Smart and Resilient EV Charging in SDN-Enhanced Vehicular Edge Computing Networks

Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles (EVs) with rechargeable batteries can be powered by external sources of electricity from the grid, and thus charging scheduling that guides lo...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 38; no. 1; pp. 217 - 228
Main Authors Liu, Jiajia, Guo, Hongzhi, Xiong, Jingyu, Kato, Nei, Zhang, Jie, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles (EVs) with rechargeable batteries can be powered by external sources of electricity from the grid, and thus charging scheduling that guides low-battery EVs to charging services is significant for service quality improvement of EV drivers. The revolution of communications and data analytics driven by massive data in smart grid brings many challenges as well as chances for EV charging scheduling, and how to schedule EV charging in a smart and resilient way has inevitably become a crucial problem. Toward this end, we in this paper leverage the techniques of software defined networking and vehicular edge computing to investigate a joint problem of fast charging station selection and EV route planning. Our objective is to minimize the total overhead from users' perspective, including time and charging fares in the whole process, considering charging availability and electricity price fluctuation. A deep reinforcement learning (DRL) based solution is proposed to determine an optimal charging scheduling policy for low-battery EVs. Besides, in response to dynamic EV charging, we further develop a resilient EV charging strategy based on incremental update, with EV drivers' user experience being well considered. Extensive simulations demonstrate that our proposed DRL-based solution obtains near-optimal EV charging overhead with good adaptivity, and the solution with incremental update achieves much higher computation efficiency than conventional game-theoretical method in dynamic EV charging.
AbstractList Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles (EVs) with rechargeable batteries can be powered by external sources of electricity from the grid, and thus charging scheduling that guides low-battery EVs to charging services is significant for service quality improvement of EV drivers. The revolution of communications and data analytics driven by massive data in smart grid brings many challenges as well as chances for EV charging scheduling, and how to schedule EV charging in a smart and resilient way has inevitably become a crucial problem. Toward this end, we in this paper leverage the techniques of software defined networking and vehicular edge computing to investigate a joint problem of fast charging station selection and EV route planning. Our objective is to minimize the total overhead from users' perspective, including time and charging fares in the whole process, considering charging availability and electricity price fluctuation. A deep reinforcement learning (DRL) based solution is proposed to determine an optimal charging scheduling policy for low-battery EVs. Besides, in response to dynamic EV charging, we further develop a resilient EV charging strategy based on incremental update, with EV drivers' user experience being well considered. Extensive simulations demonstrate that our proposed DRL-based solution obtains near-optimal EV charging overhead with good adaptivity, and the solution with incremental update achieves much higher computation efficiency than conventional game-theoretical method in dynamic EV charging.
Author Guo, Hongzhi
Kato, Nei
Xiong, Jingyu
Zhang, Jie
Zhang, Yanning
Liu, Jiajia
Author_xml – sequence: 1
  givenname: Jiajia
  orcidid: 0000-0002-9920-4956
  surname: Liu
  fullname: Liu, Jiajia
  email: liujiajia@nwpu.edu.cn
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Hongzhi
  orcidid: 0000-0002-2503-2784
  surname: Guo
  fullname: Guo, Hongzhi
  email: hongzhi.guo@nwpu.edu.cn
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jingyu
  orcidid: 0000-0002-4189-1327
  surname: Xiong
  fullname: Xiong, Jingyu
  organization: School of Cyber Engineering, Xidian University, Xi'an, China
– sequence: 4
  givenname: Nei
  orcidid: 0000-0001-8769-302X
  surname: Kato
  fullname: Kato, Nei
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 5
  givenname: Jie
  orcidid: 0000-0003-4041-5027
  surname: Zhang
  fullname: Zhang, Jie
  organization: School of Cyber Engineering, Xidian University, Xi'an, China
– sequence: 6
  givenname: Yanning
  orcidid: 0000-0002-2977-8057
  surname: Zhang
  fullname: Zhang, Yanning
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kD1PwzAQhi1UJNrCD0AslphTfE6c2GMVwpeqIih0jdzk0rqkTnFcIf49qVoxMDDd8j733j0D0rONRUIugY0AmLp5mo3TEWegRlwJUHF8QvoghAwYY7JH-iwJw0AmEJ-RQduuGYMokrxPXmYb7TzVtqSv2JraoPU0m9N0pd3S2CU1ls5up0FmV9oWWNI5rkyxq7WjWblEmjab7c7vg1P0X437aM_JaaXrFi-Oc0je77K39CGYPN8_puNJUIRC-SDihZALLCuFmkPBZVkJvSgF40wVrIohYgnggici0gJ4d61SEjCCRIgqZlE4JNeHvVvXfO6w9fm62TnbVeY8jBR03_OkS8EhVbimbR1W-daZ7uXvHFi-N5fvzeV7c_nRXMckf5jCeO1NY73Tpv6XvDqQBhF_m6RUXHT-fwCzf3tP
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_TVT_2023_3285555
crossref_primary_10_1109_TWC_2020_3043038
crossref_primary_10_1109_TVT_2023_3281592
crossref_primary_10_1109_TVT_2022_3222917
crossref_primary_10_1109_TVT_2020_2999617
crossref_primary_10_1109_TMC_2021_3064314
crossref_primary_10_1109_TVT_2020_2972133
crossref_primary_10_1016_j_physa_2023_128826
crossref_primary_10_1109_TVT_2020_2997712
crossref_primary_10_1109_TWC_2021_3065645
crossref_primary_10_1007_s11424_022_1155_z
crossref_primary_10_1016_j_vehcom_2023_100688
crossref_primary_10_1109_TWC_2020_3049016
crossref_primary_10_1109_TCOMM_2023_3332932
crossref_primary_10_1016_j_adhoc_2022_102959
crossref_primary_10_1109_TVT_2020_2981934
crossref_primary_10_1155_2021_5537471
crossref_primary_10_1109_TVT_2020_3004720
crossref_primary_10_1109_TVT_2023_3292815
crossref_primary_10_1109_TWC_2020_3040791
crossref_primary_10_1109_TVT_2022_3184965
crossref_primary_10_1109_TVT_2020_3036833
crossref_primary_10_1109_TCCN_2024_3349452
crossref_primary_10_1109_TVT_2023_3270967
crossref_primary_10_1109_TWC_2022_3188302
crossref_primary_10_1109_ACCESS_2023_3305966
crossref_primary_10_1109_TVT_2020_2983445
crossref_primary_10_1109_TVT_2020_3003867
crossref_primary_10_1109_TVT_2021_3112121
crossref_primary_10_1109_TMC_2021_3096328
crossref_primary_10_1109_TNSE_2020_2997376
crossref_primary_10_1109_JIOT_2021_3079455
crossref_primary_10_1109_TVT_2021_3101298
crossref_primary_10_1109_TPDS_2020_3003270
crossref_primary_10_1109_TITS_2024_3427337
crossref_primary_10_1109_JSAC_2020_3005468
crossref_primary_10_1109_TNSM_2024_3383213
crossref_primary_10_1109_TVT_2020_2986088
crossref_primary_10_1109_TVT_2022_3221133
crossref_primary_10_1007_s42979_023_02252_8
crossref_primary_10_3390_en17246277
crossref_primary_10_1109_TVT_2020_3000568
crossref_primary_10_1016_j_comnet_2022_109238
crossref_primary_10_1109_TCCN_2022_3147196
crossref_primary_10_1109_TVT_2021_3093892
crossref_primary_10_1109_TVT_2020_2970763
crossref_primary_10_1109_ACCESS_2021_3064354
crossref_primary_10_1155_2022_8117391
crossref_primary_10_1109_TSC_2020_3009084
crossref_primary_10_1109_TVT_2020_3039851
crossref_primary_10_1109_TVT_2023_3332956
crossref_primary_10_1016_j_comcom_2020_11_011
crossref_primary_10_1109_TVT_2020_3014050
crossref_primary_10_3390_en13133371
crossref_primary_10_1049_cmu2_12397
crossref_primary_10_1016_j_jnca_2021_103058
crossref_primary_10_1155_2021_3587884
crossref_primary_10_1109_ACCESS_2022_3183634
crossref_primary_10_1109_TVT_2023_3307755
crossref_primary_10_1109_TCOMM_2021_3113390
crossref_primary_10_1016_j_neunet_2022_05_013
crossref_primary_10_1109_TCCN_2020_3018157
crossref_primary_10_1109_TVT_2023_3250486
crossref_primary_10_1109_TVT_2021_3064955
crossref_primary_10_1109_COMST_2021_3131332
crossref_primary_10_1109_TCOMM_2022_3196654
crossref_primary_10_1109_TII_2022_3166215
crossref_primary_10_1109_JIOT_2021_3123429
crossref_primary_10_1016_j_comcom_2021_07_017
crossref_primary_10_1186_s13677_023_00547_y
crossref_primary_10_1109_TITS_2022_3150176
crossref_primary_10_1109_ACCESS_2022_3206020
crossref_primary_10_1109_TVT_2022_3194206
crossref_primary_10_1109_TWC_2021_3096881
crossref_primary_10_1109_JIOT_2021_3115807
crossref_primary_10_1007_s40747_024_01587_w
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_3390_en17153694
crossref_primary_10_1109_TVT_2021_3098170
crossref_primary_10_1109_TWC_2020_2995594
crossref_primary_10_1109_TVT_2022_3199212
crossref_primary_10_1109_JIOT_2021_3121511
crossref_primary_10_1109_TVT_2020_2977367
crossref_primary_10_1049_cmu2_12175
crossref_primary_10_1109_TVT_2020_3026004
crossref_primary_10_1109_TVT_2020_2976958
crossref_primary_10_1109_JIOT_2021_3098051
crossref_primary_10_1109_JSAC_2023_3310067
crossref_primary_10_1109_TMC_2024_3355868
crossref_primary_10_1109_TVT_2022_3171817
crossref_primary_10_1109_TVT_2022_3202525
crossref_primary_10_3390_s22103718
crossref_primary_10_1109_TITS_2024_3495973
crossref_primary_10_1109_TWC_2021_3137843
crossref_primary_10_1109_TCOMM_2023_3325905
crossref_primary_10_1016_j_ref_2023_05_005
crossref_primary_10_1109_ACCESS_2024_3371890
crossref_primary_10_1109_TVT_2022_3178821
crossref_primary_10_1109_TWC_2022_3168538
crossref_primary_10_1109_COMST_2021_3130901
crossref_primary_10_1109_TMC_2022_3205427
crossref_primary_10_1109_TVT_2021_3124483
crossref_primary_10_1109_TVT_2020_2970842
crossref_primary_10_1109_TVT_2020_2971254
crossref_primary_10_1109_TWC_2023_3237202
crossref_primary_10_1371_journal_pone_0253428
crossref_primary_10_1109_JIOT_2021_3135977
crossref_primary_10_1109_JIOT_2022_3161703
crossref_primary_10_1109_TVT_2020_3046856
crossref_primary_10_1109_JIOT_2022_3206432
crossref_primary_10_1109_TCOMM_2023_3286427
crossref_primary_10_1109_TVT_2022_3176653
crossref_primary_10_1063_5_0014059
crossref_primary_10_1109_TCCN_2024_3412394
Cites_doi 10.1109/JSYST.2014.2356559
10.1109/TPWRS.2016.2585202
10.1109/TSG.2013.2277963
10.1109/TITS.2018.2795381
10.1109/LCOMM.2017.2763135
10.1109/TIE.2017.2740834
10.1109/PES.2011.6038937
10.1109/MVT.2018.2879537
10.1109/JIOT.2018.2876004
10.1109/TVT.2018.2878809
10.1109/TPWRS.2018.2868501
10.1109/TSG.2012.2228240
10.1109/SmartGridComm.2018.8587513
10.1109/TVT.2016.2594241
10.1109/TITS.2017.2737477
10.1109/JSYST.2013.2260934
10.1109/TETC.2017.2675911
10.1038/nature14236
10.1109/TSG.2018.2879572
10.1109/TIV.2018.2843126
10.1109/TII.2017.2682960
10.17775/CSEEJPES.2018.00520
10.1109/SURV.2011.101911.00087
10.1109/TSG.2015.2458863
10.1109/MCOM.2018.1700210
10.1109/TSG.2017.2703911
10.1109/MNET.2017.1600285
10.1109/TVT.2016.2603536
10.1109/TSG.2016.2635025
10.1007/978-3-319-25391-6
10.1109/TITS.2018.2841965
10.1145/2030698.2030706
10.1109/MCOM.2017.1600788
10.1109/TWC.2019.2893168
10.1109/MCOM.2016.1600346CM
10.1109/TITS.2018.2887194
10.1109/TSG.2015.2397439
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2019.2951966
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 228
ExternalDocumentID 10_1109_JSAC_2019_2951966
8892573
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61801360; 61771374; 61771373; 61601357
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 310201905200001; 3102019PY005; JB181506; JB181507; JB181508
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-42c58bedf9ea21c28df5abd50209c0f614071eb2754a5124489981e41755f6043
IEDL.DBID RIE
ISSN 0733-8716
IngestDate Mon Jun 30 10:13:45 EDT 2025
Tue Jul 01 02:06:29 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Wed Aug 27 06:31:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-42c58bedf9ea21c28df5abd50209c0f614071eb2754a5124489981e41755f6043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4189-1327
0000-0002-2977-8057
0000-0002-2503-2784
0000-0002-9920-4956
0000-0003-4041-5027
0000-0001-8769-302X
PQID 2349115527
PQPubID 85481
PageCount 12
ParticipantIDs ieee_primary_8892573
proquest_journals_2349115527
crossref_primary_10_1109_JSAC_2019_2951966
crossref_citationtrail_10_1109_JSAC_2019_2951966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
azar (ref38) 2017
ref2
ref1
ref39
ref17
ref16
ref19
ref18
lillicrap (ref36) 2015
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
lowe (ref37) 2017
ref40
References_xml – ident: ref11
  doi: 10.1109/JSYST.2014.2356559
– ident: ref29
  doi: 10.1109/TPWRS.2016.2585202
– ident: ref2
  doi: 10.1109/TSG.2013.2277963
– ident: ref13
  doi: 10.1109/TITS.2018.2795381
– ident: ref16
  doi: 10.1109/LCOMM.2017.2763135
– ident: ref9
  doi: 10.1109/TIE.2017.2740834
– ident: ref23
  doi: 10.1109/PES.2011.6038937
– ident: ref19
  doi: 10.1109/MVT.2018.2879537
– ident: ref26
  doi: 10.1109/JIOT.2018.2876004
– year: 2015
  ident: ref36
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv 1509 02971
– ident: ref40
  doi: 10.1109/TVT.2018.2878809
– ident: ref15
  doi: 10.1109/TPWRS.2018.2868501
– ident: ref21
  doi: 10.1109/TSG.2012.2228240
– ident: ref10
  doi: 10.1109/SmartGridComm.2018.8587513
– ident: ref25
  doi: 10.1109/TVT.2016.2594241
– ident: ref35
  doi: 10.1109/TITS.2017.2737477
– ident: ref3
  doi: 10.1109/JSYST.2013.2260934
– ident: ref7
  doi: 10.1109/TETC.2017.2675911
– ident: ref17
  doi: 10.1038/nature14236
– ident: ref34
  doi: 10.1109/TSG.2018.2879572
– ident: ref20
  doi: 10.1109/TIV.2018.2843126
– ident: ref28
  doi: 10.1109/TII.2017.2682960
– ident: ref32
  doi: 10.17775/CSEEJPES.2018.00520
– ident: ref1
  doi: 10.1109/SURV.2011.101911.00087
– ident: ref30
  doi: 10.1109/TSG.2015.2458863
– ident: ref14
  doi: 10.1109/MCOM.2018.1700210
– year: 2017
  ident: ref38
  article-title: Minimax regret bounds for reinforcement learning
  publication-title: arXiv 1703 05449
– ident: ref18
  doi: 10.1109/TSG.2017.2703911
– ident: ref4
  doi: 10.1109/MNET.2017.1600285
– ident: ref33
  doi: 10.1109/TVT.2016.2603536
– ident: ref27
  doi: 10.1109/TSG.2016.2635025
– ident: ref6
  doi: 10.1007/978-3-319-25391-6
– ident: ref24
  doi: 10.1109/TITS.2018.2841965
– ident: ref22
  doi: 10.1145/2030698.2030706
– ident: ref5
  doi: 10.1109/MCOM.2017.1600788
– ident: ref39
  doi: 10.1109/TWC.2019.2893168
– ident: ref12
  doi: 10.1109/MCOM.2016.1600346CM
– ident: ref31
  doi: 10.1109/TITS.2018.2887194
– ident: ref8
  doi: 10.1109/TSG.2015.2397439
– start-page: 6379
  year: 2017
  ident: ref37
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Proc NIPS
SSID ssj0014482
Score 2.621424
Snippet Smart grid delivers power with two-way flows of electricity and information with the support of information and communication technologies. Electric vehicles...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Batteries
charging scheduling
Computer simulation
deep reinforcement learning
Dynamic scheduling
Edge computing
electric vehicle
Electric vehicle charging
Electric vehicles
Electricity
Electricity pricing
Machine learning
Processor scheduling
Rechargeable batteries
Route planning
Route selection
Schedules
Scheduling
Smart grid
Software-defined networking
Variation
Vehicle dynamics
vehicular edge computing
Title Smart and Resilient EV Charging in SDN-Enhanced Vehicular Edge Computing Networks
URI https://ieeexplore.ieee.org/document/8892573
https://www.proquest.com/docview/2349115527
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qJz34FqtVcvAkbt1uku3mKFoRoQWtirdl81gt1q3Y9uKvdya7raIi3nKYQMhMku_LvAAOM6OQ_as8MDxHgtKWcZC43AWhDWOttZEJp3znbi--vBNXD_KhBsfzXBjnnA8-c00ael--HZkpfZWdJIlCC-MLsIDErczVmnsMkGZ4j0Gb84BIQOXBbIXq5Kp_ekZBXKoZIZ5QviDi5xvkm6r8uIn983KxCt3ZwsqokufmdKKb5v1bzcb_rnwNViqcyU5Lw1iHmis2YPlL9cFNuO6_oN2wrLDsxo0HQ8qMZJ17Rh54al3EBgXrn_eCTvHkwwTYvXsa-LBV1rGPjpUNIUiwV8aSj7fg7qJze3YZVB0WUDVSTQIRoTK0s7lyWdQyUWJzmWkrEUMqE-b4dCMCQe7dliKThASInbWcQMwh8zgUfBsWi1HhdoAZPG0msgblrTCCZy7JQqOl0HFmudB1CGd7npqq_Dh1wRimnoaEKiU1paSmtFJTHY7mU17L2ht_CW_Sts8Fqx2vQ2Om2LQ6neM04gLveKo9t_v7rD1YiohX-6-WBixO3qZuH8HHRB94q_sAd4bUQw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6V9gAcaKFUBArsAS5ITp31ruM9cKjaVOkrEqStejPe3TGNKC4iiRD8lv6V_rfOrJ20AsStEjcfZr3yzud57LwA3hTOkPdvysglJTkoXZ1GGZYYxT5OrbVOZwnXOx8O0v6x2jvVpwtwOa-FQcSQfIZtfgyxfH_hpnxVtpFlhhA2G1W9jz9_kIM2fr-7Tdx8K-VO72irHzUzBGhzbSaRkrSdRV8aLGTHycyXurBek5VkXFySciIdS95lV6tCs65j_6ODirSqLtNYJfTee7BEdoaWdXXYPEZBtCFG0U2SiN2OJmbaic3G3nBzi9PGTFuSBWNCC8YbrRfGuPwh-4NC21mGq9lR1HksX9rTiW27X791ifxfz2oFHjWWtNisof8YFrB6Ag9v9VdchQ_Dr_RniKLy4iOOR-dc-yl6J4JzDHg4kxhVYrg9iHrVWUiEECd4NgqJuaLnP6OoR14w4aDOlh8_heM7-aY1WKwuKnwGwpE8cdI7ovfKqaTArIid1cqmhU-UbUE843HumgbrPOfjPA-OVmxyhkXOsMgbWLTg3XzJt7q7yL-IV5nNc8KGwy1YnwEpb-TPOJeJIi3G3fWe_33Va7jfPzo8yA92B_sv4IHkW4RwsbQOi5PvU3xJptbEvgqIF_DprmFzDUrsLz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+and+Resilient+EV+Charging+in+SDN-Enhanced+Vehicular+Edge+Computing+Networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Liu%2C+Jiajia&rft.au=Guo%2C+Hongzhi&rft.au=Xiong%2C+Jingyu&rft.au=Kato%2C+Nei&rft.date=2020-01-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=38&rft.issue=1&rft.spage=217&rft.epage=228&rft_id=info:doi/10.1109%2FJSAC.2019.2951966&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2019_2951966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon