Spatio-Temporal Graph Neural Networks for Multi-Site PV Power Forecasting
Accurate forecasting of solar power generation with fine temporal and spatial resolution is vital for the operation of the power grid. However, state-of-the-art approaches that combine machinelearning with numerical weather predictions (NWP) have coarse resolution. In this paper, we take a graph sig...
Saved in:
Published in | IEEE transactions on sustainable energy Vol. 13; no. 2; pp. 1210 - 1220 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurate forecasting of solar power generation with fine temporal and spatial resolution is vital for the operation of the power grid. However, state-of-the-art approaches that combine machinelearning with numerical weather predictions (NWP) have coarse resolution. In this paper, we take a graph signal processing perspective and model multi-site photovoltaic (PV) production time series as signals on a graph to capture their spatio-temporal dependencies and achieve higher spatial and temporal resolution forecasts. We present two novel graph neural network models for deterministic multi-site PV forecasting dubbed the graph-convolutional long short term memory (GCLSTM) and the graph-convolutional transformer (GCTrafo) models. These methods rely solely on production data and exploit the intuition that PV systems provide a dense network of virtual weather stations. The proposed methods were evaluated in two data sets for an entire year: 1) production data from 304 real PV systems, and 2) simulated production of 1000 PV systems, both distributed over Switzerland. The proposed models outperform state-of-the-art multi-site forecasting methods for prediction horizons of six hours ahead. Furthermore, the proposed models outperform state-of-the-art single-site methods with NWP as inputs on horizons up to four hours ahead. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1949-3029 1949-3037 |
DOI: | 10.1109/TSTE.2021.3125200 |