Privacy-Preserving Efficient Federated-Learning Model Debugging
Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A fundamental issue in this framework is the susceptibility to the erroneous training data. This problem is especially challenging due to the invisibi...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 33; no. 10; pp. 2291 - 2303 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A fundamental issue in this framework is the susceptibility to the erroneous training data. This problem is especially challenging due to the invisibility of clients' local training data and training process, as well as the resource constraints. In this paper, we aim to solve this issue by introducing the first FL debugging framework, FLDebugger , for mitigating test error caused by erroneous training data. The proposed solution traces the global model's bugs (test errors), jointly through the training log and the underlying learning algorithm, back to first identify the clients and subsequently their training samples that are most responsible for the errors. In addition, we devise an influence-based participant selection strategy to fix bugs as well as to accelerate the convergence of model retraining. The performance of the identification algorithm is evaluated via extensive experiments on a real AIoT system (50 clients, including 20 edge computers, 20 laptops and 10 desktops) and in larger-scale simulated environments. The evaluation results attest to that our framework achieves accurate, privacy-preserving and efficient identification of negatively influential clients and samples, and significantly improves the model performance by fixing bugs. |
---|---|
AbstractList | Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A fundamental issue in this framework is the susceptibility to the erroneous training data. This problem is especially challenging due to the invisibility of clients’ local training data and training process, as well as the resource constraints. In this paper, we aim to solve this issue by introducing the first FL debugging framework, FLDebugger , for mitigating test error caused by erroneous training data. The proposed solution traces the global model’s bugs (test errors), jointly through the training log and the underlying learning algorithm, back to first identify the clients and subsequently their training samples that are most responsible for the errors. In addition, we devise an influence-based participant selection strategy to fix bugs as well as to accelerate the convergence of model retraining. The performance of the identification algorithm is evaluated via extensive experiments on a real AIoT system (50 clients, including 20 edge computers, 20 laptops and 10 desktops) and in larger-scale simulated environments. The evaluation results attest to that our framework achieves accurate, privacy-preserving and efficient identification of negatively influential clients and samples, and significantly improves the model performance by fixing bugs. |
Author | Li, Anran Han, Feng Zhang, Lan Li, Xiang-Yang Wang, Junhao |
Author_xml | – sequence: 1 givenname: Anran orcidid: 0000-0002-3592-4153 surname: Li fullname: Li, Anran email: anranLi@mail.ustc.edu.cn organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China – sequence: 2 givenname: Lan orcidid: 0000-0003-1004-8588 surname: Zhang fullname: Zhang, Lan email: zhanglan@ustc.edu.cn organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China – sequence: 3 givenname: Junhao surname: Wang fullname: Wang, Junhao email: junhaow@mail.ustc.edu.cn organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China – sequence: 4 givenname: Feng surname: Han fullname: Han, Feng email: hf1996@mail.ustc.edu.cn organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China – sequence: 5 givenname: Xiang-Yang orcidid: 0000-0002-6070-6625 surname: Li fullname: Li, Xiang-Yang email: xiangyangli@ustc.edu.cn organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China |
BookMark | eNp9kE1Lw0AQhhepYFv9AeKl4Dl1Zz-zJ5F-qFCxYD0vm82kbKlJ3aSF_nsTWjx48DQzzDzzwjMgvbIqkZBboGMAah5Wy-nHmFEGYw5ccwYXpA9SpgmDlPfangqZGAbmigzqekMpCElFnzwuYzg4f0yWEWuMh1CuR7OiCD5g2YzmmGN0DebJAl0su-VbleN2NMVsv1638zW5LNy2xptzHZLP-Ww1eUkW78-vk6dF4rk0TSLApFw7qnReFKhpXoBBIZzUmcup84qzLKXoXSZkluagM4lca-WZEgZYxofk_vR3F6vvPdaN3VT7WLaRlimeApOKq_YKTlc-VnUdsbC7GL5cPFqgtvNkO0-282TPnlpG_2F8aFwTqrKJLmz_Je9OZEDE3ySjFHBg_AezhXau |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1109_TPDS_2023_3331372 crossref_primary_10_3390_s24102968 crossref_primary_10_1007_s10115_024_02285_2 crossref_primary_10_1109_TNET_2024_3423316 crossref_primary_10_1155_2023_2956990 crossref_primary_10_1109_JIOT_2023_3332216 crossref_primary_10_1109_TNNLS_2024_3360429 crossref_primary_10_1145_3617332 crossref_primary_10_1109_TPDS_2024_3439709 crossref_primary_10_1109_TCCN_2024_3394889 crossref_primary_10_1109_TMC_2023_3333879 crossref_primary_10_1109_JIOT_2023_3234422 crossref_primary_10_1016_j_neunet_2024_106100 crossref_primary_10_1109_TMC_2024_3455331 crossref_primary_10_1142_S0218126625501117 crossref_primary_10_1007_s13042_022_01647_y crossref_primary_10_1145_3678181 |
Cites_doi | 10.1145/2939672.2939778 10.1145/2897518.2897566 10.1109/INFOCOM.2019.8737532 10.1109/ICDE48307.2020.00047 10.1007/11761679_29 10.1007/s10115-017-1116-3 10.1109/TPDS.2017.2712148 10.1145/3241539.3241559 10.1109/TMC.2018.2878711 10.1109/ICDE51399.2021.00039 10.1145/1866739.1866758 10.1145/2976749.2978318 10.1109/TMC.2014.2366773 10.1109/INFOCOM.2018.8486403 10.1109/IJCNN.2018.8489641 10.1109/5.726791 10.1109/ICDE.2017.146 10.1109/CVPR.2016.282 10.1109/SP.2016.42 10.1137/120889897 10.1109/TPDS.2010.98 10.1145/2733373.2806390 10.1007/s00041-008-9030-4 10.1162/neco.1994.6.1.147 10.1109/JSAC.2019.2904348 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2021.3137321 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 2303 |
ExternalDocumentID | 10_1109_TPDS_2021_3137321 9661312 |
Genre | orig-research |
GrantInformation_xml | – fundername: Tencent Marketing Solution Rhino-Bird Focused Research Program – fundername: Key Research Program of Frontier Science, Chinese Academy of Sciences grantid: QYZDY-SSW-JSC002 funderid: 10.13039/501100018527 – fundername: National Key Research and Development Program of China grantid: 2018YFB0803400 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61822209; 61625205; 61932016; 62132018 funderid: 10.13039/501100001809 |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-419837a067dffe70df19e44a57bad0ac632b80ecab45b8d17b5e3776c264912b3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 05:40:09 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 03:58:40 EDT 2025 Wed Aug 27 02:49:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-419837a067dffe70df19e44a57bad0ac632b80ecab45b8d17b5e3776c264912b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3592-4153 0000-0003-1004-8588 0000-0002-6070-6625 |
PQID | 2638125636 |
PQPubID | 85437 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9661312 crossref_primary_10_1109_TPDS_2021_3137321 proquest_journals_2638125636 crossref_citationtrail_10_1109_TPDS_2021_3137321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | zhu (ref38) 2019 ref35 ref37 ref15 ref30 ref33 zhu (ref34) 2019; 32 ref11 khanna (ref28) 2019 ref32 ref10 ref39 ref17 ref16 ref19 arazo (ref8) 2019 ref18 koh (ref13) 2017 hard (ref2) 2018 agarwal (ref36) 2016; 1050 mcmahan (ref4) 2016 lecun (ref40) 0 chen (ref26) 2019 abadi (ref6) 2016 ref24 ref45 ref23 ref25 chen (ref5) 2019 ref20 ref42 ref22 ref44 ref21 ref43 li (ref12) 2016 mcmahan (ref1) 2017 ref7 ref9 bonawitz (ref3) 2019 dwork (ref29) 2006 krizhevsky (ref41) 2009 koh (ref14) 2019 xue (ref27) 2021 dwork (ref31) 2014; 9 |
References_xml | – start-page: 1273 year: 2017 ident: ref1 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc Artif Intell Statist – year: 2016 ident: ref6 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems – start-page: 312 year: 2019 ident: ref8 article-title: Unsupervised label noise modeling and loss correction publication-title: Proc Int Conf Mach Learn – year: 2016 ident: ref12 article-title: Understanding neural networks through representation erasure – ident: ref11 doi: 10.1145/2939672.2939778 – ident: ref45 doi: 10.1145/2897518.2897566 – ident: ref21 doi: 10.1109/INFOCOM.2019.8737532 – volume: 9 start-page: 3 year: 2014 ident: ref31 article-title: The algorithmic foundations of differential privacy publication-title: Foundations and Trends in Theoretical Computer Science – start-page: 265 year: 2006 ident: ref29 article-title: Calibrating noise to sensitivity in private data analysis publication-title: Theory of Cryptography Conference – ident: ref7 doi: 10.1109/ICDE48307.2020.00047 – ident: ref32 doi: 10.1007/11761679_29 – year: 0 ident: ref40 article-title: The MNIST database – ident: ref25 doi: 10.1007/s10115-017-1116-3 – ident: ref15 doi: 10.1109/TPDS.2017.2712148 – ident: ref19 doi: 10.1145/3241539.3241559 – start-page: 14 747 year: 2019 ident: ref38 article-title: Deep leakage from gradients publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref3 article-title: Towards federated learning at scale: System design – ident: ref17 doi: 10.1109/TMC.2018.2878711 – volume: 1050 year: 2016 ident: ref36 article-title: Second-order stochastic optimization in linear time publication-title: J Mach Learn Res – ident: ref23 doi: 10.1109/ICDE51399.2021.00039 – ident: ref30 doi: 10.1145/1866739.1866758 – start-page: 3382 year: 2019 ident: ref28 article-title: Interpreting black box predictions using fisher kernels publication-title: Proc 22nd Int Conf Artif Intell Statist – ident: ref33 doi: 10.1145/2976749.2978318 – ident: ref18 doi: 10.1109/TMC.2014.2366773 – start-page: 10560 year: 2021 ident: ref27 article-title: Toward understanding the influence of individual clients in federated learning publication-title: Proc 35th AAAI Conf Artif Intell – start-page: 1 year: 2009 ident: ref41 article-title: Learning multiple layers of features from tiny images – ident: ref20 doi: 10.1109/INFOCOM.2018.8486403 – ident: ref44 doi: 10.1109/IJCNN.2018.8489641 – ident: ref43 doi: 10.1109/5.726791 – year: 2018 ident: ref2 article-title: Federated learning for mobile keyboard prediction – ident: ref9 doi: 10.1109/ICDE.2017.146 – ident: ref10 doi: 10.1109/CVPR.2016.282 – start-page: 1885 year: 2017 ident: ref13 article-title: Understanding black-box predictions via influence functions publication-title: Proc 34th Int Conf Mach Learn – year: 2019 ident: ref5 article-title: FedHealth: A federated transfer learning framework for wearable healthcare – ident: ref24 doi: 10.1109/SP.2016.42 – ident: ref39 doi: 10.1137/120889897 – start-page: 1062 year: 2019 ident: ref26 article-title: Understanding and utilizing deep neural networks trained with noisy labels publication-title: Proc Int Conf Mach Learn – start-page: 5254 year: 2019 ident: ref14 article-title: On the accuracy of influence functions for measuring group effects publication-title: Proc Adv Neural Inf Process Syst – ident: ref16 doi: 10.1109/TPDS.2010.98 – ident: ref42 doi: 10.1145/2733373.2806390 – ident: ref37 doi: 10.1007/s00041-008-9030-4 – ident: ref35 doi: 10.1162/neco.1994.6.1.147 – volume: 32 year: 2019 ident: ref34 article-title: Deep leakage from gradients publication-title: Proc Annu Conf Neural Inf Process Syst – ident: ref22 doi: 10.1109/JSAC.2019.2904348 – year: 2016 ident: ref4 article-title: Communication-efficient learning of deep networks from decentralized data |
SSID | ssj0014504 |
Score | 2.5190911 |
Snippet | Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2291 |
SubjectTerms | Adaptation models Algorithms Clients Computational modeling Data models data quality assessment Debugging Federated learning Influence function Laptop computers Machine learning Model testing Predictive models Privacy Training Training data Visibility |
Title | Privacy-Preserving Efficient Federated-Learning Model Debugging |
URI | https://ieeexplore.ieee.org/document/9661312 https://www.proquest.com/docview/2638125636 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJz2IgkYUzR48GQu7fWzZkzEKISYYEiHhttl2CzESMAgm-uudlkJ8xXjbQ7tpZjqvzsw3AOcCWWm4FIRxOiIcHQKCdkcTIzgzoilVk9sG5-593Bnwu6EYFuBy0wtjjHHFZ6ZuP10uP5_ppX0qa6BrHjE7UngLA7dVr9YmY8CFGxWI0YUgCYqhz2BGYdLo924fMBKkEQaoTDIafbFBbqjKD03szEu7BN31wVZVJU_15ULV9fs3zMb_nnwPdr2fGVyvLsY-FMy0DKX1DIfAi3QZdj4BElbgqjd_fM30G7GVGVaLTMdBy4FM4O-DtgWeQN80Jx6VdRzYUWqTAJXW0r5cjw9g0G71bzrEj1ggmolkYXPAGKFmaLLy0cjIMB9FieE8E1JleZjpmFHVDI3OFBeqmUdSCcOkjDX6UUlEFTuE4nQ2NUcQ8EhrlXCZaxRxEcvEUBPGOg51xpHztArhmuip9vjjdgzGJHVxSJiklk-p5VPq-VSFi82W5xX4xl-LK5bum4We5FWorTmbevF8SSlqHfTsYhYf_77rBLap7XNwVXs1KC7mS3OK3sdCnblr9wHsEdPh |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6IHtSDS1Ws6xw8iakzWSadk4haqralYAVvwySTKWJppbaC_npf0rS4Id7mkAzhvbwtb_kAjgSy0nApCOO0IBwdAoJ2RxMjODOiKlWV2wbnZiuu3_ObB_EwByezXhhjjCs-MxX76XL5-UCP7VPZKbrmEbOQwgto9wWddGvNcgZcOLBAjC8ESVAQfQ4zCpPTTvvyDmNBGmGIyiSj0Rcr5GBVfuhiZ2Bqq9CcHm1SV_JUGY9URb9_m9r437OvwYr3NIPzydVYhznTL8HqFMUh8EJdguVPIwk34Kw9fHzN9BuxtRlWj_S7wZUbM4G_D2p29AR6pznxc1m7gQVT6wWotsb27bq7Cfe1q85FnXiQBaKZSEY2C4wxaoZGKy8KI8O8iBLDeSakyvIw0zGjqhoanSkuVDWPpBKGSRlr9KSSiCq2BfP9Qd9sQ8AjrVXCZa5RyEUsE0NNGOs41BlH3tMyhFOip9pPILdAGL3URSJhklo-pZZPqedTGY5nW54n4zf-Wrxh6T5b6Elehr0pZ1MvoC8pRb2Dvl3M4p3fdx3CYr3TbKSN69btLixR2_Xgavj2YH40HJt99EVG6sBdwQ8oQtcr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Preserving+Efficient+Federated-Learning+Model+Debugging&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Li%2C+Anran&rft.au=Zhang%2C+Lan&rft.au=Wang%2C+Junhao&rft.au=Han%2C+Feng&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=10&rft.spage=2291&rft_id=info:doi/10.1109%2FTPDS.2021.3137321&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |