Privacy-Safe Action Recognition via Cross-Modality Distillation

Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal information of subjects and, as a result, run the risk of potential privacy leakage. On the other hand, privacy-safe alternatives, such as de...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 125955 - 125965
Main Authors Kim, Yuhyun, Jung, Jinwook, Noh, Hyeoncheol, Ahn, Byungtae, Kwon, Junghye, Choi, Dong-Geol
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3431227

Cover

Loading…
Abstract Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal information of subjects and, as a result, run the risk of potential privacy leakage. On the other hand, privacy-safe alternatives, such as depth or thermal sensors, exhibit poorer performance because they lack the semantic context provided by RGB sensors. Moreover, the data availability of privacy-safe alternatives is significantly lower than RGB sensors. To address these problems, we explore effective cross-modality distillation methods in this paper, aiming to distill the knowledge of context-rich large-scale pre-trained RGB-based models into privacy-safe depth-based models. Based on extensive experiments on multiple architectures and benchmark datasets, we propose an effective method for training privacy-safe depth-based action recognition models via cross-modality distillation: cross-modality mixing distillation. This approach improves both the performance and efficiency by enabling interaction between depth and RGB modalities through a linear combination of their features. By utilizing the proposed cross-modal mixing distillation approach, we achieve state-of-the-art accuracy in two depth-based action recognition benchmarks. The code and the pre-trained models will be available upon publication.
AbstractList Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal information of subjects and, as a result, run the risk of potential privacy leakage. On the other hand, privacy-safe alternatives, such as depth or thermal sensors, exhibit poorer performance because they lack the semantic context provided by RGB sensors. Moreover, the data availability of privacy-safe alternatives is significantly lower than RGB sensors. To address these problems, we explore effective cross-modality distillation methods in this paper, aiming to distill the knowledge of context-rich large-scale pre-trained RGB-based models into privacy-safe depth-based models. Based on extensive experiments on multiple architectures and benchmark datasets, we propose an effective method for training privacy-safe depth-based action recognition models via cross-modality distillation: cross-modality mixing distillation. This approach improves both the performance and efficiency by enabling interaction between depth and RGB modalities through a linear combination of their features. By utilizing the proposed cross-modal mixing distillation approach, we achieve state-of-the-art accuracy in two depth-based action recognition benchmarks. The code and the pre-trained models will be available upon publication.
Author Jung, Jinwook
Ahn, Byungtae
Kwon, Junghye
Noh, Hyeoncheol
Choi, Dong-Geol
Kim, Yuhyun
Author_xml – sequence: 1
  givenname: Yuhyun
  orcidid: 0009-0002-5873-4245
  surname: Kim
  fullname: Kim, Yuhyun
  organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea
– sequence: 2
  givenname: Jinwook
  orcidid: 0009-0003-8704-323X
  surname: Jung
  fullname: Jung, Jinwook
  organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea
– sequence: 3
  givenname: Hyeoncheol
  orcidid: 0000-0002-4325-8226
  surname: Noh
  fullname: Noh, Hyeoncheol
  organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea
– sequence: 4
  givenname: Byungtae
  orcidid: 0000-0002-5007-5946
  surname: Ahn
  fullname: Ahn, Byungtae
  organization: Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
– sequence: 5
  givenname: Junghye
  surname: Kwon
  fullname: Kwon, Junghye
  organization: Department of Internal Medicine, Division of Hematology and Oncology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
– sequence: 6
  givenname: Dong-Geol
  orcidid: 0000-0002-3345-5306
  surname: Choi
  fullname: Choi, Dong-Geol
  email: dgchoi@hanbat.ac.kr
  organization: Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea
BookMark eNpNUE1PwzAMjdCQGGO_AA6TOHckTdMkJzSVr0lDIAbnKE2cKVNpRtoh7d_TrROaL7ae_Z7td4kGdagBoWuCp4RgeTcrisflcpriNJvSjJI05WdomJJcJpTRfHBSX6Bx06xxF6KDGB-i-_fof7XZJUvtYDIzrQ_15ANMWNX-UP96PSliaJrkNVhd-XY3efBN66tK7_tX6NzpqoHxMY_Q19PjZ_GSLN6e58VskRjKZJtkGICXrBTGSiIcuIzn1hJKOc1F6STXhOVCOql5aS0Y6RgjgpRG85SXuqQjNO91bdBrtYn-W8edCtqrAxDiSunYelOBcjzHIIXknONMSClLaQ2zQDBQSLnotG57rU0MP1toWrUO21h35ytKcM4IlZJ2U7SfMvvvI7j_rQSrvfGqN17tjVdH4zvWTc_yAHDCyLtTmKB_Uo9__Q
CODEN IAECCG
Cites_doi 10.1007/978-3-031-19772-7_10
10.24963/ijcai.2021/362
10.1109/WACV57701.2024.00127
10.1109/WACV56688.2023.00333
10.1038/s41586-020-2669-y
10.1109/CVPR52729.2023.00544
10.1109/ICCV.2011.6126543
10.1109/ACCESS.2022.3214812
10.1109/CVPR46437.2021.01576
10.1007/978-3-031-20062-5_37
10.1109/CVPR52729.2023.00235
10.48550/arXiv.2102.05095
10.1109/ACCESS.2022.3202526
10.1109/ACCESS.2019.2907720
10.1109/ICCV.2017.83
10.18653/v1/2022.emnlp-main.432
10.1109/ICCV.2019.00092
10.1109/CVPR.2015.7298698
10.1016/j.cviu.2016.10.018
10.1109/ICCV.2017.74
10.1109/ACCESS.2023.3331756
10.1109/ICCV.2015.510
10.1109/CVPR.2016.96
10.1109/CVPR52729.2023.01524
10.1016/j.cviu.2021.103352
10.1109/CVPR52688.2022.00320
10.1109/CVPR.2018.00633
10.1109/ICIP.2019.8802909
10.1109/CVPR.2019.00674
10.1109/CVPR.2019.00807
10.1109/CVPR52729.2023.00220
10.1007/978-3-030-01237-3_7
10.1109/ICCV51070.2023.01826
10.1109/TPAMI.2019.2916873
10.48550/ARXIV.1212.0402
10.3390/s22072469
10.1109/CVPR42600.2020.01070
10.1109/LRA.2021.3139369
10.1109/ICCV51070.2023.00481
10.1109/TITS.2018.2791533
10.1109/CVPR.2017.502
10.18653/v1/2020.acl-main.740
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3431227
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 125965
ExternalDocumentID oai_doaj_org_article_f760e989777048999b9dc5de10e3e278
10_1109_ACCESS_2024_3431227
10604858
Genre orig-research
GrantInformation_xml – fundername: Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport
  grantid: RS-2023-00238018
  funderid: 10.13039/501100007694
– fundername: Research Fund of Hanbat National University, in 2022
  grantid: 202204870001
  funderid: 10.13039/501100002483
– fundername: NRF grant funded by Korean Government Ministry of Science and ICT (MIST)
  grantid: 2023R1A2C1007428
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-40ee7b5b8cd918fef476dd1337368bf97a15689f9a7bddec9f55181bca727bab3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:51 EDT 2025
Mon Jun 30 16:29:37 EDT 2025
Tue Jul 01 03:02:43 EDT 2025
Wed Aug 27 01:58:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-40ee7b5b8cd918fef476dd1337368bf97a15689f9a7bddec9f55181bca727bab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-8704-323X
0009-0002-5873-4245
0000-0002-3345-5306
0000-0002-4325-8226
0000-0002-5007-5946
OpenAccessLink https://doaj.org/article/f760e989777048999b9dc5de10e3e278
PQID 3106513993
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_3106513993
doaj_primary_oai_doaj_org_article_f760e989777048999b9dc5de10e3e278
ieee_primary_10604858
crossref_primary_10_1109_ACCESS_2024_3431227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
ref59
ref14
ref52
ref11
ref10
ref54
Lee (ref31); 3
ref16
ref19
ref18
Bhat (ref34) 2023
Carreira (ref32) 2018
ref50
Khan (ref55)
Wang (ref26)
ref46
ref45
ref47
ref42
ref41
ref44
Maaz (ref57) 2023
ref43
ref49
Lin (ref58) 2023
Reilly (ref17) 2023
ref9
ref4
ref3
ref6
ref5
Yeung (ref8)
Lu (ref27)
Li (ref53)
Hinton (ref12)
ref40
Smaira (ref33) 2020
ref35
ref36
ref30
Wang (ref48) 2022
(ref7) 2016
ref2
ref1
ref39
ref38
Hendrycks (ref37)
ref24
ref23
ref25
ref20
ref22
Kay (ref21) 2017
ref28
ref29
ref60
Li (ref51)
References_xml – ident: ref11
  doi: 10.1007/978-3-031-19772-7_10
– year: 2018
  ident: ref32
  article-title: A short note about kinetics-600
  publication-title: arXiv:1808.01340
– year: 2023
  ident: ref34
  article-title: ZoeDepth: Zero-shot transfer by combining relative and metric depth
  publication-title: arXiv:2302.12288
– start-page: 8199
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref55
  article-title: Grounded video situation recognition
– year: 2023
  ident: ref57
  article-title: Video-ChatGPT: Towards detailed video understanding via large vision and language models
  publication-title: arXiv:2306.05424
– ident: ref39
  doi: 10.24963/ijcai.2021/362
– ident: ref49
  doi: 10.1109/WACV57701.2024.00127
– ident: ref59
  doi: 10.1109/WACV56688.2023.00333
– ident: ref9
  doi: 10.1038/s41586-020-2669-y
– ident: ref60
  doi: 10.1109/CVPR52729.2023.00544
– ident: ref1
  doi: 10.1109/ICCV.2011.6126543
– start-page: 1632
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)
  ident: ref51
  article-title: UniformerV2: Spatiotemporal learning by arming image ViTs with video uniformer
– year: 2022
  ident: ref48
  article-title: InternVideo: General video foundation models via generative and discriminative learning
  publication-title: arXiv:2212.03191
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref12
  article-title: Distilling the knowledge in a neural network
– ident: ref43
  doi: 10.1109/ACCESS.2022.3214812
– ident: ref25
  doi: 10.1109/CVPR46437.2021.01576
– volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref27
  article-title: A theory of multimodal learning
– ident: ref54
  doi: 10.1007/978-3-031-20062-5_37
– ident: ref35
  doi: 10.1109/CVPR52729.2023.00235
– volume: 3
  start-page: 896
  issue: 2
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref31
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref40
  doi: 10.48550/arXiv.2102.05095
– ident: ref42
  doi: 10.1109/ACCESS.2022.3202526
– ident: ref44
  doi: 10.1109/ACCESS.2019.2907720
– ident: ref5
  doi: 10.1109/ICCV.2017.83
– ident: ref56
  doi: 10.18653/v1/2022.emnlp-main.432
– start-page: 1
  volume-title: Proc. AMIA
  ident: ref8
  article-title: Vision-based hand hygiene monitoring in hospitals
– ident: ref20
  doi: 10.1109/ICCV.2019.00092
– ident: ref4
  doi: 10.1109/CVPR.2015.7298698
– ident: ref3
  doi: 10.1016/j.cviu.2016.10.018
– ident: ref46
  doi: 10.1109/ICCV.2017.74
– year: 2020
  ident: ref33
  article-title: A short note on the Kinetics-700–2020 human action dataset
  publication-title: arXiv:2010.10864
– ident: ref41
  doi: 10.1109/ACCESS.2023.3331756
– year: 2023
  ident: ref17
  article-title: Seeing the pose in the pixels: Learning pose-aware representations in vision transformers
  publication-title: arXiv:2306.09331
– ident: ref24
  doi: 10.1109/ICCV.2015.510
– ident: ref15
  doi: 10.1109/CVPR.2016.96
– ident: ref29
  doi: 10.1109/CVPR52729.2023.01524
– ident: ref14
  doi: 10.1016/j.cviu.2021.103352
– ident: ref45
  doi: 10.1109/CVPR52688.2022.00320
– ident: ref22
  doi: 10.1109/CVPR.2018.00633
– ident: ref30
  doi: 10.1109/ICIP.2019.8802909
– ident: ref6
  doi: 10.1109/CVPR.2019.00674
– volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref26
  article-title: Maximizing spatio-temporal entropy of deep 3D CNNs for efficient video recognition
– ident: ref18
  doi: 10.1109/CVPR.2019.00807
– ident: ref47
  doi: 10.1109/CVPR52729.2023.00220
– start-page: 14733
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref53
  article-title: Uniformer: Unified transformer for efficient spatiotemporal representation learning
– ident: ref36
  doi: 10.1007/978-3-030-01237-3_7
– ident: ref50
  doi: 10.1109/ICCV51070.2023.01826
– ident: ref10
  doi: 10.1109/TPAMI.2019.2916873
– ident: ref2
  doi: 10.48550/ARXIV.1212.0402
– ident: ref19
  doi: 10.3390/s22072469
– year: 2017
  ident: ref21
  article-title: The kinetics human action video dataset
  publication-title: arXiv:1705.06950
– ident: ref13
  doi: 10.1109/CVPR42600.2020.01070
– ident: ref52
  doi: 10.1109/LRA.2021.3139369
– volume-title: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation)
  year: 2016
  ident: ref7
– ident: ref16
  doi: 10.1109/ICCV51070.2023.00481
– ident: ref28
  doi: 10.1109/TITS.2018.2791533
– year: 2023
  ident: ref58
  article-title: Video-LLaVA: Learning united visual representation by alignment before projection
  publication-title: arXiv:2311.10122
– ident: ref23
  doi: 10.1109/CVPR.2017.502
– ident: ref38
  doi: 10.18653/v1/2020.acl-main.740
– start-page: 2712
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref37
  article-title: Using pre-training can improve model robustness and uncertainty
SSID ssj0000816957
Score 2.3069384
Snippet Human action recognition systems enhance public safety by detecting abnormal behavior autonomously. RGB sensors commonly used in such systems capture personal...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 125955
SubjectTerms Action recognition
Availability
Benchmark testing
Benchmarks
Computational modeling
Context
cross-modality distillation
Deep learning
Feature extraction
Human activity recognition
Kinetic theory
knowledge distillation
multi modal
Privacy
privacy-safe
Public safety
Sensors
Supervised learning
Thermal sensors
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7Wkx58i_XFHjy6tZvNbpKT1KoUoUXUgreQxwSK0oq2gv56J9mtFEXwtiwbkswj8012HoScWFQ-UVqfUi3ylFFwqXFMp5JRi-YQZcaHBOf-oOwN2c1j8Vgnq8dcGACIwWfQCo_xX76b2Fm4KkMNL3FwIRqkgXJWJWt9X6iEDhKy4HVloawtzzrdLm4CfUDKWjkaShpaxyxYn1ikv-6q8usojvblep0M5iurwkqeWrOpadnPH0Ub_730DbJWI82kU4nGJlmC8RZZXag_uE3Ob19H79p-pPfaQ9KJKQ7J3TykCJ_fRzrphp2k_YmLiD25DIfCcxVBt0OG11cP3V5ad1RIbV7IKTqLANwURlgnM-HBM146h24qz0thvOQa3TkhvdTc4LlnpQ8F2zJjNcIco02-S5bHkzHskUQgtKG5YT7XBdMWgbqjmjIIGMRzL5rkdE5p9VIVzlDR4WhLVTFGBcaomjFNchG48f1pqHodXyAVVa1EyvOyDVIgZOVITIS2RjpbOMjakAPlOOdOoPzCfBXRm-RwzlxVq-ibQlxbFlnAZ_t_DDsgK2GJ1YXLIVmevs7gCCHI1BxH0fsCalrX3A
  priority: 102
  providerName: IEEE
Title Privacy-Safe Action Recognition via Cross-Modality Distillation
URI https://ieeexplore.ieee.org/document/10604858
https://www.proquest.com/docview/3106513993
https://doaj.org/article/f760e989777048999b9dc5de10e3e278
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EHxOnc_Tg0bo2TZrkJHM6hjARdbBbyE8YyCZzDvzvfUk7KXjw4q2ElDTfS_K-V_K-h9Clgc3HS-NTrHiREuxsqi1RqSDYgDuENeNDgvPksRxPycOMzhqlvsKdsEoeuAKu71mZOcGBpjB4EeiMFtZQ6_LMFQ6zmOabiawRTMUzmOeloKyWGcoz0R8MhzAjCAgxuS7Aa-JQR6bhiqJif11i5de5HJ3N6ADt1ywxGVRfd4h23OII7TW0A4_RzdNqvlHmK31R3iWDmJ6QPG-vA8HzZq6SYRg4nSxtZNvJXdjQb9Xttzaaju5fh-O0roaQmoKKNQR6zjFNNTdW5Nw7T1hpLYSYrCi59oIpCMW48EIxDWeWET6IreXaKKAoWuniBLUWy4U7RQkHWoILTXyhKFEGSLbFChMX-INnnnfQ1RYY-V6JXsgYLGRCVjjKgKOsceyg2wDeT9egWB0bwI6ytqP8y44d1A7QN8YroR-F9u7WFrLeXh8SOGlJ88Ctzv5j7HO0G-ZT_VnpotZ69ekugGusdS8uq15MC_wGxLPOGQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOVAOPFuRtsAeOLJp1muv7VMVUqoATYSglXqz_BhLFSip2qRS--sZezdVRFWJm7Vay_aMx_ONPQ-Aj56ETzU-lsyquuQMQ-kCt6XmzJM6pD0TU4DzZNqMT_m3M3HWBavnWBhEzM5n2E_N_JYf5n6ZrspIwhvqLNRjeEKKn4s2XOvuSiXVkNBCdrmFqoHeH45GtAyyAhnv16QqWSoes6Z_cpr-rq7KvcM4a5ijFzBdza11LPndXy5c39_-k7bxvyf_Ep53WLMYtpvjFTzC2Wt4tpaB8A0c_Lg8v7b-pvxlIxbDHORQ_Fw5FVH7-twWo7SScjIPGbMXh-lY-NP60G3B6dGXk9G47GoqlL4WekHmIqJ0wikfdKUiRi6bEMhQlXWjXNTSkkGndNRWOjr5vI4pZVvlvCWg46yrt2FjNp_hWygUgRtWOx5rK7j1BNUDs4xjQiFRRtWDTytKm4s2dYbJJsdAm5YxJjHGdIzpwefEjbtfU97r_IGoaDoxMlE2A9SKQKskYhK4dTp4EbAaYI1M0phbifJr47VE78HeirmmE9IrQ8i2EVVCaDsPdPsAT8cnk2Nz_HX6fRc203Tb65c92FhcLvEdAZKFe5-34V_hOdsp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Safe+Action+Recognition+via+Cross-Modality+Distillation&rft.jtitle=IEEE+access&rft.au=Kim%2C+Yuhyun&rft.au=Jung%2C+Jinwook&rft.au=Noh%2C+Hyeoncheol&rft.au=Ahn%2C+Byungtae&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=125955&rft.epage=125965&rft_id=info:doi/10.1109%2FACCESS.2024.3431227&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3431227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon