Privacy-Preserving Efficient Federated-Learning Model Debugging

Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A fundamental issue in this framework is the susceptibility to the erroneous training data. This problem is especially challenging due to the invisibi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 33; no. 10; pp. 2291 - 2303
Main Authors Li, Anran, Zhang, Lan, Wang, Junhao, Han, Feng, Li, Xiang-Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A fundamental issue in this framework is the susceptibility to the erroneous training data. This problem is especially challenging due to the invisibility of clients' local training data and training process, as well as the resource constraints. In this paper, we aim to solve this issue by introducing the first FL debugging framework, FLDebugger , for mitigating test error caused by erroneous training data. The proposed solution traces the global model's bugs (test errors), jointly through the training log and the underlying learning algorithm, back to first identify the clients and subsequently their training samples that are most responsible for the errors. In addition, we devise an influence-based participant selection strategy to fix bugs as well as to accelerate the convergence of model retraining. The performance of the identification algorithm is evaluated via extensive experiments on a real AIoT system (50 clients, including 20 edge computers, 20 laptops and 10 desktops) and in larger-scale simulated environments. The evaluation results attest to that our framework achieves accurate, privacy-preserving and efficient identification of negatively influential clients and samples, and significantly improves the model performance by fixing bugs.
AbstractList Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A fundamental issue in this framework is the susceptibility to the erroneous training data. This problem is especially challenging due to the invisibility of clients’ local training data and training process, as well as the resource constraints. In this paper, we aim to solve this issue by introducing the first FL debugging framework, FLDebugger , for mitigating test error caused by erroneous training data. The proposed solution traces the global model’s bugs (test errors), jointly through the training log and the underlying learning algorithm, back to first identify the clients and subsequently their training samples that are most responsible for the errors. In addition, we devise an influence-based participant selection strategy to fix bugs as well as to accelerate the convergence of model retraining. The performance of the identification algorithm is evaluated via extensive experiments on a real AIoT system (50 clients, including 20 edge computers, 20 laptops and 10 desktops) and in larger-scale simulated environments. The evaluation results attest to that our framework achieves accurate, privacy-preserving and efficient identification of negatively influential clients and samples, and significantly improves the model performance by fixing bugs.
Author Li, Anran
Han, Feng
Zhang, Lan
Li, Xiang-Yang
Wang, Junhao
Author_xml – sequence: 1
  givenname: Anran
  orcidid: 0000-0002-3592-4153
  surname: Li
  fullname: Li, Anran
  email: anranLi@mail.ustc.edu.cn
  organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 2
  givenname: Lan
  orcidid: 0000-0003-1004-8588
  surname: Zhang
  fullname: Zhang, Lan
  email: zhanglan@ustc.edu.cn
  organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 3
  givenname: Junhao
  surname: Wang
  fullname: Wang, Junhao
  email: junhaow@mail.ustc.edu.cn
  organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 4
  givenname: Feng
  surname: Han
  fullname: Han, Feng
  email: hf1996@mail.ustc.edu.cn
  organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 5
  givenname: Xiang-Yang
  orcidid: 0000-0002-6070-6625
  surname: Li
  fullname: Li, Xiang-Yang
  email: xiangyangli@ustc.edu.cn
  organization: School of Computer Science, University of Science and Technology of China, Hefei, Anhui, China
BookMark eNp9kE1Lw0AQhhepYFv9AeKl4Dl1Zz-zJ5F-qFCxYD0vm82kbKlJ3aSF_nsTWjx48DQzzDzzwjMgvbIqkZBboGMAah5Wy-nHmFEGYw5ccwYXpA9SpgmDlPfangqZGAbmigzqekMpCElFnzwuYzg4f0yWEWuMh1CuR7OiCD5g2YzmmGN0DebJAl0su-VbleN2NMVsv1638zW5LNy2xptzHZLP-Ww1eUkW78-vk6dF4rk0TSLApFw7qnReFKhpXoBBIZzUmcup84qzLKXoXSZkluagM4lca-WZEgZYxofk_vR3F6vvPdaN3VT7WLaRlimeApOKq_YKTlc-VnUdsbC7GL5cPFqgtvNkO0-282TPnlpG_2F8aFwTqrKJLmz_Je9OZEDE3ySjFHBg_AezhXau
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_TPDS_2023_3331372
crossref_primary_10_3390_s24102968
crossref_primary_10_1007_s10115_024_02285_2
crossref_primary_10_1109_TNET_2024_3423316
crossref_primary_10_1155_2023_2956990
crossref_primary_10_1109_JIOT_2023_3332216
crossref_primary_10_1109_TNNLS_2024_3360429
crossref_primary_10_1145_3617332
crossref_primary_10_1109_TPDS_2024_3439709
crossref_primary_10_1109_TCCN_2024_3394889
crossref_primary_10_1109_TMC_2023_3333879
crossref_primary_10_1109_JIOT_2023_3234422
crossref_primary_10_1016_j_neunet_2024_106100
crossref_primary_10_1109_TMC_2024_3455331
crossref_primary_10_1142_S0218126625501117
crossref_primary_10_1007_s13042_022_01647_y
crossref_primary_10_1145_3678181
Cites_doi 10.1145/2939672.2939778
10.1145/2897518.2897566
10.1109/INFOCOM.2019.8737532
10.1109/ICDE48307.2020.00047
10.1007/11761679_29
10.1007/s10115-017-1116-3
10.1109/TPDS.2017.2712148
10.1145/3241539.3241559
10.1109/TMC.2018.2878711
10.1109/ICDE51399.2021.00039
10.1145/1866739.1866758
10.1145/2976749.2978318
10.1109/TMC.2014.2366773
10.1109/INFOCOM.2018.8486403
10.1109/IJCNN.2018.8489641
10.1109/5.726791
10.1109/ICDE.2017.146
10.1109/CVPR.2016.282
10.1109/SP.2016.42
10.1137/120889897
10.1109/TPDS.2010.98
10.1145/2733373.2806390
10.1007/s00041-008-9030-4
10.1162/neco.1994.6.1.147
10.1109/JSAC.2019.2904348
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2021.3137321
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2303
ExternalDocumentID 10_1109_TPDS_2021_3137321
9661312
Genre orig-research
GrantInformation_xml – fundername: Tencent Marketing Solution Rhino-Bird Focused Research Program
– fundername: Key Research Program of Frontier Science, Chinese Academy of Sciences
  grantid: QYZDY-SSW-JSC002
  funderid: 10.13039/501100018527
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB0803400
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61822209; 61625205; 61932016; 62132018
  funderid: 10.13039/501100001809
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-419837a067dffe70df19e44a57bad0ac632b80ecab45b8d17b5e3776c264912b3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Mon Jun 30 05:40:09 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 03:58:40 EDT 2025
Wed Aug 27 02:49:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-419837a067dffe70df19e44a57bad0ac632b80ecab45b8d17b5e3776c264912b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3592-4153
0000-0003-1004-8588
0000-0002-6070-6625
PQID 2638125636
PQPubID 85437
PageCount 13
ParticipantIDs ieee_primary_9661312
crossref_primary_10_1109_TPDS_2021_3137321
proquest_journals_2638125636
crossref_citationtrail_10_1109_TPDS_2021_3137321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References zhu (ref38) 2019
ref35
ref37
ref15
ref30
ref33
zhu (ref34) 2019; 32
ref11
khanna (ref28) 2019
ref32
ref10
ref39
ref17
ref16
ref19
arazo (ref8) 2019
ref18
koh (ref13) 2017
hard (ref2) 2018
agarwal (ref36) 2016; 1050
mcmahan (ref4) 2016
lecun (ref40) 0
chen (ref26) 2019
abadi (ref6) 2016
ref24
ref45
ref23
ref25
chen (ref5) 2019
ref20
ref42
ref22
ref44
ref21
ref43
li (ref12) 2016
mcmahan (ref1) 2017
ref7
ref9
bonawitz (ref3) 2019
dwork (ref29) 2006
krizhevsky (ref41) 2009
koh (ref14) 2019
xue (ref27) 2021
dwork (ref31) 2014; 9
References_xml – start-page: 1273
  year: 2017
  ident: ref1
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc Artif Intell Statist
– year: 2016
  ident: ref6
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
– start-page: 312
  year: 2019
  ident: ref8
  article-title: Unsupervised label noise modeling and loss correction
  publication-title: Proc Int Conf Mach Learn
– year: 2016
  ident: ref12
  article-title: Understanding neural networks through representation erasure
– ident: ref11
  doi: 10.1145/2939672.2939778
– ident: ref45
  doi: 10.1145/2897518.2897566
– ident: ref21
  doi: 10.1109/INFOCOM.2019.8737532
– volume: 9
  start-page: 3
  year: 2014
  ident: ref31
  article-title: The algorithmic foundations of differential privacy
  publication-title: Foundations and Trends in Theoretical Computer Science
– start-page: 265
  year: 2006
  ident: ref29
  article-title: Calibrating noise to sensitivity in private data analysis
  publication-title: Theory of Cryptography Conference
– ident: ref7
  doi: 10.1109/ICDE48307.2020.00047
– ident: ref32
  doi: 10.1007/11761679_29
– year: 0
  ident: ref40
  article-title: The MNIST database
– ident: ref25
  doi: 10.1007/s10115-017-1116-3
– ident: ref15
  doi: 10.1109/TPDS.2017.2712148
– ident: ref19
  doi: 10.1145/3241539.3241559
– start-page: 14 747
  year: 2019
  ident: ref38
  article-title: Deep leakage from gradients
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref3
  article-title: Towards federated learning at scale: System design
– ident: ref17
  doi: 10.1109/TMC.2018.2878711
– volume: 1050
  year: 2016
  ident: ref36
  article-title: Second-order stochastic optimization in linear time
  publication-title: J Mach Learn Res
– ident: ref23
  doi: 10.1109/ICDE51399.2021.00039
– ident: ref30
  doi: 10.1145/1866739.1866758
– start-page: 3382
  year: 2019
  ident: ref28
  article-title: Interpreting black box predictions using fisher kernels
  publication-title: Proc 22nd Int Conf Artif Intell Statist
– ident: ref33
  doi: 10.1145/2976749.2978318
– ident: ref18
  doi: 10.1109/TMC.2014.2366773
– start-page: 10560
  year: 2021
  ident: ref27
  article-title: Toward understanding the influence of individual clients in federated learning
  publication-title: Proc 35th AAAI Conf Artif Intell
– start-page: 1
  year: 2009
  ident: ref41
  article-title: Learning multiple layers of features from tiny images
– ident: ref20
  doi: 10.1109/INFOCOM.2018.8486403
– ident: ref44
  doi: 10.1109/IJCNN.2018.8489641
– ident: ref43
  doi: 10.1109/5.726791
– year: 2018
  ident: ref2
  article-title: Federated learning for mobile keyboard prediction
– ident: ref9
  doi: 10.1109/ICDE.2017.146
– ident: ref10
  doi: 10.1109/CVPR.2016.282
– start-page: 1885
  year: 2017
  ident: ref13
  article-title: Understanding black-box predictions via influence functions
  publication-title: Proc 34th Int Conf Mach Learn
– year: 2019
  ident: ref5
  article-title: FedHealth: A federated transfer learning framework for wearable healthcare
– ident: ref24
  doi: 10.1109/SP.2016.42
– ident: ref39
  doi: 10.1137/120889897
– start-page: 1062
  year: 2019
  ident: ref26
  article-title: Understanding and utilizing deep neural networks trained with noisy labels
  publication-title: Proc Int Conf Mach Learn
– start-page: 5254
  year: 2019
  ident: ref14
  article-title: On the accuracy of influence functions for measuring group effects
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/TPDS.2010.98
– ident: ref42
  doi: 10.1145/2733373.2806390
– ident: ref37
  doi: 10.1007/s00041-008-9030-4
– ident: ref35
  doi: 10.1162/neco.1994.6.1.147
– volume: 32
  year: 2019
  ident: ref34
  article-title: Deep leakage from gradients
  publication-title: Proc Annu Conf Neural Inf Process Syst
– ident: ref22
  doi: 10.1109/JSAC.2019.2904348
– year: 2016
  ident: ref4
  article-title: Communication-efficient learning of deep networks from decentralized data
SSID ssj0014504
Score 2.5190911
Snippet Federated learning allows large amounts of mobile clients to jointly construct a global model without sending their private data to a central server. A...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2291
SubjectTerms Adaptation models
Algorithms
Clients
Computational modeling
Data models
data quality assessment
Debugging
Federated learning
Influence function
Laptop computers
Machine learning
Model testing
Predictive models
Privacy
Training
Training data
Visibility
Title Privacy-Preserving Efficient Federated-Learning Model Debugging
URI https://ieeexplore.ieee.org/document/9661312
https://www.proquest.com/docview/2638125636
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJz2IgkYUzR48GQu7fWzZkzEKISYYEiHhttl2CzESMAgm-uudlkJ8xXjbQ7tpZjqvzsw3AOcCWWm4FIRxOiIcHQKCdkcTIzgzoilVk9sG5-593Bnwu6EYFuBy0wtjjHHFZ6ZuP10uP5_ppX0qa6BrHjE7UngLA7dVr9YmY8CFGxWI0YUgCYqhz2BGYdLo924fMBKkEQaoTDIafbFBbqjKD03szEu7BN31wVZVJU_15ULV9fs3zMb_nnwPdr2fGVyvLsY-FMy0DKX1DIfAi3QZdj4BElbgqjd_fM30G7GVGVaLTMdBy4FM4O-DtgWeQN80Jx6VdRzYUWqTAJXW0r5cjw9g0G71bzrEj1ggmolkYXPAGKFmaLLy0cjIMB9FieE8E1JleZjpmFHVDI3OFBeqmUdSCcOkjDX6UUlEFTuE4nQ2NUcQ8EhrlXCZaxRxEcvEUBPGOg51xpHztArhmuip9vjjdgzGJHVxSJiklk-p5VPq-VSFi82W5xX4xl-LK5bum4We5FWorTmbevF8SSlqHfTsYhYf_77rBLap7XNwVXs1KC7mS3OK3sdCnblr9wHsEdPh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6IHtSDS1Ws6xw8iakzWSadk4haqralYAVvwySTKWJppbaC_npf0rS4Id7mkAzhvbwtb_kAjgSy0nApCOO0IBwdAoJ2RxMjODOiKlWV2wbnZiuu3_ObB_EwByezXhhjjCs-MxX76XL5-UCP7VPZKbrmEbOQwgto9wWddGvNcgZcOLBAjC8ESVAQfQ4zCpPTTvvyDmNBGmGIyiSj0Rcr5GBVfuhiZ2Bqq9CcHm1SV_JUGY9URb9_m9r437OvwYr3NIPzydVYhznTL8HqFMUh8EJdguVPIwk34Kw9fHzN9BuxtRlWj_S7wZUbM4G_D2p29AR6pznxc1m7gQVT6wWotsb27bq7Cfe1q85FnXiQBaKZSEY2C4wxaoZGKy8KI8O8iBLDeSakyvIw0zGjqhoanSkuVDWPpBKGSRlr9KSSiCq2BfP9Qd9sQ8AjrVXCZa5RyEUsE0NNGOs41BlH3tMyhFOip9pPILdAGL3URSJhklo-pZZPqedTGY5nW54n4zf-Wrxh6T5b6Elehr0pZ1MvoC8pRb2Dvl3M4p3fdx3CYr3TbKSN69btLixR2_Xgavj2YH40HJt99EVG6sBdwQ8oQtcr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Preserving+Efficient+Federated-Learning+Model+Debugging&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Li%2C+Anran&rft.au=Zhang%2C+Lan&rft.au=Wang%2C+Junhao&rft.au=Han%2C+Feng&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=10&rft.spage=2291&rft_id=info:doi/10.1109%2FTPDS.2021.3137321&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon