Privacy-Safe Action Recognition via Cross-Modality Distillation
Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal information of subjects and, as a result, run the risk of potential privacy leakage. On the other hand, privacy-safe alternatives, such as de...
Saved in:
Published in | IEEE access Vol. 12; pp. 125955 - 125965 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3431227 |
Cover
Loading…
Abstract | Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal information of subjects and, as a result, run the risk of potential privacy leakage. On the other hand, privacy-safe alternatives, such as depth or thermal sensors, exhibit poorer performance because they lack the semantic context provided by RGB sensors. Moreover, the data availability of privacy-safe alternatives is significantly lower than RGB sensors. To address these problems, we explore effective cross-modality distillation methods in this paper, aiming to distill the knowledge of context-rich large-scale pre-trained RGB-based models into privacy-safe depth-based models. Based on extensive experiments on multiple architectures and benchmark datasets, we propose an effective method for training privacy-safe depth-based action recognition models via cross-modality distillation: cross-modality mixing distillation. This approach improves both the performance and efficiency by enabling interaction between depth and RGB modalities through a linear combination of their features. By utilizing the proposed cross-modal mixing distillation approach, we achieve state-of-the-art accuracy in two depth-based action recognition benchmarks. The code and the pre-trained models will be available upon publication. |
---|---|
AbstractList | Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal information of subjects and, as a result, run the risk of potential privacy leakage. On the other hand, privacy-safe alternatives, such as depth or thermal sensors, exhibit poorer performance because they lack the semantic context provided by RGB sensors. Moreover, the data availability of privacy-safe alternatives is significantly lower than RGB sensors. To address these problems, we explore effective cross-modality distillation methods in this paper, aiming to distill the knowledge of context-rich large-scale pre-trained RGB-based models into privacy-safe depth-based models. Based on extensive experiments on multiple architectures and benchmark datasets, we propose an effective method for training privacy-safe depth-based action recognition models via cross-modality distillation: cross-modality mixing distillation. This approach improves both the performance and efficiency by enabling interaction between depth and RGB modalities through a linear combination of their features. By utilizing the proposed cross-modal mixing distillation approach, we achieve state-of-the-art accuracy in two depth-based action recognition benchmarks. The code and the pre-trained models will be available upon publication. |
Author | Jung, Jinwook Ahn, Byungtae Kwon, Junghye Noh, Hyeoncheol Choi, Dong-Geol Kim, Yuhyun |
Author_xml | – sequence: 1 givenname: Yuhyun orcidid: 0009-0002-5873-4245 surname: Kim fullname: Kim, Yuhyun organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea – sequence: 2 givenname: Jinwook orcidid: 0009-0003-8704-323X surname: Jung fullname: Jung, Jinwook organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea – sequence: 3 givenname: Hyeoncheol orcidid: 0000-0002-4325-8226 surname: Noh fullname: Noh, Hyeoncheol organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea – sequence: 4 givenname: Byungtae orcidid: 0000-0002-5007-5946 surname: Ahn fullname: Ahn, Byungtae organization: Korea Institute of Machinery and Materials, Daejeon, Republic of Korea – sequence: 5 givenname: Junghye surname: Kwon fullname: Kwon, Junghye organization: Department of Internal Medicine, Division of Hematology and Oncology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea – sequence: 6 givenname: Dong-Geol orcidid: 0000-0002-3345-5306 surname: Choi fullname: Choi, Dong-Geol email: dgchoi@hanbat.ac.kr organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea |
BookMark | eNpNUE1PwzAMjdCQGGO_AA6TOHckTdMkJzSVr0lDIAbnKE2cKVNpRtoh7d_TrROaL7ae_Z7td4kGdagBoWuCp4RgeTcrisflcpriNJvSjJI05WdomJJcJpTRfHBSX6Bx06xxF6KDGB-i-_fof7XZJUvtYDIzrQ_15ANMWNX-UP96PSliaJrkNVhd-XY3efBN66tK7_tX6NzpqoHxMY_Q19PjZ_GSLN6e58VskRjKZJtkGICXrBTGSiIcuIzn1hJKOc1F6STXhOVCOql5aS0Y6RgjgpRG85SXuqQjNO91bdBrtYn-W8edCtqrAxDiSunYelOBcjzHIIXknONMSClLaQ2zQDBQSLnotG57rU0MP1toWrUO21h35ytKcM4IlZJ2U7SfMvvvI7j_rQSrvfGqN17tjVdH4zvWTc_yAHDCyLtTmKB_Uo9__Q |
CODEN | IAECCG |
Cites_doi | 10.1007/978-3-031-19772-7_10 10.24963/ijcai.2021/362 10.1109/WACV57701.2024.00127 10.1109/WACV56688.2023.00333 10.1038/s41586-020-2669-y 10.1109/CVPR52729.2023.00544 10.1109/ICCV.2011.6126543 10.1109/ACCESS.2022.3214812 10.1109/CVPR46437.2021.01576 10.1007/978-3-031-20062-5_37 10.1109/CVPR52729.2023.00235 10.48550/arXiv.2102.05095 10.1109/ACCESS.2022.3202526 10.1109/ACCESS.2019.2907720 10.1109/ICCV.2017.83 10.18653/v1/2022.emnlp-main.432 10.1109/ICCV.2019.00092 10.1109/CVPR.2015.7298698 10.1016/j.cviu.2016.10.018 10.1109/ICCV.2017.74 10.1109/ACCESS.2023.3331756 10.1109/ICCV.2015.510 10.1109/CVPR.2016.96 10.1109/CVPR52729.2023.01524 10.1016/j.cviu.2021.103352 10.1109/CVPR52688.2022.00320 10.1109/CVPR.2018.00633 10.1109/ICIP.2019.8802909 10.1109/CVPR.2019.00674 10.1109/CVPR.2019.00807 10.1109/CVPR52729.2023.00220 10.1007/978-3-030-01237-3_7 10.1109/ICCV51070.2023.01826 10.1109/TPAMI.2019.2916873 10.48550/ARXIV.1212.0402 10.3390/s22072469 10.1109/CVPR42600.2020.01070 10.1109/LRA.2021.3139369 10.1109/ICCV51070.2023.00481 10.1109/TITS.2018.2791533 10.1109/CVPR.2017.502 10.18653/v1/2020.acl-main.740 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3431227 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 125965 |
ExternalDocumentID | oai_doaj_org_article_f760e989777048999b9dc5de10e3e278 10_1109_ACCESS_2024_3431227 10604858 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport grantid: RS-2023-00238018 funderid: 10.13039/501100007694 – fundername: Research Fund of Hanbat National University, in 2022 grantid: 202204870001 funderid: 10.13039/501100002483 – fundername: NRF grant funded by Korean Government Ministry of Science and ICT (MIST) grantid: 2023R1A2C1007428 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-40ee7b5b8cd918fef476dd1337368bf97a15689f9a7bddec9f55181bca727bab3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Mon Jun 30 16:29:37 EDT 2025 Tue Jul 01 03:02:43 EDT 2025 Wed Aug 27 01:58:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-40ee7b5b8cd918fef476dd1337368bf97a15689f9a7bddec9f55181bca727bab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-8704-323X 0009-0002-5873-4245 0000-0002-3345-5306 0000-0002-4325-8226 0000-0002-5007-5946 |
OpenAccessLink | https://doaj.org/article/f760e989777048999b9dc5de10e3e278 |
PQID | 3106513993 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3106513993 doaj_primary_oai_doaj_org_article_f760e989777048999b9dc5de10e3e278 ieee_primary_10604858 crossref_primary_10_1109_ACCESS_2024_3431227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref15 ref59 ref14 ref52 ref11 ref10 ref54 Lee (ref31); 3 ref16 ref19 ref18 Bhat (ref34) 2023 Carreira (ref32) 2018 ref50 Khan (ref55) Wang (ref26) ref46 ref45 ref47 ref42 ref41 ref44 Maaz (ref57) 2023 ref43 ref49 Lin (ref58) 2023 Reilly (ref17) 2023 ref9 ref4 ref3 ref6 ref5 Yeung (ref8) Lu (ref27) Li (ref53) Hinton (ref12) ref40 Smaira (ref33) 2020 ref35 ref36 ref30 Wang (ref48) 2022 (ref7) 2016 ref2 ref1 ref39 ref38 Hendrycks (ref37) ref24 ref23 ref25 ref20 ref22 Kay (ref21) 2017 ref28 ref29 ref60 Li (ref51) |
References_xml | – ident: ref11 doi: 10.1007/978-3-031-19772-7_10 – year: 2018 ident: ref32 article-title: A short note about kinetics-600 publication-title: arXiv:1808.01340 – year: 2023 ident: ref34 article-title: ZoeDepth: Zero-shot transfer by combining relative and metric depth publication-title: arXiv:2302.12288 – start-page: 8199 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref55 article-title: Grounded video situation recognition – year: 2023 ident: ref57 article-title: Video-ChatGPT: Towards detailed video understanding via large vision and language models publication-title: arXiv:2306.05424 – ident: ref39 doi: 10.24963/ijcai.2021/362 – ident: ref49 doi: 10.1109/WACV57701.2024.00127 – ident: ref59 doi: 10.1109/WACV56688.2023.00333 – ident: ref9 doi: 10.1038/s41586-020-2669-y – ident: ref60 doi: 10.1109/CVPR52729.2023.00544 – ident: ref1 doi: 10.1109/ICCV.2011.6126543 – start-page: 1632 volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV) ident: ref51 article-title: UniformerV2: Spatiotemporal learning by arming image ViTs with video uniformer – year: 2022 ident: ref48 article-title: InternVideo: General video foundation models via generative and discriminative learning publication-title: arXiv:2212.03191 – start-page: 1 volume-title: Proc. NIPS ident: ref12 article-title: Distilling the knowledge in a neural network – ident: ref43 doi: 10.1109/ACCESS.2022.3214812 – ident: ref25 doi: 10.1109/CVPR46437.2021.01576 – volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref27 article-title: A theory of multimodal learning – ident: ref54 doi: 10.1007/978-3-031-20062-5_37 – ident: ref35 doi: 10.1109/CVPR52729.2023.00235 – volume: 3 start-page: 896 issue: 2 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref31 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – ident: ref40 doi: 10.48550/arXiv.2102.05095 – ident: ref42 doi: 10.1109/ACCESS.2022.3202526 – ident: ref44 doi: 10.1109/ACCESS.2019.2907720 – ident: ref5 doi: 10.1109/ICCV.2017.83 – ident: ref56 doi: 10.18653/v1/2022.emnlp-main.432 – start-page: 1 volume-title: Proc. AMIA ident: ref8 article-title: Vision-based hand hygiene monitoring in hospitals – ident: ref20 doi: 10.1109/ICCV.2019.00092 – ident: ref4 doi: 10.1109/CVPR.2015.7298698 – ident: ref3 doi: 10.1016/j.cviu.2016.10.018 – ident: ref46 doi: 10.1109/ICCV.2017.74 – year: 2020 ident: ref33 article-title: A short note on the Kinetics-700–2020 human action dataset publication-title: arXiv:2010.10864 – ident: ref41 doi: 10.1109/ACCESS.2023.3331756 – year: 2023 ident: ref17 article-title: Seeing the pose in the pixels: Learning pose-aware representations in vision transformers publication-title: arXiv:2306.09331 – ident: ref24 doi: 10.1109/ICCV.2015.510 – ident: ref15 doi: 10.1109/CVPR.2016.96 – ident: ref29 doi: 10.1109/CVPR52729.2023.01524 – ident: ref14 doi: 10.1016/j.cviu.2021.103352 – ident: ref45 doi: 10.1109/CVPR52688.2022.00320 – ident: ref22 doi: 10.1109/CVPR.2018.00633 – ident: ref30 doi: 10.1109/ICIP.2019.8802909 – ident: ref6 doi: 10.1109/CVPR.2019.00674 – volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref26 article-title: Maximizing spatio-temporal entropy of deep 3D CNNs for efficient video recognition – ident: ref18 doi: 10.1109/CVPR.2019.00807 – ident: ref47 doi: 10.1109/CVPR52729.2023.00220 – start-page: 14733 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref53 article-title: Uniformer: Unified transformer for efficient spatiotemporal representation learning – ident: ref36 doi: 10.1007/978-3-030-01237-3_7 – ident: ref50 doi: 10.1109/ICCV51070.2023.01826 – ident: ref10 doi: 10.1109/TPAMI.2019.2916873 – ident: ref2 doi: 10.48550/ARXIV.1212.0402 – ident: ref19 doi: 10.3390/s22072469 – year: 2017 ident: ref21 article-title: The kinetics human action video dataset publication-title: arXiv:1705.06950 – ident: ref13 doi: 10.1109/CVPR42600.2020.01070 – ident: ref52 doi: 10.1109/LRA.2021.3139369 – volume-title: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) year: 2016 ident: ref7 – ident: ref16 doi: 10.1109/ICCV51070.2023.00481 – ident: ref28 doi: 10.1109/TITS.2018.2791533 – year: 2023 ident: ref58 article-title: Video-LLaVA: Learning united visual representation by alignment before projection publication-title: arXiv:2311.10122 – ident: ref23 doi: 10.1109/CVPR.2017.502 – ident: ref38 doi: 10.18653/v1/2020.acl-main.740 – start-page: 2712 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref37 article-title: Using pre-training can improve model robustness and uncertainty |
SSID | ssj0000816957 |
Score | 2.3069384 |
Snippet | Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 125955 |
SubjectTerms | Action recognition Availability Benchmark testing Benchmarks Computational modeling Context cross-modality distillation Deep learning Feature extraction Human activity recognition Kinetic theory knowledge distillation multi modal Privacy privacy-safe Public safety Sensors Supervised learning Thermal sensors Training |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7Wkx58i_XFHjy6tZvNbpKT1KoUoUXUgreQxwSK0oq2gv56J9mtFEXwtiwbkswj8012HoScWFQ-UVqfUi3ylFFwqXFMp5JRi-YQZcaHBOf-oOwN2c1j8Vgnq8dcGACIwWfQCo_xX76b2Fm4KkMNL3FwIRqkgXJWJWt9X6iEDhKy4HVloawtzzrdLm4CfUDKWjkaShpaxyxYn1ikv-6q8usojvblep0M5iurwkqeWrOpadnPH0Ub_730DbJWI82kU4nGJlmC8RZZXag_uE3Ob19H79p-pPfaQ9KJKQ7J3TykCJ_fRzrphp2k_YmLiD25DIfCcxVBt0OG11cP3V5ad1RIbV7IKTqLANwURlgnM-HBM146h24qz0thvOQa3TkhvdTc4LlnpQ8F2zJjNcIco02-S5bHkzHskUQgtKG5YT7XBdMWgbqjmjIIGMRzL5rkdE5p9VIVzlDR4WhLVTFGBcaomjFNchG48f1pqHodXyAVVa1EyvOyDVIgZOVITIS2RjpbOMjakAPlOOdOoPzCfBXRm-RwzlxVq-ibQlxbFlnAZ_t_DDsgK2GJ1YXLIVmevs7gCCHI1BxH0fsCalrX3A priority: 102 providerName: IEEE |
Title | Privacy-Safe Action Recognition via Cross-Modality Distillation |
URI | https://ieeexplore.ieee.org/document/10604858 https://www.proquest.com/docview/3106513993 https://doaj.org/article/f760e989777048999b9dc5de10e3e278 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EHxOnc_Tg0bo2TZrkJHM6hjARdbBbyE8YyCZzDvzvfUk7KXjw4q2ElDTfS_K-V_K-h9Clgc3HS-NTrHiREuxsqi1RqSDYgDuENeNDgvPksRxPycOMzhqlvsKdsEoeuAKu71mZOcGBpjB4EeiMFtZQ6_LMFQ6zmOabiawRTMUzmOeloKyWGcoz0R8MhzAjCAgxuS7Aa-JQR6bhiqJif11i5de5HJ3N6ADt1ywxGVRfd4h23OII7TW0A4_RzdNqvlHmK31R3iWDmJ6QPG-vA8HzZq6SYRg4nSxtZNvJXdjQb9Xttzaaju5fh-O0roaQmoKKNQR6zjFNNTdW5Nw7T1hpLYSYrCi59oIpCMW48EIxDWeWET6IreXaKKAoWuniBLUWy4U7RQkHWoILTXyhKFEGSLbFChMX-INnnnfQ1RYY-V6JXsgYLGRCVjjKgKOsceyg2wDeT9egWB0bwI6ytqP8y44d1A7QN8YroR-F9u7WFrLeXh8SOGlJ88Ctzv5j7HO0G-ZT_VnpotZ69ekugGusdS8uq15MC_wGxLPOGQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOVAOPFuRtsAeOLJp1muv7VMVUqoATYSglXqz_BhLFSip2qRS--sZezdVRFWJm7Vay_aMx_ONPQ-Aj56ETzU-lsyquuQMQ-kCt6XmzJM6pD0TU4DzZNqMT_m3M3HWBavnWBhEzM5n2E_N_JYf5n6ZrspIwhvqLNRjeEKKn4s2XOvuSiXVkNBCdrmFqoHeH45GtAyyAhnv16QqWSoes6Z_cpr-rq7KvcM4a5ijFzBdza11LPndXy5c39_-k7bxvyf_Ep53WLMYtpvjFTzC2Wt4tpaB8A0c_Lg8v7b-pvxlIxbDHORQ_Fw5FVH7-twWo7SScjIPGbMXh-lY-NP60G3B6dGXk9G47GoqlL4WekHmIqJ0wikfdKUiRi6bEMhQlXWjXNTSkkGndNRWOjr5vI4pZVvlvCWg46yrt2FjNp_hWygUgRtWOx5rK7j1BNUDs4xjQiFRRtWDTytKm4s2dYbJJsdAm5YxJjHGdIzpwefEjbtfU97r_IGoaDoxMlE2A9SKQKskYhK4dTp4EbAaYI1M0phbifJr47VE78HeirmmE9IrQ8i2EVVCaDsPdPsAT8cnk2Nz_HX6fRc203Tb65c92FhcLvEdAZKFe5-34V_hOdsp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Safe+Action+Recognition+via+Cross-Modality+Distillation&rft.jtitle=IEEE+access&rft.au=Kim%2C+Yuhyun&rft.au=Jung%2C+Jinwook&rft.au=Noh%2C+Hyeoncheol&rft.au=Ahn%2C+Byungtae&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=125955&rft.epage=125965&rft_id=info:doi/10.1109%2FACCESS.2024.3431227&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3431227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |