A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults
Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades over time, the results of fault diagnosis could be different at different times for the given identical fault symptoms. A dynamic Bayesian netw...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 14; no. 1; pp. 276 - 285 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades over time, the results of fault diagnosis could be different at different times for the given identical fault symptoms. A dynamic Bayesian network (DBN)-based fault diagnosis methodology in the presence of TF and IF for electronic systems is proposed. DBNs are used to model the dynamic degradation process of electronic products, and Markov chains are used to model the transition relationships of four states, i.e., no fault, TF, IF, and permanent fault. Our fault diagnosis methodology can identify the faulty components and distinguish the fault types. Four fault diagnosis cases of the Genius modular redundancy control system are investigated to demonstrate the application of this methodology. |
---|---|
AbstractList | Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades over time, the results of fault diagnosis could be different at different times for the given identical fault symptoms. A dynamic Bayesian network (DBN)-based fault diagnosis methodology in the presence of TF and IF for electronic systems is proposed. DBNs are used to model the dynamic degradation process of electronic products, and Markov chains are used to model the transition relationships of four states, i.e., no fault, TF, IF, and permanent fault. Our fault diagnosis methodology can identify the faulty components and distinguish the fault types. Four fault diagnosis cases of the Genius modular redundancy control system are investigated to demonstrate the application of this methodology. |
Author | Min Xie Baoping Cai Yu Liu |
Author_xml | – sequence: 1 givenname: Baoping orcidid: 0000-0002-4499-492X surname: Cai fullname: Cai, Baoping – sequence: 2 givenname: Yu surname: Liu fullname: Liu, Yu – sequence: 3 givenname: Min surname: Xie fullname: Xie, Min |
BookMark | eNp9UMtOAjEUbQwmCvoBxs0krgfbaUvbJQI-Eh8LcT25nelgEVpsSwx_74wQFy5c3XtPziP39FHPeWcQuiB4SAhW1_Px62xYYDIaFlwwKfgROiWcy5wKSXvdznjOFecnqB_jEuOCSYVP0XKcTXcO1rbKb2BnogWXP5v05cNHC0RTZ7ewXaVsamHhfLQxezLp3dd-5Re7bOJdtLUJ1i2yeYD2MC5l4OrswSUT1jalDvixiGfouIFVNOeHOUBvt7P55D5_fLl7mIwf84pylXJGCdaakYrSYiQ0LlRNqR6BYBWpdGEwbypFlYJaS1kw0I0EIFrVjWw_Ak0H6Grvuwn-c2tiKpd-G1wbWRLJBWUC41HLIntWFXyMwTTlJtg1hF1JcNlVWnaVll2l5aHSViP-aCqbIFnvUgC7-ld5uVdaY8xvkmCKYyLpN0gDhzM |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3298554 crossref_primary_10_1016_j_engappai_2020_103935 crossref_primary_10_1177_09596518221124785 crossref_primary_10_1016_j_measurement_2021_109394 crossref_primary_10_1016_j_ress_2021_107464 crossref_primary_10_1109_TPEL_2021_3131293 crossref_primary_10_1016_j_conengprac_2020_104344 crossref_primary_10_1016_j_microrel_2021_114457 crossref_primary_10_1016_j_isatra_2018_10_044 crossref_primary_10_1016_j_jisa_2023_103497 crossref_primary_10_3390_s24154839 crossref_primary_10_1016_j_jlp_2020_104267 crossref_primary_10_1109_TASE_2024_3454418 crossref_primary_10_1109_TIE_2024_3440486 crossref_primary_10_1109_JSYST_2021_3056536 crossref_primary_10_3390_sym16040455 crossref_primary_10_1109_ACCESS_2020_2972984 crossref_primary_10_1109_ACCESS_2019_2960406 crossref_primary_10_1016_j_jestch_2020_10_002 crossref_primary_10_1016_j_apor_2019_101990 crossref_primary_10_1109_TPEL_2024_3486035 crossref_primary_10_1016_j_measurement_2021_109298 crossref_primary_10_1021_acs_iecr_9b05803 crossref_primary_10_1108_LHT_12_2017_0274 crossref_primary_10_3390_app9204248 crossref_primary_10_1016_j_jlp_2020_104175 crossref_primary_10_1109_TASE_2023_3290202 crossref_primary_10_1016_j_eswa_2021_115000 crossref_primary_10_1016_j_knosys_2020_105638 crossref_primary_10_1080_00207179_2018_1490819 crossref_primary_10_1109_ACCESS_2020_2999519 crossref_primary_10_1016_j_measurement_2020_107901 crossref_primary_10_1007_s11771_021_4702_1 crossref_primary_10_1016_j_jmsy_2021_05_016 crossref_primary_10_1016_j_rser_2019_109405 crossref_primary_10_3390_wevj15040165 crossref_primary_10_1109_TVT_2021_3131998 crossref_primary_10_1016_j_rser_2024_114691 crossref_primary_10_1016_j_psep_2021_01_023 crossref_primary_10_1016_j_measurement_2021_109285 crossref_primary_10_1109_ACCESS_2023_3279821 crossref_primary_10_1177_09544100231158271 crossref_primary_10_1109_TCYB_2020_3025800 crossref_primary_10_1177_09544062231196938 crossref_primary_10_1109_ACCESS_2020_3046681 crossref_primary_10_1016_j_measurement_2020_108200 crossref_primary_10_1109_TASE_2019_2918734 crossref_primary_10_1109_TPEL_2022_3223138 crossref_primary_10_1109_ACCESS_2020_3026171 crossref_primary_10_1109_ACCESS_2024_3524331 crossref_primary_10_1109_TIM_2022_3194890 crossref_primary_10_1016_j_petrol_2022_111124 crossref_primary_10_1016_j_engappai_2019_07_008 crossref_primary_10_1016_j_aei_2023_102272 crossref_primary_10_1002_adts_202100402 crossref_primary_10_1016_j_jfranklin_2020_05_037 crossref_primary_10_1080_17477778_2020_1774930 crossref_primary_10_1016_j_jprocont_2020_07_002 crossref_primary_10_1016_j_measurement_2021_110050 crossref_primary_10_3390_jmse10060743 crossref_primary_10_1016_j_ress_2021_107438 crossref_primary_10_1016_j_jlp_2021_104483 crossref_primary_10_1109_TIE_2019_2907500 crossref_primary_10_1007_s10846_023_01934_y crossref_primary_10_1016_j_engappai_2019_07_016 crossref_primary_10_1109_JSEN_2018_2885377 crossref_primary_10_1016_j_measurement_2020_108948 crossref_primary_10_1177_1748006X211043656 crossref_primary_10_1007_s12206_022_0404_3 crossref_primary_10_1002_qre_3232 crossref_primary_10_1109_TIM_2025_3544289 crossref_primary_10_1016_j_compind_2021_103401 crossref_primary_10_1016_j_measurement_2021_109650 crossref_primary_10_1016_j_neucom_2019_12_111 crossref_primary_10_1109_ACCESS_2020_3025956 crossref_primary_10_1016_j_measurement_2021_109404 crossref_primary_10_3390_s22124649 crossref_primary_10_1109_ACCESS_2018_2878813 crossref_primary_10_1016_j_asoc_2021_107176 crossref_primary_10_1016_j_cie_2020_106983 crossref_primary_10_1016_j_petsci_2021_08_011 crossref_primary_10_3390_app142110068 crossref_primary_10_1109_TII_2018_2889883 crossref_primary_10_1109_ACCESS_2019_2921778 crossref_primary_10_1016_j_engappai_2023_106673 crossref_primary_10_1016_j_measurement_2021_109088 crossref_primary_10_3390_act13090358 crossref_primary_10_3390_app142310937 crossref_primary_10_1016_j_ins_2021_05_061 crossref_primary_10_1016_j_jlp_2024_105455 crossref_primary_10_1016_j_jii_2023_100469 crossref_primary_10_1109_TMECH_2023_3278710 crossref_primary_10_1016_j_engfailanal_2020_104917 crossref_primary_10_1016_j_eswa_2025_126670 crossref_primary_10_3390_s19092086 crossref_primary_10_1109_TMECH_2019_2917749 crossref_primary_10_1016_j_jprocont_2023_103006 crossref_primary_10_1002_asjc_2241 crossref_primary_10_1108_IMDS_07_2021_0419 crossref_primary_10_1109_MIS_2023_3273450 crossref_primary_10_1016_j_measurement_2022_111597 crossref_primary_10_1109_ACCESS_2021_3074929 crossref_primary_10_1016_j_measurement_2021_109553 crossref_primary_10_1016_j_ssci_2020_104764 crossref_primary_10_1109_TCYB_2022_3167483 crossref_primary_10_1016_j_ress_2022_108433 crossref_primary_10_1109_ACCESS_2021_3096723 crossref_primary_10_1109_ACCESS_2021_3065307 crossref_primary_10_1109_JSEN_2023_3273218 crossref_primary_10_1016_j_apacoust_2021_108271 crossref_primary_10_1016_j_automatica_2020_109298 crossref_primary_10_1109_TASE_2019_2915286 crossref_primary_10_1016_j_jmsy_2020_09_001 crossref_primary_10_1007_s10462_021_09993_z crossref_primary_10_1016_j_measurement_2021_109412 crossref_primary_10_1016_j_ress_2023_109134 crossref_primary_10_1016_j_jmsy_2021_03_012 crossref_primary_10_1016_j_est_2021_102740 crossref_primary_10_1080_09544828_2020_1831449 crossref_primary_10_1109_JSYST_2023_3337833 crossref_primary_10_1142_S0218539321500455 crossref_primary_10_1109_TPEL_2021_3088889 crossref_primary_10_1016_j_jlp_2023_105229 crossref_primary_10_1016_j_isatra_2022_10_031 crossref_primary_10_1007_s10846_020_01293_y crossref_primary_10_1016_j_ress_2021_107763 crossref_primary_10_1016_j_ress_2023_109108 crossref_primary_10_1016_j_asej_2021_101678 crossref_primary_10_1016_j_asoc_2021_108064 crossref_primary_10_1088_1757_899X_1043_3_032062 crossref_primary_10_1109_TTE_2018_2863550 crossref_primary_10_1109_TASE_2020_3017755 crossref_primary_10_1016_j_anucene_2019_107181 crossref_primary_10_3390_app11020715 crossref_primary_10_1109_TII_2018_2858281 crossref_primary_10_1016_j_ijepes_2022_108622 crossref_primary_10_1109_ACCESS_2020_3007027 crossref_primary_10_1109_JIOT_2017_2722358 crossref_primary_10_1109_TASE_2019_2957232 crossref_primary_10_1016_j_measurement_2021_109317 crossref_primary_10_17531_ein_2021_3_9 crossref_primary_10_3390_jmse10101376 crossref_primary_10_1109_TMECH_2021_3069787 crossref_primary_10_1016_j_jprocont_2023_102999 crossref_primary_10_3390_s21051633 crossref_primary_10_1109_TIM_2021_3091212 crossref_primary_10_1109_ACCESS_2023_3278105 crossref_primary_10_1016_j_measurement_2022_111958 crossref_primary_10_1002_ese3_383 crossref_primary_10_1016_j_epsr_2021_107622 crossref_primary_10_1109_ACCESS_2020_3016026 crossref_primary_10_1016_j_oceaneng_2021_110141 crossref_primary_10_1109_TR_2018_2822479 crossref_primary_10_1016_j_jlp_2020_104229 crossref_primary_10_1007_s00500_022_07226_1 crossref_primary_10_1109_TPDS_2023_3242089 crossref_primary_10_1016_j_engfailanal_2020_104982 crossref_primary_10_1109_ACCESS_2021_3049789 crossref_primary_10_1109_TASE_2020_2974130 crossref_primary_10_1109_TASE_2020_3035620 crossref_primary_10_1021_acs_iecr_0c00624 crossref_primary_10_3390_app12052562 crossref_primary_10_1109_TII_2017_2695583 crossref_primary_10_1016_j_energy_2020_117135 crossref_primary_10_1016_j_energy_2025_135369 crossref_primary_10_1088_1742_6596_1639_1_012037 crossref_primary_10_1109_ACCESS_2022_3219130 crossref_primary_10_1016_j_anucene_2019_107274 crossref_primary_10_1109_ACCESS_2020_3005159 crossref_primary_10_1007_s10489_021_02377_4 crossref_primary_10_1016_j_ress_2022_108579 crossref_primary_10_1016_j_measurement_2020_108513 crossref_primary_10_1016_j_measurement_2020_108514 crossref_primary_10_1109_TR_2022_3170063 crossref_primary_10_18311_jmmf_2022_31958 crossref_primary_10_1016_j_measurement_2021_110113 crossref_primary_10_3390_a18010011 crossref_primary_10_1007_s12206_019_0811_2 crossref_primary_10_1016_j_psep_2022_08_014 crossref_primary_10_1016_j_engappai_2021_104295 crossref_primary_10_1007_s42461_023_00729_x crossref_primary_10_1016_j_isatra_2020_03_006 crossref_primary_10_1109_ACCESS_2023_3274696 crossref_primary_10_1109_ACCESS_2020_3046249 crossref_primary_10_1080_0952813X_2022_2092558 crossref_primary_10_1109_ACCESS_2019_2914960 crossref_primary_10_1111_exsy_13360 crossref_primary_10_1007_s11804_021_00200_7 crossref_primary_10_1109_ACCESS_2019_2935770 crossref_primary_10_3390_diagnostics11050780 crossref_primary_10_1021_acs_iecr_0c04885 crossref_primary_10_1002_er_5348 crossref_primary_10_1016_j_engappai_2021_104181 |
Cites_doi | 10.1016/j.artint.2010.09.003 10.1109/TSMCC.2010.2049994 10.1109/TVT.2007.912610 10.1016/j.ymssp.2011.10.018 10.1016/j.ress.2016.01.018 10.1016/j.ijar.2014.02.005 10.1109/TASE.2012.2230628 10.1023/B:DISC.0000018570.20941.d2 10.1016/j.microrel.2008.02.003 10.1109/TSMC.2013.2251539 10.1016/j.ress.2015.01.024 10.1115/1.4026639 10.1109/TSMCC.2012.2187188 10.1109/TPWRD.2005.858774 10.1016/j.jsv.2011.08.029 10.1109/TASE.2012.2229707 10.1109/TSMCA.2012.2208101 10.1109/TSMC.2014.2323212 10.1109/TSMC.2014.2311760 10.1016/j.ress.2006.09.012 10.1016/j.swevo.2013.05.004 10.1109/TASE.2014.2321011 10.1109/TIE.2013.2281159 10.1109/TSMC.2014.2358635 10.1109/TSMC.2014.2384480 10.1016/j.isatra.2011.08.003 10.1109/TASE.2013.2287101 10.1109/ISCAS.1991.176815 10.1016/j.isatra.2015.06.011 10.1016/j.ijleo.2013.07.044 10.1177/1748006X14545409 10.1109/TSMCC.2012.2227143 10.1109/TPWRD.2010.2068578 10.1109/TSMCA.2012.2189880 10.1016/j.eswa.2012.12.037 10.1016/j.cja.2013.07.001 10.1016/j.energy.2015.04.090 10.1109/TR.2012.2208300 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2016.2574875 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 285 |
ExternalDocumentID | 4298204631 10_1109_TASE_2016_2574875 7495018 |
Genre | orig-research Feature |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51309240 funderid: 10.13039/501100001809 – fundername: Applied Basic Research Programs of Qingdao grantid: 14-2-4-68-jch – fundername: Specialized Research Fund for the Doctoral Program of Higher Education grantid: 20130133120007 – fundername: Fundamental Research Funds for the Central Universities grantid: 14CX02197A – fundername: Science and Technology Project of Huangdao District grantid: 2014-1-48 – fundername: China Post-Doctoral Science Foundation grantid: 2015M570624 funderid: 10.13039/501100002858 – fundername: Hong Kong Scholars Program grantid: XJ2014004 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-4310bb41c33267b029d33b6a74c1cb2e05fc9399adb8824abf8aa1b9df8890ab3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Mon Jun 30 05:28:23 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Tue Jul 01 02:56:29 EDT 2025 Tue Aug 26 17:01:28 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-4310bb41c33267b029d33b6a74c1cb2e05fc9399adb8824abf8aa1b9df8890ab3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ORCID | 0000-0002-4499-492X |
PQID | 1857347006 |
PQPubID | 27623 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1857347006 crossref_primary_10_1109_TASE_2016_2574875 ieee_primary_7495018 crossref_citationtrail_10_1109_TASE_2016_2574875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Jan. 2017-1-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 (ref45) 2007 ref2 (ref43) 1999 ref39 ref17 ref38 ref16 ref18 (ref42) 2007 ref24 (ref44) 1998 prasad (ref37) 1990; 1 pearl (ref19) 1985 ref23 ref26 ref25 ref20 liu (ref1) 2013; 10 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 (ref41) 1995 ref6 ref5 ref40 |
References_xml | – ident: ref11 doi: 10.1016/j.artint.2010.09.003 – ident: ref24 doi: 10.1109/TSMCC.2010.2049994 – ident: ref23 doi: 10.1109/TVT.2007.912610 – ident: ref29 doi: 10.1016/j.ymssp.2011.10.018 – ident: ref31 doi: 10.1016/j.ress.2016.01.018 – year: 2007 ident: ref45 publication-title: Genius Modular Redundancy Manual Triple Voting System – ident: ref26 doi: 10.1016/j.ijar.2014.02.005 – volume: 10 start-page: 687 year: 2013 ident: ref1 article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2012.2230628 – ident: ref10 doi: 10.1023/B:DISC.0000018570.20941.d2 – ident: ref5 doi: 10.1016/j.microrel.2008.02.003 – ident: ref33 doi: 10.1109/TSMC.2013.2251539 – ident: ref34 doi: 10.1016/j.ress.2015.01.024 – ident: ref8 doi: 10.1115/1.4026639 – year: 1995 ident: ref41 publication-title: Genius Modular Redundancy Flexible Triple Modular Redundant (TMR) System User's Manual – volume: 1 start-page: 327 year: 1990 ident: ref37 article-title: Computer networks reliability evaluations and intermittent faults publication-title: Proc 33rd Midwest Symp Circuits Syst – ident: ref25 doi: 10.1109/TSMCC.2012.2187188 – start-page: 1 year: 1985 ident: ref19 article-title: Bayesian networks: A model of self-activated memory for evidential reasoning publication-title: Proc 7th Annu Conf Cogn Sci Soc – ident: ref22 doi: 10.1109/TPWRD.2005.858774 – ident: ref18 doi: 10.1016/j.jsv.2011.08.029 – ident: ref3 doi: 10.1109/TASE.2012.2229707 – ident: ref6 doi: 10.1109/TSMCA.2012.2208101 – ident: ref32 doi: 10.1109/TSMC.2014.2323212 – ident: ref2 doi: 10.1109/TSMC.2014.2311760 – ident: ref39 doi: 10.1016/j.ress.2006.09.012 – ident: ref12 doi: 10.1016/j.swevo.2013.05.004 – ident: ref21 doi: 10.1109/TASE.2014.2321011 – ident: ref16 doi: 10.1109/TIE.2013.2281159 – ident: ref4 doi: 10.1109/TSMC.2014.2358635 – ident: ref9 doi: 10.1109/TSMC.2014.2384480 – ident: ref40 doi: 10.1016/j.isatra.2011.08.003 – ident: ref20 doi: 10.1109/TASE.2013.2287101 – ident: ref38 doi: 10.1109/ISCAS.1991.176815 – ident: ref30 doi: 10.1016/j.isatra.2015.06.011 – ident: ref15 doi: 10.1016/j.ijleo.2013.07.044 – year: 1998 ident: ref44 publication-title: Genius Modular Redundancy Flexible Triple Modular Redundant (TMR) System Technical Product Overview – ident: ref28 doi: 10.1177/1748006X14545409 – ident: ref7 doi: 10.1109/TSMCC.2012.2227143 – ident: ref17 doi: 10.1109/TPWRD.2010.2068578 – year: 1999 ident: ref43 publication-title: Genius Modular Redundancy for Fire and Gas Applications – ident: ref36 doi: 10.1109/TSMCA.2012.2189880 – ident: ref13 doi: 10.1016/j.eswa.2012.12.037 – year: 2007 ident: ref42 publication-title: Genius Modular Redundancy User's Manual – ident: ref14 doi: 10.1016/j.cja.2013.07.001 – ident: ref27 doi: 10.1016/j.energy.2015.04.090 – ident: ref35 doi: 10.1109/TR.2012.2208300 |
SSID | ssj0024890 |
Score | 2.547563 |
Snippet | Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 276 |
SubjectTerms | Belief networks Circuit faults Complex systems Control systems Degradation Dynamic Bayesian network (DBN) Electronics Fault diagnosis Hidden Markov models intermittent fault (IF) Markov processes Power system dynamics Transient analysis transient fault (TF) |
Title | A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults |
URI | https://ieeexplore.ieee.org/document/7495018 https://www.proquest.com/docview/1857347006 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxsI-uo8eUSDEBC5Cwm3TdrsJimBkOeivd9pd0Kgx3jbNtmnytZ2v029mAK4iKVIvzBj1lKspEyrEPeekVPup73OWKW3VhMNROJiw-2kwrcDNNhZGa23FZ7plPu1bfrpUa-Mqa0fI5h03rkIVL25FrNZnXr3Y-lMMI6ABD4LyBdN1eHvceegZEVfYwvXJrKTwiw2yRVV-nMTWvPT3YbiZWKEqeWqtc9lS799yNv535gewV_JM0ikWxiFU9OIIdr9kH6zDY4d0i3r09Fa8aRNNSUeFKhwbVjolfbGe56RbqPFmKzK05aatI55sKn3iUMQaPBNYScQiJdbJ-DzLc9Ngh1gdw6TfG98NaFl6gSo_4DlFWuFIyVzlI72LpONxhE6GImLKVdLTTpApjtxGpBIpOhMyi4VwJU-zGHEQ0j-B2mK50KdAstDDK5lwRRYg9sIXMnTNESwipF4ZZw1wNmAkqsxLbspjzBN7P3F4YvBLDH5JiV8DrrddXoqkHH_9XDd4bH8soWhAc4N4Um7bVWISY_kswpPo7Pde57DjGbtufTBNqOWva32BrCSXl3Y5fgDWu98C |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhXOLESeqxUKryaBdaiS2yHUcqlBbRdIBfz9lJCwKE2CIrtix9tu_z-bs7gJNYydSPMk59zQzlUke457yUmiANAsEzbZyasN2JWj1-8xA-zMHZLBbGGOPEZ6ZqP91bfjrSE-sqO4-RzXusNg-LaPdDVkRrfWbWqzmPiuUENBRhWL5hMk-cd-v3V1bGFVVxhXInKvxihVxZlR9nsTMwzTVoT6dW6EqeqpNcVfX7t6yN_537OqyWTJPUi6WxAXNmuAkrX_IPbsFjnTSKivT0Qr4ZG09JO4UuHBvGJiVNORnkpFHo8fpj0nYFp50rnkxrfeJQxJk8G1pJ5DAlzs343M9z2-CGGG9Dr3nVvWzRsvgC1UEocorEwlOKMx0gwYuV5wsET0Uy5ppp5RsvzLRAdiNThSSdS5XVpGRKpFkNcZAq2IGF4WhodoFkkY-XMslkFiL6MpAqYvYQljGSr0zwCnhTMBJdZia3BTIGibuheCKx-CUWv6TErwKnsy4vRVqOv37esnjMfiyhqMDBFPGk3LjjxKbGCniMZ9He772OYanVbd8ld9ed231Y9q2Vdx6ZA1jIXyfmEDlKro7c0vwAoMriSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic-Bayesian-Network-Based+Fault+Diagnosis+Methodology+Considering+Transient+and+Intermittent+Faults&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Cai%2C+Baoping&rft.au=Liu%2C+Yu&rft.au=Xie%2C+Min&rft.date=2017-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=14&rft.issue=1&rft.spage=276&rft.epage=285&rft_id=info:doi/10.1109%2FTASE.2016.2574875&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2016_2574875 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |