Smart and Resilient EV Charging in SDN-Enhanced Vehicular Edge Computing Networks
Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles (EVs) with rechargeable batteries can be powered by external sources of electricity from the grid, and thus charging scheduling that guides lo...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 38; no. 1; pp. 217 - 228 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles (EVs) with rechargeable batteries can be powered by external sources of electricity from the grid, and thus charging scheduling that guides low-battery EVs to charging services is significant for service quality improvement of EV drivers. The revolution of communications and data analytics driven by massive data in smart grid brings many challenges as well as chances for EV charging scheduling, and how to schedule EV charging in a smart and resilient way has inevitably become a crucial problem. Toward this end, we in this paper leverage the techniques of software defined networking and vehicular edge computing to investigate a joint problem of fast charging station selection and EV route planning. Our objective is to minimize the total overhead from users' perspective, including time and charging fares in the whole process, considering charging availability and electricity price fluctuation. A deep reinforcement learning (DRL) based solution is proposed to determine an optimal charging scheduling policy for low-battery EVs. Besides, in response to dynamic EV charging, we further develop a resilient EV charging strategy based on incremental update, with EV drivers' user experience being well considered. Extensive simulations demonstrate that our proposed DRL-based solution obtains near-optimal EV charging overhead with good adaptivity, and the solution with incremental update achieves much higher computation efficiency than conventional game-theoretical method in dynamic EV charging. |
---|---|
AbstractList | Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles (EVs) with rechargeable batteries can be powered by external sources of electricity from the grid, and thus charging scheduling that guides low-battery EVs to charging services is significant for service quality improvement of EV drivers. The revolution of communications and data analytics driven by massive data in smart grid brings many challenges as well as chances for EV charging scheduling, and how to schedule EV charging in a smart and resilient way has inevitably become a crucial problem. Toward this end, we in this paper leverage the techniques of software defined networking and vehicular edge computing to investigate a joint problem of fast charging station selection and EV route planning. Our objective is to minimize the total overhead from users' perspective, including time and charging fares in the whole process, considering charging availability and electricity price fluctuation. A deep reinforcement learning (DRL) based solution is proposed to determine an optimal charging scheduling policy for low-battery EVs. Besides, in response to dynamic EV charging, we further develop a resilient EV charging strategy based on incremental update, with EV drivers' user experience being well considered. Extensive simulations demonstrate that our proposed DRL-based solution obtains near-optimal EV charging overhead with good adaptivity, and the solution with incremental update achieves much higher computation efficiency than conventional game-theoretical method in dynamic EV charging. |
Author | Guo, Hongzhi Kato, Nei Xiong, Jingyu Zhang, Jie Zhang, Yanning Liu, Jiajia |
Author_xml | – sequence: 1 givenname: Jiajia orcidid: 0000-0002-9920-4956 surname: Liu fullname: Liu, Jiajia email: liujiajia@nwpu.edu.cn organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Hongzhi orcidid: 0000-0002-2503-2784 surname: Guo fullname: Guo, Hongzhi email: hongzhi.guo@nwpu.edu.cn organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Jingyu orcidid: 0000-0002-4189-1327 surname: Xiong fullname: Xiong, Jingyu organization: School of Cyber Engineering, Xidian University, Xi'an, China – sequence: 4 givenname: Nei orcidid: 0000-0001-8769-302X surname: Kato fullname: Kato, Nei organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 5 givenname: Jie orcidid: 0000-0003-4041-5027 surname: Zhang fullname: Zhang, Jie organization: School of Cyber Engineering, Xidian University, Xi'an, China – sequence: 6 givenname: Yanning orcidid: 0000-0002-2977-8057 surname: Zhang fullname: Zhang, Yanning organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNp9kD1PwzAQhi1UJNrCD0AslphTfE6c2GMVwpeqIih0jdzk0rqkTnFcIf49qVoxMDDd8j733j0D0rONRUIugY0AmLp5mo3TEWegRlwJUHF8QvoghAwYY7JH-iwJw0AmEJ-RQduuGYMokrxPXmYb7TzVtqSv2JraoPU0m9N0pd3S2CU1ls5up0FmV9oWWNI5rkyxq7WjWblEmjab7c7vg1P0X437aM_JaaXrFi-Oc0je77K39CGYPN8_puNJUIRC-SDihZALLCuFmkPBZVkJvSgF40wVrIohYgnggici0gJ4d61SEjCCRIgqZlE4JNeHvVvXfO6w9fm62TnbVeY8jBR03_OkS8EhVbimbR1W-daZ7uXvHFi-N5fvzeV7c_nRXMckf5jCeO1NY73Tpv6XvDqQBhF_m6RUXHT-fwCzf3tP |
CODEN | ISACEM |
CitedBy_id | crossref_primary_10_1109_TVT_2023_3285555 crossref_primary_10_1109_TWC_2020_3043038 crossref_primary_10_1109_TVT_2023_3281592 crossref_primary_10_1109_TVT_2022_3222917 crossref_primary_10_1109_TVT_2020_2999617 crossref_primary_10_1109_TMC_2021_3064314 crossref_primary_10_1109_TVT_2020_2972133 crossref_primary_10_1016_j_physa_2023_128826 crossref_primary_10_1109_TVT_2020_2997712 crossref_primary_10_1109_TWC_2021_3065645 crossref_primary_10_1007_s11424_022_1155_z crossref_primary_10_1016_j_vehcom_2023_100688 crossref_primary_10_1109_TWC_2020_3049016 crossref_primary_10_1109_TCOMM_2023_3332932 crossref_primary_10_1016_j_adhoc_2022_102959 crossref_primary_10_1109_TVT_2020_2981934 crossref_primary_10_1155_2021_5537471 crossref_primary_10_1109_TVT_2020_3004720 crossref_primary_10_1109_TVT_2023_3292815 crossref_primary_10_1109_TWC_2020_3040791 crossref_primary_10_1109_TVT_2022_3184965 crossref_primary_10_1109_TVT_2020_3036833 crossref_primary_10_1109_TCCN_2024_3349452 crossref_primary_10_1109_TVT_2023_3270967 crossref_primary_10_1109_TWC_2022_3188302 crossref_primary_10_1109_ACCESS_2023_3305966 crossref_primary_10_1109_TVT_2020_2983445 crossref_primary_10_1109_TVT_2020_3003867 crossref_primary_10_1109_TVT_2021_3112121 crossref_primary_10_1109_TMC_2021_3096328 crossref_primary_10_1109_TNSE_2020_2997376 crossref_primary_10_1109_JIOT_2021_3079455 crossref_primary_10_1109_TVT_2021_3101298 crossref_primary_10_1109_TPDS_2020_3003270 crossref_primary_10_1109_TITS_2024_3427337 crossref_primary_10_1109_JSAC_2020_3005468 crossref_primary_10_1109_TNSM_2024_3383213 crossref_primary_10_1109_TVT_2020_2986088 crossref_primary_10_1109_TVT_2022_3221133 crossref_primary_10_1007_s42979_023_02252_8 crossref_primary_10_3390_en17246277 crossref_primary_10_1109_TVT_2020_3000568 crossref_primary_10_1016_j_comnet_2022_109238 crossref_primary_10_1109_TCCN_2022_3147196 crossref_primary_10_1109_TVT_2021_3093892 crossref_primary_10_1109_TVT_2020_2970763 crossref_primary_10_1109_ACCESS_2021_3064354 crossref_primary_10_1155_2022_8117391 crossref_primary_10_1109_TSC_2020_3009084 crossref_primary_10_1109_TVT_2020_3039851 crossref_primary_10_1109_TVT_2023_3332956 crossref_primary_10_1016_j_comcom_2020_11_011 crossref_primary_10_1109_TVT_2020_3014050 crossref_primary_10_3390_en13133371 crossref_primary_10_1049_cmu2_12397 crossref_primary_10_1016_j_jnca_2021_103058 crossref_primary_10_1155_2021_3587884 crossref_primary_10_1109_ACCESS_2022_3183634 crossref_primary_10_1109_TVT_2023_3307755 crossref_primary_10_1109_TCOMM_2021_3113390 crossref_primary_10_1016_j_neunet_2022_05_013 crossref_primary_10_1109_TCCN_2020_3018157 crossref_primary_10_1109_TVT_2023_3250486 crossref_primary_10_1109_TVT_2021_3064955 crossref_primary_10_1109_COMST_2021_3131332 crossref_primary_10_1109_TCOMM_2022_3196654 crossref_primary_10_1109_TII_2022_3166215 crossref_primary_10_1109_JIOT_2021_3123429 crossref_primary_10_1016_j_comcom_2021_07_017 crossref_primary_10_1186_s13677_023_00547_y crossref_primary_10_1109_TITS_2022_3150176 crossref_primary_10_1109_ACCESS_2022_3206020 crossref_primary_10_1109_TVT_2022_3194206 crossref_primary_10_1109_TWC_2021_3096881 crossref_primary_10_1109_JIOT_2021_3115807 crossref_primary_10_1007_s40747_024_01587_w crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_3390_en17153694 crossref_primary_10_1109_TVT_2021_3098170 crossref_primary_10_1109_TWC_2020_2995594 crossref_primary_10_1109_TVT_2022_3199212 crossref_primary_10_1109_JIOT_2021_3121511 crossref_primary_10_1109_TVT_2020_2977367 crossref_primary_10_1049_cmu2_12175 crossref_primary_10_1109_TVT_2020_3026004 crossref_primary_10_1109_TVT_2020_2976958 crossref_primary_10_1109_JIOT_2021_3098051 crossref_primary_10_1109_JSAC_2023_3310067 crossref_primary_10_1109_TMC_2024_3355868 crossref_primary_10_1109_TVT_2022_3171817 crossref_primary_10_1109_TVT_2022_3202525 crossref_primary_10_3390_s22103718 crossref_primary_10_1109_TITS_2024_3495973 crossref_primary_10_1109_TWC_2021_3137843 crossref_primary_10_1109_TCOMM_2023_3325905 crossref_primary_10_1016_j_ref_2023_05_005 crossref_primary_10_1109_ACCESS_2024_3371890 crossref_primary_10_1109_TVT_2022_3178821 crossref_primary_10_1109_TWC_2022_3168538 crossref_primary_10_1109_COMST_2021_3130901 crossref_primary_10_1109_TMC_2022_3205427 crossref_primary_10_1109_TVT_2021_3124483 crossref_primary_10_1109_TVT_2020_2970842 crossref_primary_10_1109_TVT_2020_2971254 crossref_primary_10_1109_TWC_2023_3237202 crossref_primary_10_1371_journal_pone_0253428 crossref_primary_10_1109_JIOT_2021_3135977 crossref_primary_10_1109_JIOT_2022_3161703 crossref_primary_10_1109_TVT_2020_3046856 crossref_primary_10_1109_JIOT_2022_3206432 crossref_primary_10_1109_TCOMM_2023_3286427 crossref_primary_10_1109_TVT_2022_3176653 crossref_primary_10_1063_5_0014059 crossref_primary_10_1109_TCCN_2024_3412394 |
Cites_doi | 10.1109/JSYST.2014.2356559 10.1109/TPWRS.2016.2585202 10.1109/TSG.2013.2277963 10.1109/TITS.2018.2795381 10.1109/LCOMM.2017.2763135 10.1109/TIE.2017.2740834 10.1109/PES.2011.6038937 10.1109/MVT.2018.2879537 10.1109/JIOT.2018.2876004 10.1109/TVT.2018.2878809 10.1109/TPWRS.2018.2868501 10.1109/TSG.2012.2228240 10.1109/SmartGridComm.2018.8587513 10.1109/TVT.2016.2594241 10.1109/TITS.2017.2737477 10.1109/JSYST.2013.2260934 10.1109/TETC.2017.2675911 10.1038/nature14236 10.1109/TSG.2018.2879572 10.1109/TIV.2018.2843126 10.1109/TII.2017.2682960 10.17775/CSEEJPES.2018.00520 10.1109/SURV.2011.101911.00087 10.1109/TSG.2015.2458863 10.1109/MCOM.2018.1700210 10.1109/TSG.2017.2703911 10.1109/MNET.2017.1600285 10.1109/TVT.2016.2603536 10.1109/TSG.2016.2635025 10.1007/978-3-319-25391-6 10.1109/TITS.2018.2841965 10.1145/2030698.2030706 10.1109/MCOM.2017.1600788 10.1109/TWC.2019.2893168 10.1109/MCOM.2016.1600346CM 10.1109/TITS.2018.2887194 10.1109/TSG.2015.2397439 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSAC.2019.2951966 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0008 |
EndPage | 228 |
ExternalDocumentID | 10_1109_JSAC_2019_2951966 8892573 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61801360; 61771374; 61771373; 61601357 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 310201905200001; 3102019PY005; JB181506; JB181507; JB181508 funderid: 10.13039/501100012226 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c359t-42c58bedf9ea21c28df5abd50209c0f614071eb2754a5124489981e41755f6043 |
IEDL.DBID | RIE |
ISSN | 0733-8716 |
IngestDate | Mon Jun 30 10:13:45 EDT 2025 Tue Jul 01 02:06:29 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 Wed Aug 27 06:31:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-42c58bedf9ea21c28df5abd50209c0f614071eb2754a5124489981e41755f6043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4189-1327 0000-0002-2977-8057 0000-0002-2503-2784 0000-0002-9920-4956 0000-0003-4041-5027 0000-0001-8769-302X |
PQID | 2349115527 |
PQPubID | 85481 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8892573 proquest_journals_2349115527 crossref_primary_10_1109_JSAC_2019_2951966 crossref_citationtrail_10_1109_JSAC_2019_2951966 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal on selected areas in communications |
PublicationTitleAbbrev | J-SAC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 azar (ref38) 2017 ref2 ref1 ref39 ref17 ref16 ref19 ref18 lillicrap (ref36) 2015 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 lowe (ref37) 2017 ref40 |
References_xml | – ident: ref11 doi: 10.1109/JSYST.2014.2356559 – ident: ref29 doi: 10.1109/TPWRS.2016.2585202 – ident: ref2 doi: 10.1109/TSG.2013.2277963 – ident: ref13 doi: 10.1109/TITS.2018.2795381 – ident: ref16 doi: 10.1109/LCOMM.2017.2763135 – ident: ref9 doi: 10.1109/TIE.2017.2740834 – ident: ref23 doi: 10.1109/PES.2011.6038937 – ident: ref19 doi: 10.1109/MVT.2018.2879537 – ident: ref26 doi: 10.1109/JIOT.2018.2876004 – year: 2015 ident: ref36 article-title: Continuous control with deep reinforcement learning publication-title: arXiv 1509 02971 – ident: ref40 doi: 10.1109/TVT.2018.2878809 – ident: ref15 doi: 10.1109/TPWRS.2018.2868501 – ident: ref21 doi: 10.1109/TSG.2012.2228240 – ident: ref10 doi: 10.1109/SmartGridComm.2018.8587513 – ident: ref25 doi: 10.1109/TVT.2016.2594241 – ident: ref35 doi: 10.1109/TITS.2017.2737477 – ident: ref3 doi: 10.1109/JSYST.2013.2260934 – ident: ref7 doi: 10.1109/TETC.2017.2675911 – ident: ref17 doi: 10.1038/nature14236 – ident: ref34 doi: 10.1109/TSG.2018.2879572 – ident: ref20 doi: 10.1109/TIV.2018.2843126 – ident: ref28 doi: 10.1109/TII.2017.2682960 – ident: ref32 doi: 10.17775/CSEEJPES.2018.00520 – ident: ref1 doi: 10.1109/SURV.2011.101911.00087 – ident: ref30 doi: 10.1109/TSG.2015.2458863 – ident: ref14 doi: 10.1109/MCOM.2018.1700210 – year: 2017 ident: ref38 article-title: Minimax regret bounds for reinforcement learning publication-title: arXiv 1703 05449 – ident: ref18 doi: 10.1109/TSG.2017.2703911 – ident: ref4 doi: 10.1109/MNET.2017.1600285 – ident: ref33 doi: 10.1109/TVT.2016.2603536 – ident: ref27 doi: 10.1109/TSG.2016.2635025 – ident: ref6 doi: 10.1007/978-3-319-25391-6 – ident: ref24 doi: 10.1109/TITS.2018.2841965 – ident: ref22 doi: 10.1145/2030698.2030706 – ident: ref5 doi: 10.1109/MCOM.2017.1600788 – ident: ref39 doi: 10.1109/TWC.2019.2893168 – ident: ref12 doi: 10.1109/MCOM.2016.1600346CM – ident: ref31 doi: 10.1109/TITS.2018.2887194 – ident: ref8 doi: 10.1109/TSG.2015.2397439 – start-page: 6379 year: 2017 ident: ref37 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Proc NIPS |
SSID | ssj0014482 |
Score | 2.621424 |
Snippet | Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 217 |
SubjectTerms | Batteries charging scheduling Computer simulation deep reinforcement learning Dynamic scheduling Edge computing electric vehicle Electric vehicle charging Electric vehicles Electricity Electricity pricing Machine learning Processor scheduling Rechargeable batteries Route planning Route selection Schedules Scheduling Smart grid Software-defined networking Variation Vehicle dynamics vehicular edge computing |
Title | Smart and Resilient EV Charging in SDN-Enhanced Vehicular Edge Computing Networks |
URI | https://ieeexplore.ieee.org/document/8892573 https://www.proquest.com/docview/2349115527 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qJz34FqtVcvAkbt1uku3mKFoRoQWtirdl81gt1q3Y9uKvdya7raIi3nKYQMhMku_LvAAOM6OQ_as8MDxHgtKWcZC43AWhDWOttZEJp3znbi--vBNXD_KhBsfzXBjnnA8-c00ael--HZkpfZWdJIlCC-MLsIDErczVmnsMkGZ4j0Gb84BIQOXBbIXq5Kp_ekZBXKoZIZ5QviDi5xvkm6r8uIn983KxCt3ZwsqokufmdKKb5v1bzcb_rnwNViqcyU5Lw1iHmis2YPlL9cFNuO6_oN2wrLDsxo0HQ8qMZJ17Rh54al3EBgXrn_eCTvHkwwTYvXsa-LBV1rGPjpUNIUiwV8aSj7fg7qJze3YZVB0WUDVSTQIRoTK0s7lyWdQyUWJzmWkrEUMqE-b4dCMCQe7dliKThASInbWcQMwh8zgUfBsWi1HhdoAZPG0msgblrTCCZy7JQqOl0HFmudB1CGd7npqq_Dh1wRimnoaEKiU1paSmtFJTHY7mU17L2ht_CW_Sts8Fqx2vQ2Om2LQ6neM04gLveKo9t_v7rD1YiohX-6-WBixO3qZuH8HHRB94q_sAd4bUQw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6V9gAcaKFUBArsAS5ITp31ruM9cKjaVOkrEqStejPe3TGNKC4iiRD8lv6V_rfOrJ20AsStEjcfZr3yzud57LwA3hTOkPdvysglJTkoXZ1GGZYYxT5OrbVOZwnXOx8O0v6x2jvVpwtwOa-FQcSQfIZtfgyxfH_hpnxVtpFlhhA2G1W9jz9_kIM2fr-7Tdx8K-VO72irHzUzBGhzbSaRkrSdRV8aLGTHycyXurBek5VkXFySciIdS95lV6tCs65j_6ODirSqLtNYJfTee7BEdoaWdXXYPEZBtCFG0U2SiN2OJmbaic3G3nBzi9PGTFuSBWNCC8YbrRfGuPwh-4NC21mGq9lR1HksX9rTiW27X791ifxfz2oFHjWWtNisof8YFrB6Ag9v9VdchQ_Dr_RniKLy4iOOR-dc-yl6J4JzDHg4kxhVYrg9iHrVWUiEECd4NgqJuaLnP6OoR14w4aDOlh8_heM7-aY1WKwuKnwGwpE8cdI7ovfKqaTArIid1cqmhU-UbUE843HumgbrPOfjPA-OVmxyhkXOsMgbWLTg3XzJt7q7yL-IV5nNc8KGwy1YnwEpb-TPOJeJIi3G3fWe_33Va7jfPzo8yA92B_sv4IHkW4RwsbQOi5PvU3xJptbEvgqIF_DprmFzDUrsLz0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+and+Resilient+EV+Charging+in+SDN-Enhanced+Vehicular+Edge+Computing+Networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Liu%2C+Jiajia&rft.au=Guo%2C+Hongzhi&rft.au=Xiong%2C+Jingyu&rft.au=Kato%2C+Nei&rft.date=2020-01-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=38&rft.issue=1&rft.spage=217&rft.epage=228&rft_id=info:doi/10.1109%2FJSAC.2019.2951966&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2019_2951966 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |