A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults

Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades over time, the results of fault diagnosis could be different at different times for the given identical fault symptoms. A dynamic Bayesian netw...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 14; no. 1; pp. 276 - 285
Main Authors Cai, Baoping, Liu, Yu, Xie, Min
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades over time, the results of fault diagnosis could be different at different times for the given identical fault symptoms. A dynamic Bayesian network (DBN)-based fault diagnosis methodology in the presence of TF and IF for electronic systems is proposed. DBNs are used to model the dynamic degradation process of electronic products, and Markov chains are used to model the transition relationships of four states, i.e., no fault, TF, IF, and permanent fault. Our fault diagnosis methodology can identify the faulty components and distinguish the fault types. Four fault diagnosis cases of the Genius modular redundancy control system are investigated to demonstrate the application of this methodology.
AbstractList Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades over time, the results of fault diagnosis could be different at different times for the given identical fault symptoms. A dynamic Bayesian network (DBN)-based fault diagnosis methodology in the presence of TF and IF for electronic systems is proposed. DBNs are used to model the dynamic degradation process of electronic products, and Markov chains are used to model the transition relationships of four states, i.e., no fault, TF, IF, and permanent fault. Our fault diagnosis methodology can identify the faulty components and distinguish the fault types. Four fault diagnosis cases of the Genius modular redundancy control system are investigated to demonstrate the application of this methodology.
Author Min Xie
Baoping Cai
Yu Liu
Author_xml – sequence: 1
  givenname: Baoping
  orcidid: 0000-0002-4499-492X
  surname: Cai
  fullname: Cai, Baoping
– sequence: 2
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
– sequence: 3
  givenname: Min
  surname: Xie
  fullname: Xie, Min
BookMark eNp9UMtOAjEUbQwmCvoBxs0krgfbaUvbJQI-Eh8LcT25nelgEVpsSwx_74wQFy5c3XtPziP39FHPeWcQuiB4SAhW1_Px62xYYDIaFlwwKfgROiWcy5wKSXvdznjOFecnqB_jEuOCSYVP0XKcTXcO1rbKb2BnogWXP5v05cNHC0RTZ7ewXaVsamHhfLQxezLp3dd-5Re7bOJdtLUJ1i2yeYD2MC5l4OrswSUT1jalDvixiGfouIFVNOeHOUBvt7P55D5_fLl7mIwf84pylXJGCdaakYrSYiQ0LlRNqR6BYBWpdGEwbypFlYJaS1kw0I0EIFrVjWw_Ak0H6Grvuwn-c2tiKpd-G1wbWRLJBWUC41HLIntWFXyMwTTlJtg1hF1JcNlVWnaVll2l5aHSViP-aCqbIFnvUgC7-ld5uVdaY8xvkmCKYyLpN0gDhzM
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3298554
crossref_primary_10_1016_j_engappai_2020_103935
crossref_primary_10_1177_09596518221124785
crossref_primary_10_1016_j_measurement_2021_109394
crossref_primary_10_1016_j_ress_2021_107464
crossref_primary_10_1109_TPEL_2021_3131293
crossref_primary_10_1016_j_conengprac_2020_104344
crossref_primary_10_1016_j_microrel_2021_114457
crossref_primary_10_1016_j_isatra_2018_10_044
crossref_primary_10_1016_j_jisa_2023_103497
crossref_primary_10_3390_s24154839
crossref_primary_10_1016_j_jlp_2020_104267
crossref_primary_10_1109_TASE_2024_3454418
crossref_primary_10_1109_TIE_2024_3440486
crossref_primary_10_1109_JSYST_2021_3056536
crossref_primary_10_3390_sym16040455
crossref_primary_10_1109_ACCESS_2020_2972984
crossref_primary_10_1109_ACCESS_2019_2960406
crossref_primary_10_1016_j_jestch_2020_10_002
crossref_primary_10_1016_j_apor_2019_101990
crossref_primary_10_1109_TPEL_2024_3486035
crossref_primary_10_1016_j_measurement_2021_109298
crossref_primary_10_1021_acs_iecr_9b05803
crossref_primary_10_1108_LHT_12_2017_0274
crossref_primary_10_3390_app9204248
crossref_primary_10_1016_j_jlp_2020_104175
crossref_primary_10_1109_TASE_2023_3290202
crossref_primary_10_1016_j_eswa_2021_115000
crossref_primary_10_1016_j_knosys_2020_105638
crossref_primary_10_1080_00207179_2018_1490819
crossref_primary_10_1109_ACCESS_2020_2999519
crossref_primary_10_1016_j_measurement_2020_107901
crossref_primary_10_1007_s11771_021_4702_1
crossref_primary_10_1016_j_jmsy_2021_05_016
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_3390_wevj15040165
crossref_primary_10_1109_TVT_2021_3131998
crossref_primary_10_1016_j_rser_2024_114691
crossref_primary_10_1016_j_psep_2021_01_023
crossref_primary_10_1016_j_measurement_2021_109285
crossref_primary_10_1109_ACCESS_2023_3279821
crossref_primary_10_1177_09544100231158271
crossref_primary_10_1109_TCYB_2020_3025800
crossref_primary_10_1177_09544062231196938
crossref_primary_10_1109_ACCESS_2020_3046681
crossref_primary_10_1016_j_measurement_2020_108200
crossref_primary_10_1109_TASE_2019_2918734
crossref_primary_10_1109_TPEL_2022_3223138
crossref_primary_10_1109_ACCESS_2020_3026171
crossref_primary_10_1109_ACCESS_2024_3524331
crossref_primary_10_1109_TIM_2022_3194890
crossref_primary_10_1016_j_petrol_2022_111124
crossref_primary_10_1016_j_engappai_2019_07_008
crossref_primary_10_1016_j_aei_2023_102272
crossref_primary_10_1002_adts_202100402
crossref_primary_10_1016_j_jfranklin_2020_05_037
crossref_primary_10_1080_17477778_2020_1774930
crossref_primary_10_1016_j_jprocont_2020_07_002
crossref_primary_10_1016_j_measurement_2021_110050
crossref_primary_10_3390_jmse10060743
crossref_primary_10_1016_j_ress_2021_107438
crossref_primary_10_1016_j_jlp_2021_104483
crossref_primary_10_1109_TIE_2019_2907500
crossref_primary_10_1007_s10846_023_01934_y
crossref_primary_10_1016_j_engappai_2019_07_016
crossref_primary_10_1109_JSEN_2018_2885377
crossref_primary_10_1016_j_measurement_2020_108948
crossref_primary_10_1177_1748006X211043656
crossref_primary_10_1007_s12206_022_0404_3
crossref_primary_10_1002_qre_3232
crossref_primary_10_1109_TIM_2025_3544289
crossref_primary_10_1016_j_compind_2021_103401
crossref_primary_10_1016_j_measurement_2021_109650
crossref_primary_10_1016_j_neucom_2019_12_111
crossref_primary_10_1109_ACCESS_2020_3025956
crossref_primary_10_1016_j_measurement_2021_109404
crossref_primary_10_3390_s22124649
crossref_primary_10_1109_ACCESS_2018_2878813
crossref_primary_10_1016_j_asoc_2021_107176
crossref_primary_10_1016_j_cie_2020_106983
crossref_primary_10_1016_j_petsci_2021_08_011
crossref_primary_10_3390_app142110068
crossref_primary_10_1109_TII_2018_2889883
crossref_primary_10_1109_ACCESS_2019_2921778
crossref_primary_10_1016_j_engappai_2023_106673
crossref_primary_10_1016_j_measurement_2021_109088
crossref_primary_10_3390_act13090358
crossref_primary_10_3390_app142310937
crossref_primary_10_1016_j_ins_2021_05_061
crossref_primary_10_1016_j_jlp_2024_105455
crossref_primary_10_1016_j_jii_2023_100469
crossref_primary_10_1109_TMECH_2023_3278710
crossref_primary_10_1016_j_engfailanal_2020_104917
crossref_primary_10_1016_j_eswa_2025_126670
crossref_primary_10_3390_s19092086
crossref_primary_10_1109_TMECH_2019_2917749
crossref_primary_10_1016_j_jprocont_2023_103006
crossref_primary_10_1002_asjc_2241
crossref_primary_10_1108_IMDS_07_2021_0419
crossref_primary_10_1109_MIS_2023_3273450
crossref_primary_10_1016_j_measurement_2022_111597
crossref_primary_10_1109_ACCESS_2021_3074929
crossref_primary_10_1016_j_measurement_2021_109553
crossref_primary_10_1016_j_ssci_2020_104764
crossref_primary_10_1109_TCYB_2022_3167483
crossref_primary_10_1016_j_ress_2022_108433
crossref_primary_10_1109_ACCESS_2021_3096723
crossref_primary_10_1109_ACCESS_2021_3065307
crossref_primary_10_1109_JSEN_2023_3273218
crossref_primary_10_1016_j_apacoust_2021_108271
crossref_primary_10_1016_j_automatica_2020_109298
crossref_primary_10_1109_TASE_2019_2915286
crossref_primary_10_1016_j_jmsy_2020_09_001
crossref_primary_10_1007_s10462_021_09993_z
crossref_primary_10_1016_j_measurement_2021_109412
crossref_primary_10_1016_j_ress_2023_109134
crossref_primary_10_1016_j_jmsy_2021_03_012
crossref_primary_10_1016_j_est_2021_102740
crossref_primary_10_1080_09544828_2020_1831449
crossref_primary_10_1109_JSYST_2023_3337833
crossref_primary_10_1142_S0218539321500455
crossref_primary_10_1109_TPEL_2021_3088889
crossref_primary_10_1016_j_jlp_2023_105229
crossref_primary_10_1016_j_isatra_2022_10_031
crossref_primary_10_1007_s10846_020_01293_y
crossref_primary_10_1016_j_ress_2021_107763
crossref_primary_10_1016_j_ress_2023_109108
crossref_primary_10_1016_j_asej_2021_101678
crossref_primary_10_1016_j_asoc_2021_108064
crossref_primary_10_1088_1757_899X_1043_3_032062
crossref_primary_10_1109_TTE_2018_2863550
crossref_primary_10_1109_TASE_2020_3017755
crossref_primary_10_1016_j_anucene_2019_107181
crossref_primary_10_3390_app11020715
crossref_primary_10_1109_TII_2018_2858281
crossref_primary_10_1016_j_ijepes_2022_108622
crossref_primary_10_1109_ACCESS_2020_3007027
crossref_primary_10_1109_JIOT_2017_2722358
crossref_primary_10_1109_TASE_2019_2957232
crossref_primary_10_1016_j_measurement_2021_109317
crossref_primary_10_17531_ein_2021_3_9
crossref_primary_10_3390_jmse10101376
crossref_primary_10_1109_TMECH_2021_3069787
crossref_primary_10_1016_j_jprocont_2023_102999
crossref_primary_10_3390_s21051633
crossref_primary_10_1109_TIM_2021_3091212
crossref_primary_10_1109_ACCESS_2023_3278105
crossref_primary_10_1016_j_measurement_2022_111958
crossref_primary_10_1002_ese3_383
crossref_primary_10_1016_j_epsr_2021_107622
crossref_primary_10_1109_ACCESS_2020_3016026
crossref_primary_10_1016_j_oceaneng_2021_110141
crossref_primary_10_1109_TR_2018_2822479
crossref_primary_10_1016_j_jlp_2020_104229
crossref_primary_10_1007_s00500_022_07226_1
crossref_primary_10_1109_TPDS_2023_3242089
crossref_primary_10_1016_j_engfailanal_2020_104982
crossref_primary_10_1109_ACCESS_2021_3049789
crossref_primary_10_1109_TASE_2020_2974130
crossref_primary_10_1109_TASE_2020_3035620
crossref_primary_10_1021_acs_iecr_0c00624
crossref_primary_10_3390_app12052562
crossref_primary_10_1109_TII_2017_2695583
crossref_primary_10_1016_j_energy_2020_117135
crossref_primary_10_1016_j_energy_2025_135369
crossref_primary_10_1088_1742_6596_1639_1_012037
crossref_primary_10_1109_ACCESS_2022_3219130
crossref_primary_10_1016_j_anucene_2019_107274
crossref_primary_10_1109_ACCESS_2020_3005159
crossref_primary_10_1007_s10489_021_02377_4
crossref_primary_10_1016_j_ress_2022_108579
crossref_primary_10_1016_j_measurement_2020_108513
crossref_primary_10_1016_j_measurement_2020_108514
crossref_primary_10_1109_TR_2022_3170063
crossref_primary_10_18311_jmmf_2022_31958
crossref_primary_10_1016_j_measurement_2021_110113
crossref_primary_10_3390_a18010011
crossref_primary_10_1007_s12206_019_0811_2
crossref_primary_10_1016_j_psep_2022_08_014
crossref_primary_10_1016_j_engappai_2021_104295
crossref_primary_10_1007_s42461_023_00729_x
crossref_primary_10_1016_j_isatra_2020_03_006
crossref_primary_10_1109_ACCESS_2023_3274696
crossref_primary_10_1109_ACCESS_2020_3046249
crossref_primary_10_1080_0952813X_2022_2092558
crossref_primary_10_1109_ACCESS_2019_2914960
crossref_primary_10_1111_exsy_13360
crossref_primary_10_1007_s11804_021_00200_7
crossref_primary_10_1109_ACCESS_2019_2935770
crossref_primary_10_3390_diagnostics11050780
crossref_primary_10_1021_acs_iecr_0c04885
crossref_primary_10_1002_er_5348
crossref_primary_10_1016_j_engappai_2021_104181
Cites_doi 10.1016/j.artint.2010.09.003
10.1109/TSMCC.2010.2049994
10.1109/TVT.2007.912610
10.1016/j.ymssp.2011.10.018
10.1016/j.ress.2016.01.018
10.1016/j.ijar.2014.02.005
10.1109/TASE.2012.2230628
10.1023/B:DISC.0000018570.20941.d2
10.1016/j.microrel.2008.02.003
10.1109/TSMC.2013.2251539
10.1016/j.ress.2015.01.024
10.1115/1.4026639
10.1109/TSMCC.2012.2187188
10.1109/TPWRD.2005.858774
10.1016/j.jsv.2011.08.029
10.1109/TASE.2012.2229707
10.1109/TSMCA.2012.2208101
10.1109/TSMC.2014.2323212
10.1109/TSMC.2014.2311760
10.1016/j.ress.2006.09.012
10.1016/j.swevo.2013.05.004
10.1109/TASE.2014.2321011
10.1109/TIE.2013.2281159
10.1109/TSMC.2014.2358635
10.1109/TSMC.2014.2384480
10.1016/j.isatra.2011.08.003
10.1109/TASE.2013.2287101
10.1109/ISCAS.1991.176815
10.1016/j.isatra.2015.06.011
10.1016/j.ijleo.2013.07.044
10.1177/1748006X14545409
10.1109/TSMCC.2012.2227143
10.1109/TPWRD.2010.2068578
10.1109/TSMCA.2012.2189880
10.1016/j.eswa.2012.12.037
10.1016/j.cja.2013.07.001
10.1016/j.energy.2015.04.090
10.1109/TR.2012.2208300
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2016.2574875
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 285
ExternalDocumentID 4298204631
10_1109_TASE_2016_2574875
7495018
Genre orig-research
Feature
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51309240
  funderid: 10.13039/501100001809
– fundername: Applied Basic Research Programs of Qingdao
  grantid: 14-2-4-68-jch
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  grantid: 20130133120007
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 14CX02197A
– fundername: Science and Technology Project of Huangdao District
  grantid: 2014-1-48
– fundername: China Post-Doctoral Science Foundation
  grantid: 2015M570624
  funderid: 10.13039/501100002858
– fundername: Hong Kong Scholars Program
  grantid: XJ2014004
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-4310bb41c33267b029d33b6a74c1cb2e05fc9399adb8824abf8aa1b9df8890ab3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Mon Jun 30 05:28:23 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 02:56:29 EDT 2025
Tue Aug 26 17:01:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-4310bb41c33267b029d33b6a74c1cb2e05fc9399adb8824abf8aa1b9df8890ab3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0002-4499-492X
PQID 1857347006
PQPubID 27623
PageCount 10
ParticipantIDs proquest_journals_1857347006
crossref_primary_10_1109_TASE_2016_2574875
ieee_primary_7495018
crossref_citationtrail_10_1109_TASE_2016_2574875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
(ref45) 2007
ref2
(ref43) 1999
ref39
ref17
ref38
ref16
ref18
(ref42) 2007
ref24
(ref44) 1998
prasad (ref37) 1990; 1
pearl (ref19) 1985
ref23
ref26
ref25
ref20
liu (ref1) 2013; 10
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
(ref41) 1995
ref6
ref5
ref40
References_xml – ident: ref11
  doi: 10.1016/j.artint.2010.09.003
– ident: ref24
  doi: 10.1109/TSMCC.2010.2049994
– ident: ref23
  doi: 10.1109/TVT.2007.912610
– ident: ref29
  doi: 10.1016/j.ymssp.2011.10.018
– ident: ref31
  doi: 10.1016/j.ress.2016.01.018
– year: 2007
  ident: ref45
  publication-title: Genius Modular Redundancy Manual Triple Voting System
– ident: ref26
  doi: 10.1016/j.ijar.2014.02.005
– volume: 10
  start-page: 687
  year: 2013
  ident: ref1
  article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2012.2230628
– ident: ref10
  doi: 10.1023/B:DISC.0000018570.20941.d2
– ident: ref5
  doi: 10.1016/j.microrel.2008.02.003
– ident: ref33
  doi: 10.1109/TSMC.2013.2251539
– ident: ref34
  doi: 10.1016/j.ress.2015.01.024
– ident: ref8
  doi: 10.1115/1.4026639
– year: 1995
  ident: ref41
  publication-title: Genius Modular Redundancy Flexible Triple Modular Redundant (TMR) System User's Manual
– volume: 1
  start-page: 327
  year: 1990
  ident: ref37
  article-title: Computer networks reliability evaluations and intermittent faults
  publication-title: Proc 33rd Midwest Symp Circuits Syst
– ident: ref25
  doi: 10.1109/TSMCC.2012.2187188
– start-page: 1
  year: 1985
  ident: ref19
  article-title: Bayesian networks: A model of self-activated memory for evidential reasoning
  publication-title: Proc 7th Annu Conf Cogn Sci Soc
– ident: ref22
  doi: 10.1109/TPWRD.2005.858774
– ident: ref18
  doi: 10.1016/j.jsv.2011.08.029
– ident: ref3
  doi: 10.1109/TASE.2012.2229707
– ident: ref6
  doi: 10.1109/TSMCA.2012.2208101
– ident: ref32
  doi: 10.1109/TSMC.2014.2323212
– ident: ref2
  doi: 10.1109/TSMC.2014.2311760
– ident: ref39
  doi: 10.1016/j.ress.2006.09.012
– ident: ref12
  doi: 10.1016/j.swevo.2013.05.004
– ident: ref21
  doi: 10.1109/TASE.2014.2321011
– ident: ref16
  doi: 10.1109/TIE.2013.2281159
– ident: ref4
  doi: 10.1109/TSMC.2014.2358635
– ident: ref9
  doi: 10.1109/TSMC.2014.2384480
– ident: ref40
  doi: 10.1016/j.isatra.2011.08.003
– ident: ref20
  doi: 10.1109/TASE.2013.2287101
– ident: ref38
  doi: 10.1109/ISCAS.1991.176815
– ident: ref30
  doi: 10.1016/j.isatra.2015.06.011
– ident: ref15
  doi: 10.1016/j.ijleo.2013.07.044
– year: 1998
  ident: ref44
  publication-title: Genius Modular Redundancy Flexible Triple Modular Redundant (TMR) System Technical Product Overview
– ident: ref28
  doi: 10.1177/1748006X14545409
– ident: ref7
  doi: 10.1109/TSMCC.2012.2227143
– ident: ref17
  doi: 10.1109/TPWRD.2010.2068578
– year: 1999
  ident: ref43
  publication-title: Genius Modular Redundancy for Fire and Gas Applications
– ident: ref36
  doi: 10.1109/TSMCA.2012.2189880
– ident: ref13
  doi: 10.1016/j.eswa.2012.12.037
– year: 2007
  ident: ref42
  publication-title: Genius Modular Redundancy User's Manual
– ident: ref14
  doi: 10.1016/j.cja.2013.07.001
– ident: ref27
  doi: 10.1016/j.energy.2015.04.090
– ident: ref35
  doi: 10.1109/TR.2012.2208300
SSID ssj0024890
Score 2.547563
Snippet Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 276
SubjectTerms Belief networks
Circuit faults
Complex systems
Control systems
Degradation
Dynamic Bayesian network (DBN)
Electronics
Fault diagnosis
Hidden Markov models
intermittent fault (IF)
Markov processes
Power system dynamics
Transient analysis
transient fault (TF)
Title A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults
URI https://ieeexplore.ieee.org/document/7495018
https://www.proquest.com/docview/1857347006
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxsI-uo8eUSDEBC5Cwm3TdrsJimBkOeivd9pd0Kgx3jbNtmnytZ2v029mAK4iKVIvzBj1lKspEyrEPeekVPup73OWKW3VhMNROJiw-2kwrcDNNhZGa23FZ7plPu1bfrpUa-Mqa0fI5h03rkIVL25FrNZnXr3Y-lMMI6ABD4LyBdN1eHvceegZEVfYwvXJrKTwiw2yRVV-nMTWvPT3YbiZWKEqeWqtc9lS799yNv535gewV_JM0ikWxiFU9OIIdr9kH6zDY4d0i3r09Fa8aRNNSUeFKhwbVjolfbGe56RbqPFmKzK05aatI55sKn3iUMQaPBNYScQiJdbJ-DzLc9Ngh1gdw6TfG98NaFl6gSo_4DlFWuFIyVzlI72LpONxhE6GImLKVdLTTpApjtxGpBIpOhMyi4VwJU-zGHEQ0j-B2mK50KdAstDDK5lwRRYg9sIXMnTNESwipF4ZZw1wNmAkqsxLbspjzBN7P3F4YvBLDH5JiV8DrrddXoqkHH_9XDd4bH8soWhAc4N4Um7bVWISY_kswpPo7Pde57DjGbtufTBNqOWva32BrCSXl3Y5fgDWu98C
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhXOLESeqxUKryaBdaiS2yHUcqlBbRdIBfz9lJCwKE2CIrtix9tu_z-bs7gJNYydSPMk59zQzlUke457yUmiANAsEzbZyasN2JWj1-8xA-zMHZLBbGGOPEZ6ZqP91bfjrSE-sqO4-RzXusNg-LaPdDVkRrfWbWqzmPiuUENBRhWL5hMk-cd-v3V1bGFVVxhXInKvxihVxZlR9nsTMwzTVoT6dW6EqeqpNcVfX7t6yN_537OqyWTJPUi6WxAXNmuAkrX_IPbsFjnTSKivT0Qr4ZG09JO4UuHBvGJiVNORnkpFHo8fpj0nYFp50rnkxrfeJQxJk8G1pJ5DAlzs343M9z2-CGGG9Dr3nVvWzRsvgC1UEocorEwlOKMx0gwYuV5wsET0Uy5ppp5RsvzLRAdiNThSSdS5XVpGRKpFkNcZAq2IGF4WhodoFkkY-XMslkFiL6MpAqYvYQljGSr0zwCnhTMBJdZia3BTIGibuheCKx-CUWv6TErwKnsy4vRVqOv37esnjMfiyhqMDBFPGk3LjjxKbGCniMZ9He772OYanVbd8ld9ed231Y9q2Vdx6ZA1jIXyfmEDlKro7c0vwAoMriSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic-Bayesian-Network-Based+Fault+Diagnosis+Methodology+Considering+Transient+and+Intermittent+Faults&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Cai%2C+Baoping&rft.au=Liu%2C+Yu&rft.au=Xie%2C+Min&rft.date=2017-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=14&rft.issue=1&rft.spage=276&rft.epage=285&rft_id=info:doi/10.1109%2FTASE.2016.2574875&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2016_2574875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon