (2024081723155823200_btae483-B20) 2020; 38 He (2024081723155823200_btae483-B9) 2021 Michaels (2024081723155823200_btae483-B16) 2023 Weinreb (2024081723155823200_btae483-B32) 2018; 115 Zafar (2024081723155823200_btae483-B36) 2020; 11 Setty (2024081723155823200_btae483-B22) 2016; 34 Forrow (2024081723155823200_btae483-B8) 2021; 12 Prasad (2024081723155823200_btae483-B17) 2020 Kester (2024081723155823200_btae483-B11) 2018; 23 Spanjaard (2024081723155823200_btae483-B24) 2018; 36 Tran (2024081723155823200_btae483-B28) 2020; 16 Weinreb (2024081723155823200_btae483-B33) 2020; 367 Street (2024081723155823200_btae483-B25) 2018; 19 Bowling (2024081723155823200_btae483-B3) 2020; 181 Raj (2024081723155823200_btae483-B18) 2018; 36 Hurley (2024081723155823200_btae483-B10) 2020; 26 Tong (2024081723155823200_btae483-B27) 2020 Setty (2024081723155823200_btae483-B23) 2019; 37 Fletcher (2024081723155823200_btae483-B7) 2018; 40 Lange (2024081723155823200_btae483-B13) 2021 Taherkhani (2024081723155823200_btae483-B26) 2021 Tritschler (2024081723155823200_btae483-B29) 2019; 146 Zhang (2024081723155823200_btae483-B37) 2021; 17 Wang (2024081723155823200_btae483-B31) 2022; 40 Cao (2024081723155823200_btae483-B4) 2019; 566 Baron (2024081723155823200_btae483-B1) 2019; 20 Yeo (2024081723155823200_btae483-B35) 2021; 12 Wagner (2024081723155823200_btae483-B30) 2020; 21 Biddy (2024081723155823200_btae483-B2) 2018; 564 McKenna (2024081723155823200_btae483-B15) 2019; 146 Saelens (2024081723155823200_btae483-B19) 2019; 37 |
References_xml | – volume: 564 start-page: 219 year: 2018 ident: 2024081723155823200_btae483-B2 article-title: Single-cell mapping of lineage and identity in direct reprogramming publication-title: Nature doi: 10.1038/s41586-018-0744-4 – volume: 38 start-page: 865 year: 2020 ident: 2024081723155823200_btae483-B20 article-title: Base editors for simultaneous introduction of C-to-T and A-to-G mutations publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0509-0 – volume: 566 start-page: 496 year: 2019 ident: 2024081723155823200_btae483-B4 article-title: The single-cell transcriptional landscape of mammalian organogenesis publication-title: Nature doi: 10.1038/s41586-019-0969-x – volume: 12 start-page: 3222 year: 2021 ident: 2024081723155823200_btae483-B35 article-title: Generative modeling of single-cell time series with prescient enables prediction of cell trajectories with interventions publication-title: Nat Commun doi: 10.1038/s41467-021-23518-w – volume: 37 start-page: 547 year: 2019 ident: 2024081723155823200_btae483-B19 article-title: A comparison of single-cell trajectory inference methods publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0071-9 – volume: 115 start-page: E2467 year: 2018 ident: 2024081723155823200_btae483-B32 article-title: Fundamental limits on dynamic inference from single-cell snapshots publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1714723115 – start-page: 9526 year: 2020 ident: 2024081723155823200_btae483-B27 – volume: 176 start-page: 928 year: 2019 ident: 2024081723155823200_btae483-B21 article-title: Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming publication-title: Cell doi: 10.1016/j.cell.2019.01.006 – volume: 20 start-page: 753 year: 2019 ident: 2024081723155823200_btae483-B1 article-title: Unravelling cellular relationships during development and regeneration using genetic lineage tracing publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-019-0186-3 – volume: 26 start-page: 593 year: 2020 ident: 2024081723155823200_btae483-B10 article-title: Reconstructed single-cell fate trajectories define lineage plasticity windows during differentiation of human psc-derived distal lung progenitors publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.12.009 – volume: 40 start-page: 1066 year: 2022 ident: 2024081723155823200_btae483-B31 article-title: CoSpar identifies early cell fate biases from single-cell transcriptomic and lineage information publication-title: Nat Biotechnol doi: 10.1038/s41587-022-01209-1 – volume: 19 start-page: 477 year: 2018 ident: 2024081723155823200_btae483-B25 article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics publication-title: BMC Genomics doi: 10.1186/s12864-018-4772-0 – volume: 23 start-page: 166 year: 2018 ident: 2024081723155823200_btae483-B11 article-title: Single-cell transcriptomics meets lineage tracing publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.04.014 – start-page: 6930 year: 2021 ident: 2024081723155823200_btae483-B9 – volume: 33 start-page: 14567 year: 2020 ident: 2024081723155823200_btae483-B12 article-title: Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning publication-title: Adv Neural Inf Process Syst – volume: 181 start-page: 1410 year: 2020 ident: 2024081723155823200_btae483-B3 article-title: An engineered crispr-cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells publication-title: Cell doi: 10.1016/j.cell.2020.04.048 – volume: 367 start-page: eaaw3381 year: 2020 ident: 2024081723155823200_btae483-B33 article-title: Lineage tracing on transcriptional landscapes links state to fate during differentiation publication-title: Science doi: 10.1126/science.aaw3381 – volume: 10 start-page: 1903 year: 2019 ident: 2024081723155823200_btae483-B5 article-title: Single-cell trajectories reconstruction, exploration and mapping of omics data with stream publication-title: Nat Commun doi: 10.1038/s41467-019-09670-4 – volume: 360 start-page: eaar3131 year: 2018 ident: 2024081723155823200_btae483-B6 article-title: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis publication-title: Science doi: 10.1126/science.aar3131 – volume: 35 start-page: 4707 year: 2019 ident: 2024081723155823200_btae483-B14 article-title: Continuous-state hmms for modeling time-series single-cell rna-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz296 – volume: 146 start-page: dev169730 year: 2019 ident: 2024081723155823200_btae483-B15 article-title: Recording development with single cell dynamic lineage tracing publication-title: Development doi: 10.1242/dev.169730 – volume: 21 start-page: 410 year: 2020 ident: 2024081723155823200_btae483-B30 article-title: Lineage tracing meets single-cell omics: opportunities and challenges publication-title: Nat Rev Genet doi: 10.1038/s41576-020-0223-2 – volume: 11 start-page: 3055 year: 2020 ident: 2024081723155823200_btae483-B36 article-title: Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data publication-title: Nat Commun doi: 10.1038/s41467-020-16821-5 – volume: 146 start-page: dev170506 year: 2019 ident: 2024081723155823200_btae483-B29 article-title: Concepts and limitations for learning developmental trajectories from single cell genomics publication-title: Development doi: 10.1242/dev.170506 – volume: 37 start-page: 451 year: 2019 ident: 2024081723155823200_btae483-B23 article-title: Characterization of cell fate probabilities in single-cell data with palantir publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0068-4 – year: 2020 ident: 2024081723155823200_btae483-B17 – start-page: 12267 year: 2021 ident: 2024081723155823200_btae483-B26 – volume: 12 start-page: 4940 year: 2021 ident: 2024081723155823200_btae483-B8 article-title: LineageOT is a unified framework for lineage tracing and trajectory inference publication-title: Nat Commun doi: 10.1038/s41467-021-25133-1 – volume: 40 start-page: 1800056 year: 2018 ident: 2024081723155823200_btae483-B7 article-title: Creating lineage trajectory maps via integration of single-cell RNA-sequencing and lineage tracing: integrating transgenic lineage tracing and single-cell RNA-sequencing is a robust approach for mapping developmental lineage trajectories and cell fate changes publication-title: BioEssays doi: 10.1002/bies.201800056 – volume: 17 start-page: e1009466 year: 2021 ident: 2024081723155823200_btae483-B37 article-title: Optimal transport analysis reveals trajectories in steady-state systems publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1009466 – volume: 36 start-page: 469 year: 2018 ident: 2024081723155823200_btae483-B24 article-title: Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars publication-title: Nat Biotechnol doi: 10.1038/nbt.4124 – year: 2021 ident: 2024081723155823200_btae483-B13 – year: 2023 ident: 2024081723155823200_btae483-B16 article-title: Time- and lineage-resolved transcriptional profiling uncovers gene expression programs and clonal relationships that underlie human T lineage specification publication-title: bioRxiv – volume: 20 start-page: 59 year: 2019 ident: 2024081723155823200_btae483-B34 article-title: PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells publication-title: Genome Biol doi: 10.1186/s13059-019-1663-x – volume: 36 start-page: 442 year: 2018 ident: 2024081723155823200_btae483-B18 article-title: Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain publication-title: Nat Biotechnol doi: 10.1038/nbt.4103 – volume: 34 start-page: 637 year: 2016 ident: 2024081723155823200_btae483-B22 article-title: Wishbone identifies bifurcating developmental trajectories from single-cell data publication-title: Nat Biotechnol doi: 10.1038/nbt.3569 – volume: 16 start-page: e1008205 year: 2020 ident: 2024081723155823200_btae483-B28 article-title: Tempora: cell trajectory inference using time-series single-cell RNA sequencing data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008205 |
SSID | ssj0005056 |
Score | 2.4617167 |
Snippet | Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
Title | Cellular proliferation biases clonal lineage tracing and trajectory inference |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39102821 https://www.proquest.com/docview/3089505985 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6alEIuJekjcdKWDeRWFEva1WOPrWkIhfSUQG5Cu5olLo5sEhni_vrMPiRZxW2aXoRY0NjW93l2ZnYehJyEMmVRUkVBrgUE3BwSlhxkECutZMRUlNpamIsf6fkV_36dXPf587a6pJGn6tfGupL_QRXXEFdTJfsMZDuhuID3iC9eEWG8_hPGE5jNbBrpwsze0eDRlFPcmu4_q5mN8hk70iTmNHelaisS8f6nDdevbDaWrfgbHO9O576jqu3ibFqSPrRZ8H7sx1oI4eu8vilvg4lND7WEMYj1Rzw3U5A2euiD8LZ2bD3cEHOb7LYWgTQt3gKeew0JG9a8WnVdmDx98o3a2nWykoOfZBaaErgbbzNskP3bxtWlE7qDdFYMJRVezhZ5iRTs_e02_ye0o327796Wjws2HsoZezlDy-UP7og1Sy53yWvvT9Avjhx75AXUb8grN2F09ZZctBShA4pQRxHqKEI9RainCEV4aU8R2lHkHbk6-3Y5OQ_8BI1AsUQ0AeexCmWYAJokgoNGcy9jiqHaRU0NmU4003maZpIx9LPTqtJlqWUGJg6gshTYe7Jdz2s4IDQENOwgZ1UWCS4yyHErUCpGh1ilVZTBiCTt2ymUby9vppzMir-jMyLj7rmFa7Dy5BPH7csvUBeaA66yhvnyvmBhLhBWkScjsu9Q6WQyYUzpODp89ucdkZ3-j_CBbDd3S_iIlmgjP1lGPQLid5N- |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+proliferation+biases+clonal+lineage+tracing+and+trajectory+inference&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Bonham-Carter%2C+Becca&rft.au=Schiebinger%2C+Geoffrey&rft.date=2024-08-02&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=40&rft.issue=8&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae483&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btae483 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |