Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement
Photocurrent excitation spectra were measured to investigate the quenching in the garnet solid solutions. Intense photocurrent excitation bands attributed to the lowest 5d1 and the second lowest 5d2 levels were observed in the Ce-doped Y3Al2Ga3O12 (Ce:YAGG) and Y3Ga5O12 (Ce:YGG). Based on the result...
Saved in:
Published in | Journal of applied physics Vol. 110; no. 5; pp. 053102 - 053102-6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Institute of Physics
01.09.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 0021-8979 |
DOI | 10.1063/1.3632069 |
Cover
Loading…
Abstract | Photocurrent excitation spectra were measured to investigate the quenching in the garnet solid solutions. Intense photocurrent excitation bands attributed to the lowest 5d1 and the second lowest 5d2 levels were observed in the Ce-doped Y3Al2Ga3O12 (Ce:YAGG) and Y3Ga5O12 (Ce:YGG). Based on the results of temperature dependence of photoconductivity, the 5d1 and 5d2 levels in the Ce:YAGG are found to be located below and within the conduction band, respectively, while both levels in the Ce:YGG are found to be located within its conduction band located at lower energy levels. In addition, the threshold of photoionization from the 4f level of Ce3+ to the conduction band in the Ce:YAGG and Ce:YGG were estimated to be 3.2, and 2.8 eV, respectively. We conclude that the main quenching process in the Ce:YAGG is caused by the thermally stimulated ionization process with activation energy of 90 meV from the 5d1 to the conduction band, and that in the Ce:YGG is caused by the direct ionization process from the 5d levels to the conduction band. |
---|---|
AbstractList | Photocurrent excitation spectra were measured to investigate the quenching in the garnet solid solutions. Intense photocurrent excitation bands attributed to the lowest 5d1 and the second lowest 5d2 levels were observed in the Ce-doped Y3Al2Ga3O12 (Ce:YAGG) and Y3Ga5O12 (Ce:YGG). Based on the results of temperature dependence of photoconductivity, the 5d1 and 5d2 levels in the Ce:YAGG are found to be located below and within the conduction band, respectively, while both levels in the Ce:YGG are found to be located within its conduction band located at lower energy levels. In addition, the threshold of photoionization from the 4f level of Ce3+ to the conduction band in the Ce:YAGG and Ce:YGG were estimated to be 3.2, and 2.8 eV, respectively. We conclude that the main quenching process in the Ce:YAGG is caused by the thermally stimulated ionization process with activation energy of 90 meV from the 5d1 to the conduction band, and that in the Ce:YGG is caused by the direct ionization process from the 5d levels to the conduction band. Photocurrent excitation spectra were measured to investigate the quenching in the garnet solid solutions. Intense photocurrent excitation bands attributed to the lowest 5d 1 and the second lowest 5d 2 levels were observed in the Ce-doped Y 3 Al 2 Ga 3 O 12 (Ce:YAGG) and Y 3 Ga 5 O 12 (Ce:YGG). Based on the results of temperature dependence of photoconductivity, the 5d 1 and 5d 2 levels in the Ce:YAGG are found to be located below and within the conduction band, respectively, while both levels in the Ce:YGG are found to be located within its conduction band located at lower energy levels. In addition, the threshold of photoionization from the 4f level of Ce 3+ to the conduction band in the Ce:YAGG and Ce:YGG were estimated to be 3.2, and 2.8 eV, respectively. We conclude that the main quenching process in the Ce:YAGG is caused by the thermally stimulated ionization process with activation energy of 90 meV from the 5d 1 to the conduction band, and that in the Ce:YGG is caused by the direct ionization process from the 5d levels to the conduction band. |
Author | Ueda, Jumpei Nakanishi, Takayuki Tanabe, Setsuhisa |
Author_xml | – sequence: 1 givenname: Jumpei surname: Ueda fullname: Ueda, Jumpei – sequence: 2 givenname: Setsuhisa surname: Tanabe fullname: Tanabe, Setsuhisa – sequence: 3 givenname: Takayuki surname: Nakanishi fullname: Nakanishi, Takayuki |
BookMark | eNptkU1LxDAQhoMoun4c_Ae5ilTz0bTNRVgWXQXBix48lTSZupE2qU2q7O_wD5tVERQvMwzzzvMyM_to23kHCB1TckZJwc_pGS84I4XcQjNKKpmVQpBtNCOE0aySpdxD-yE8E0JpxeUu2mNUSiJzMUPvc6e6dbAB-xYvgJ_ibuqtg6DBacAvU0or656wdTj4zppNnKL1LuAG4huAw4983ok7yrByJhVL9Vk0axyhH2BUcRoBGxjAmU9ochpWPnrtnZl0tK82rnEPKiRdDy4eop1WdQGOvvMBeri6vF9cZ7d3y5vF_DbTXMiY5YQLACIazcpKMkZN23CTS8VIKQ1tidJcUl0VoihbyZompwWrWKVaQZoib_kBuvjiDlPTg0kbx1F19TDaXo3r2itb_-44u6qf_GvNafITeQKcfAH06EMYof2ZpaTefKam9fdnkvb8j1bbqDaHTGjb_TPxAf4HkpI |
CitedBy_id | crossref_primary_10_1002_adom_202101507 crossref_primary_10_1016_j_jre_2018_01_019 crossref_primary_10_1039_D0CP03520C crossref_primary_10_1016_j_cej_2019_122528 crossref_primary_10_1039_D1TC05775H crossref_primary_10_1016_j_optmat_2017_12_025 crossref_primary_10_1016_j_jre_2019_03_020 crossref_primary_10_1016_j_pmatsci_2013_12_001 crossref_primary_10_1021_jacs_4c08011 crossref_primary_10_3390_cryst11060669 crossref_primary_10_1007_s12596_024_01798_x crossref_primary_10_1016_j_saa_2018_07_106 crossref_primary_10_3390_ma15062044 crossref_primary_10_1016_j_jlumin_2016_01_022 crossref_primary_10_1039_D4QI03312D crossref_primary_10_1364_OME_7_002471 crossref_primary_10_1016_j_optmat_2023_114738 crossref_primary_10_1016_j_radphyschem_2022_110400 crossref_primary_10_1364_OME_5_000963 crossref_primary_10_1016_j_jlumin_2023_120315 crossref_primary_10_1103_PhysRevB_105_205101 crossref_primary_10_3390_mi14081605 crossref_primary_10_1063_1_5059371 crossref_primary_10_1007_s11082_023_05273_y crossref_primary_10_1007_s00214_022_02920_7 crossref_primary_10_1039_C6TC01691J crossref_primary_10_1149_2_0191601jss crossref_primary_10_1007_s41061_016_0023_5 crossref_primary_10_1038_s41598_023_32689_z crossref_primary_10_1039_D3TC01304A crossref_primary_10_1063_1_4929495 crossref_primary_10_1016_j_omx_2019_100018 crossref_primary_10_1016_j_optmat_2024_115416 crossref_primary_10_1364_AOP_8_000001 crossref_primary_10_1016_j_jlumin_2018_09_047 crossref_primary_10_1002_pssa_202200346 crossref_primary_10_1021_acs_jpcc_2c04523 crossref_primary_10_1039_D4DT03316G crossref_primary_10_1016_j_jnoncrysol_2015_04_005 crossref_primary_10_1016_j_ceramint_2018_01_184 crossref_primary_10_1039_C8TC06373G crossref_primary_10_1149_2_0021412jss crossref_primary_10_1088_2053_1591_1_4_045903 crossref_primary_10_3390_cryst11060673 crossref_primary_10_1016_j_cplett_2013_04_068 crossref_primary_10_1016_j_chemphys_2023_112062 crossref_primary_10_1039_D0TC03821K crossref_primary_10_1016_j_jlumin_2023_119811 crossref_primary_10_1016_j_nima_2013_07_010 crossref_primary_10_1039_C7DT03813E crossref_primary_10_1016_j_jlumin_2016_11_074 crossref_primary_10_1039_D2TC05284A crossref_primary_10_1016_j_jlumin_2018_02_034 crossref_primary_10_1002_slct_201800782 crossref_primary_10_1038_srep11514 crossref_primary_10_1177_00207209211002087 crossref_primary_10_1016_j_optmat_2021_111783 crossref_primary_10_1016_j_jlumin_2019_04_036 crossref_primary_10_1016_j_optmat_2023_114417 crossref_primary_10_3390_ma15227925 crossref_primary_10_1016_j_ijleo_2017_06_085 crossref_primary_10_1016_j_jeurceramsoc_2019_08_028 crossref_primary_10_1039_C5CP07732J crossref_primary_10_1088_2053_1591_2_3_036203 crossref_primary_10_1039_C7TC05613C crossref_primary_10_1021_acs_chemmater_8b05300 crossref_primary_10_1038_s41598_018_34889_4 crossref_primary_10_1016_j_jlumin_2018_07_002 crossref_primary_10_1149_2_0011705jss crossref_primary_10_1021_acs_chemmater_7b04348 crossref_primary_10_1016_j_jallcom_2018_02_117 crossref_primary_10_1007_s10854_015_3522_1 crossref_primary_10_1111_jace_12967 crossref_primary_10_1016_j_jlumin_2016_08_031 crossref_primary_10_1021_acs_inorgchem_7b01939 crossref_primary_10_1016_j_jlumin_2017_09_008 crossref_primary_10_1021_acs_inorgchem_7b01816 crossref_primary_10_1016_j_jlumin_2017_09_004 crossref_primary_10_1063_1_5008632 crossref_primary_10_1103_PhysRevB_95_014303 crossref_primary_10_1016_j_jallcom_2019_07_203 crossref_primary_10_15541_jim20220249 crossref_primary_10_1016_j_ceramint_2019_08_049 crossref_primary_10_1063_1_4905317 crossref_primary_10_2109_jcersj2_15239 crossref_primary_10_1016_j_ceramint_2015_09_001 crossref_primary_10_1021_jp309572p crossref_primary_10_1103_PhysRevB_85_115101 crossref_primary_10_1149_2_001302jss crossref_primary_10_35848_1347_4065_ac7271 crossref_primary_10_1016_j_jallcom_2025_178573 crossref_primary_10_1021_acsami_8b02758 crossref_primary_10_1039_c2jm34252a crossref_primary_10_1016_j_jlumin_2013_08_013 crossref_primary_10_1149_2162_8777_ac2e4e crossref_primary_10_1016_j_ceramint_2024_08_395 crossref_primary_10_1016_j_optmat_2018_04_023 crossref_primary_10_1039_D3NR00921A crossref_primary_10_1016_j_jeurceramsoc_2017_05_024 crossref_primary_10_1039_C5TC00546A crossref_primary_10_1016_j_addlet_2023_100186 crossref_primary_10_1039_C8CP03176B crossref_primary_10_7567_JJAP_53_113001 crossref_primary_10_1063_1_4867315 crossref_primary_10_1016_j_jallcom_2021_161687 crossref_primary_10_2184_lsj_47_8_428 crossref_primary_10_1039_D3TC00722G crossref_primary_10_1007_s10043_017_0386_z crossref_primary_10_1016_j_ceramint_2020_05_288 crossref_primary_10_1149_2_006302jss crossref_primary_10_1016_j_apt_2016_01_019 crossref_primary_10_1039_D0TC01958E crossref_primary_10_1016_j_jlumin_2017_05_035 crossref_primary_10_1021_am506251z crossref_primary_10_1016_j_jallcom_2021_160220 crossref_primary_10_1103_PhysRevB_87_035118 crossref_primary_10_1021_acs_inorgchem_2c00326 crossref_primary_10_1016_j_jlumin_2020_117293 crossref_primary_10_1021_acs_jpcc_5b08828 crossref_primary_10_1021_cg300435t crossref_primary_10_1039_D1NR01469B crossref_primary_10_1039_C8TC02907E crossref_primary_10_1016_j_optmat_2025_116667 crossref_primary_10_1016_j_ceramint_2022_09_171 crossref_primary_10_1016_j_jallcom_2021_162758 crossref_primary_10_1016_j_scriptamat_2015_01_029 crossref_primary_10_1039_C6TC04140J crossref_primary_10_1016_j_ceramint_2024_08_041 crossref_primary_10_1039_D1TC03202J crossref_primary_10_1016_j_jlumin_2017_04_010 crossref_primary_10_1016_j_optmat_2016_05_041 crossref_primary_10_1016_j_optmat_2019_05_029 crossref_primary_10_1016_j_dyepig_2018_12_045 crossref_primary_10_1016_j_addr_2018_10_015 crossref_primary_10_1088_2053_1591_ab2fb9 crossref_primary_10_1016_j_optmat_2012_11_016 crossref_primary_10_1016_j_jallcom_2021_159055 crossref_primary_10_1039_D2TC02639B crossref_primary_10_1063_1_5039792 crossref_primary_10_1080_10408436_2021_1935211 crossref_primary_10_1016_j_radphyschem_2023_110951 crossref_primary_10_1021_acsami_0c09342 crossref_primary_10_1038_s41377_022_00868_8 crossref_primary_10_1007_s10854_016_6025_9 crossref_primary_10_1016_j_jlumin_2012_04_035 crossref_primary_10_1007_s10043_018_0431_6 crossref_primary_10_1016_j_matchemphys_2021_125619 crossref_primary_10_1016_j_optmat_2017_11_021 crossref_primary_10_1016_j_jeurceramsoc_2019_06_023 crossref_primary_10_1016_j_chphi_2024_100765 crossref_primary_10_1016_j_jlumin_2019_116537 crossref_primary_10_1016_j_jnoncrysol_2018_07_033 crossref_primary_10_1557_jmr_2014_235 crossref_primary_10_1016_j_jlumin_2015_09_024 crossref_primary_10_1016_j_optmat_2014_05_035 crossref_primary_10_1016_j_jallcom_2020_155011 crossref_primary_10_1016_j_jallcom_2019_152236 crossref_primary_10_1088_1361_6463_aaca49 crossref_primary_10_1039_D2TC05027G crossref_primary_10_1016_j_jlumin_2022_119128 crossref_primary_10_1149_2_0241612jss crossref_primary_10_1016_j_optmat_2022_113186 crossref_primary_10_1111_jace_15985 crossref_primary_10_1039_C6CS00551A crossref_primary_10_1016_j_materresbull_2017_03_001 crossref_primary_10_1016_j_jallcom_2024_176586 crossref_primary_10_1088_0957_0233_26_1_012001 crossref_primary_10_1149_2_011302jss crossref_primary_10_1016_j_jeurceramsoc_2017_03_044 crossref_primary_10_1021_acsami_5b06071 crossref_primary_10_1038_s41377_024_01507_0 crossref_primary_10_1149_2_009302jss crossref_primary_10_1016_j_optmat_2022_112662 crossref_primary_10_1063_1_4868138 crossref_primary_10_1021_acs_jpcc_6b04159 crossref_primary_10_1007_s00339_019_2830_3 crossref_primary_10_1021_acs_chemmater_0c00095 crossref_primary_10_4313_TEEM_2014_15_2_69 crossref_primary_10_1016_j_jlumin_2018_01_041 crossref_primary_10_1063_1_4916946 crossref_primary_10_1016_j_tsf_2013_11_135 crossref_primary_10_1016_j_jlumin_2012_08_028 crossref_primary_10_1016_j_jlumin_2015_11_041 crossref_primary_10_1016_S1002_0721_16_60091_1 crossref_primary_10_1016_j_jlumin_2019_116744 crossref_primary_10_1016_j_actamat_2021_116813 crossref_primary_10_1016_j_ijleo_2021_166363 crossref_primary_10_1021_jp508409r crossref_primary_10_1016_j_jre_2021_01_018 crossref_primary_10_1039_C7NJ01171G crossref_primary_10_1039_D2CC00211F crossref_primary_10_1016_j_optmat_2024_115506 crossref_primary_10_1016_j_jlumin_2013_12_041 |
Cites_doi | 10.1111/j.1551-2916.2007.02123.x 10.1063/1.1701771 10.1016/S0925-8388(00)00630-7 10.1088/0953-8984/23/21/215502 10.1364/JOSA.59.000060 10.1149/1.2898093 10.1063/1.1603337 10.2150/jlve.22.1_2 10.1149/1.2768900 10.1016/S0022-2313(96)00107-X 10.1063/1.117286 10.1016/S0022-2313(02)00347-2 10.1149/1.2403436 10.1143/APEX.4.042602 10.1063/1.3216583 10.1016/j.optmat.2004.10.023 10.1063/1.336557 10.1016/0038-1098(80)90210-0 10.1103/PhysRev.177.1308 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Institute of Physics 2011 American Institute of Physics |
Copyright_xml | – notice: Copyright © 2011 American Institute of Physics 2011 American Institute of Physics |
DBID | AAYXX CITATION 5PM |
DOI | 10.1063/1.3632069 |
DatabaseName | CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 0021-8979 |
EndPage | 053102-6 |
ExternalDocumentID | PMC3189254 10_1063_1_3632069 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 6TJ 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ZCG ~02 5PM |
ID | FETCH-LOGICAL-c359t-4035ee05bc2789221dfb3d49a2079d1f0ac391c86567f92bb4162828af50b64f3 |
ISSN | 0021-8979 |
IngestDate | Thu Aug 21 13:59:01 EDT 2025 Thu Apr 24 23:05:12 EDT 2025 Tue Jul 01 03:48:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-4035ee05bc2789221dfb3d49a2079d1f0ac391c86567f92bb4162828af50b64f3 |
Notes | Electronic mail: j.ueda@at3.ecs.kyoto-u.ac.jp. |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.3632069 |
PMID | 21990945 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3189254 crossref_primary_10_1063_1_3632069 crossref_citationtrail_10_1063_1_3632069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 20110901 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of applied physics |
PublicationYear | 2011 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023080501160679800_c17) 2005; 27 (2023080501160679800_c13) 2011; 23 (2023080501160679800_c15) 1980; 36 (2023080501160679800_c7) 1996; 69 (2023080501160679800_c4) 1967; 47 (2023080501160679800_c10) 1973; 120 (2023080501160679800_c18) 2008; 91 (2023080501160679800_c8) 1996; 69 (2023080501160679800_c16) 2003; 83 (2023080501160679800_c19) 2011; 4 (2023080501160679800_c9) 2000; 303–304 (2023080501160679800_c14) 1969; 177 (2023080501160679800_c5) 1969; 59 (2023080501160679800_c11) 2002; 99 (2023080501160679800_c1) 1998; 22 (2023080501160679800_c3) 2008; 155 (2023080501160679800_c6) 2009; 95 (2023080501160679800_c12) 1986; 59 (2023080501160679800_c2) 2007; 154 |
References_xml | – volume: 91 start-page: 456 year: 2008 ident: 2023080501160679800_c18 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.02123.x – volume: 47 start-page: 5139 year: 1967 ident: 2023080501160679800_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.1701771 – volume: 303–304 start-page: 198 year: 2000 ident: 2023080501160679800_c9 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(00)00630-7 – volume: 23 start-page: 6 year: 2011 ident: 2023080501160679800_c13 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/23/21/215502 – volume: 59 start-page: 60 year: 1969 ident: 2023080501160679800_c5 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.59.000060 – volume: 155 start-page: B517 year: 2008 ident: 2023080501160679800_c3 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2898093 – volume: 83 start-page: 1740 year: 2003 ident: 2023080501160679800_c16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1603337 – volume: 22 start-page: 2 year: 1998 ident: 2023080501160679800_c1 publication-title: J. Light Visual Environ. doi: 10.2150/jlve.22.1_2 – volume: 154 start-page: J326 year: 2007 ident: 2023080501160679800_c2 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2768900 – volume: 69 start-page: 287 year: 1996 ident: 2023080501160679800_c8 publication-title: J. Lumin. doi: 10.1016/S0022-2313(96)00107-X – volume: 69 start-page: 3300 year: 1996 ident: 2023080501160679800_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.117286 – volume: 99 start-page: 283 year: 2002 ident: 2023080501160679800_c11 publication-title: J. Lumin. doi: 10.1016/S0022-2313(02)00347-2 – volume: 120 start-page: 278 year: 1973 ident: 2023080501160679800_c10 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2403436 – volume: 4 start-page: 042602 year: 2011 ident: 2023080501160679800_c19 publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.042602 – volume: 95 start-page: 2 year: 2009 ident: 2023080501160679800_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3216583 – volume: 27 start-page: 1647 year: 2005 ident: 2023080501160679800_c17 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2004.10.023 – volume: 59 start-page: 1196 year: 1986 ident: 2023080501160679800_c12 publication-title: J. Appl. Phys. doi: 10.1063/1.336557 – volume: 36 start-page: 691 year: 1980 ident: 2023080501160679800_c15 publication-title: Solid State Commun. doi: 10.1016/0038-1098(80)90210-0 – volume: 177 start-page: 1308 year: 1969 ident: 2023080501160679800_c14 publication-title: Phys. Rev. doi: 10.1103/PhysRev.177.1308 |
SSID | ssj0011839 |
Score | 2.4743764 |
Snippet | Photocurrent excitation spectra were measured to investigate the quenching in the garnet solid solutions. Intense photocurrent excitation bands attributed to... |
SourceID | pubmedcentral crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 053102 |
SubjectTerms | Lasers, Optics, and Optoelectronics |
Title | Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement |
URI | https://pubmed.ncbi.nlm.nih.gov/PMC3189254 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyR4QDBAGzdZCCSkKsWJnaR-LOMyITaQWKXtqbIdW4020omlD-M_8MQf5jh2nJQOafASJamTWD2f7XO-czFCLyZGaaPyOFLWt86ILiJpGIuMIFoWkjPFbHLywWG2P2Mfj9PjweBnL2ppVcux-nFlXsn_SBXugVxtluw_SDa8FG7AOcgXjiBhOF5Lxv2KInuavkzejGCusYHsqhmwTZT0wmetQFdKy5H7DoUIrRM6PUs_x0njRjihH0RzYbVSDSq1K7k8avfKVQ3FcL5Y1kswpG2tWLf5xLeOavyLuiu8uuuolKDJz3ThonUBVrrseIRKSEeO6_pitSgvwupxKE5FZYmzBmlwcbk6LfvchSVjectdtLkEcTThbjuZsXZTMJnwKE9dOdowR_vY17Jzg2_M_aBsWRpiTDOakIx3C1zr1P9j3QvRiI0fPqPzeO4fvYG2ErA6yBBtTd8efPoa3FJWnXQxQ67bbamqjL4O311TcNYDbXuay9FddMfLAE8dfu6hga620e1eIcptdPOLk8p99KvFFF4aDJga4T6icEAULivcIAoHRGGPKNwiCgOicIsoLC9xD1G4Q5T90gaicA9RD9Ds_bujvf3Ib9wRKZryGoY8TbUmqVQ2zzpJ4sJIWjAuEpLzIjZEKMpjNQFbIjc8kRKsAmv6C5MSmTFDH6Jhtaz0DsIGLHhttOBEMFaYVObEcAU2uMkKWOT1LnrV_ttz5ava281VzuYbUt1Fz0PTc1fK5apG-ZrIQktbhn39l6pcNOXYYVXkScoeXef1j9Gtbhw8QcP6-0o_Ba22ls881n4DUwCpVQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Ce3%2B+luminescence+quenching+in+solid+solutions+between+Y3Al5O12+and+Y3Ga5O12+by+temperature+dependence+of+photoconductivity+measurement&rft.jtitle=Journal+of+applied+physics&rft.au=Ueda%2C+Jumpei&rft.au=Tanabe%2C+Setsuhisa&rft.au=Nakanishi%2C+Takayuki&rft.date=2011-09-01&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=110&rft.issue=5&rft_id=info:doi/10.1063%2F1.3632069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3632069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |