Unveiling genetic anchors in Saccharomyces cerevisiae: QTL mapping identifies IRA2 as a key player in ethanol tolerance and beyond

Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, prima...

Full description

Saved in:
Bibliographic Details
Published inMolecular genetics and genomics : MGG Vol. 299; no. 1; p. 103
Main Authors Tristão, Larissa Escalfi, de Sousa, Lara Isensee Saboya, de Oliveira Vargas, Beatriz, José, Juliana, Carazzolle, Marcelo Falsarella, Silva, Eduardo Menoti, Galhardo, Juliana Pimentel, Pereira, Gonçalo Amarante Guimarães, de Mello, Fellipe da Silveira Bezerra
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2 . Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications.
AbstractList Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2 . Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications.
Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications.Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications.
Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications.
ArticleNumber 103
Author Tristão, Larissa Escalfi
de Oliveira Vargas, Beatriz
de Sousa, Lara Isensee Saboya
Pereira, Gonçalo Amarante Guimarães
Silva, Eduardo Menoti
José, Juliana
Carazzolle, Marcelo Falsarella
de Mello, Fellipe da Silveira Bezerra
Galhardo, Juliana Pimentel
Author_xml – sequence: 1
  givenname: Larissa Escalfi
  surname: Tristão
  fullname: Tristão, Larissa Escalfi
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 2
  givenname: Lara Isensee Saboya
  surname: de Sousa
  fullname: de Sousa, Lara Isensee Saboya
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 3
  givenname: Beatriz
  surname: de Oliveira Vargas
  fullname: de Oliveira Vargas, Beatriz
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 4
  givenname: Juliana
  surname: José
  fullname: José, Juliana
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 5
  givenname: Marcelo Falsarella
  surname: Carazzolle
  fullname: Carazzolle, Marcelo Falsarella
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 6
  givenname: Eduardo Menoti
  surname: Silva
  fullname: Silva, Eduardo Menoti
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 7
  givenname: Juliana Pimentel
  surname: Galhardo
  fullname: Galhardo, Juliana Pimentel
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 8
  givenname: Gonçalo Amarante Guimarães
  orcidid: 0000-0003-4140-3482
  surname: Pereira
  fullname: Pereira, Gonçalo Amarante Guimarães
  email: goncalo@unicamp.br
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
– sequence: 9
  givenname: Fellipe da Silveira Bezerra
  surname: de Mello
  fullname: de Mello, Fellipe da Silveira Bezerra
  organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39461918$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFTEYhYNU7If-ARcScONmNB-TyYy7UqoWLojarkMmeXNv6kwyJnMLs_WXm9upFVyIiyQv4Tnv4XBO0VGIARB6SclbSoh8lwmpeVsRVpdDu6YST9AJbais6obxo8eZimN0mvMtIVQ2TD5Dx7wrvx1tT9DPm3AHfvBhi7cQYPYG62B2MWXsA_6mjdnpFMfFQMYGEtz57DW8x1-uN3jU03QQegth9s4X5OrrOcM6Y42_w4KnQS-QDotg3ukQBzzHAVIxgOJicQ9LDPY5eur0kOHFw3uGbj5cXl98qjafP15dnG8qw0U3V9yAdYQIWQtOW0kNJaJm1jjWOs6Bade41hLbC8FLUEaktML1fS36zjAi-Bl6s-6dUvyxhzyr0WcDw6ADxH1WnAre1uVu_gNllDSC3aOv_0Jv4z6FEmSlhOw6UqhXD9S-H8GqKflRp0X9LqIAbAVMijkncI8IJerQtlrbVqVtdd-2OiTiqygXOGwh_fH-h-oXaLWq6A
Cites_doi 10.3934/microbiol.2020001
10.1534/g3.118.200566
10.1186/s13068-019-1398-7
10.1016/S0014-5793(01)02503-0
10.1371/journal.pgen.1008037
10.1111/j.1567-1364.2008.00428.x
10.1186/s13068-021-02059-w
10.1128/AEM.02759-16
10.3389/fgene.2019.00998
10.1016/0092-8674(90)90094-U
10.1111/j.1567-1364.2008.00456.x
10.1007/s12155-020-10228-2
10.1016/S1389-1723(00)80087-0
10.1186/s13068-020-01761-5
10.1016/j.jbiotec.2007.05.010
10.3390/fermentation8100470
10.1016/j.biombioe.2018.10.019
10.1042/EBC20200160
10.1093/molbev/mst010
10.1371/journal.pgen.1006158
10.1093/bioinformatics/btn013
10.1038/ng1674
10.1371/journal.pgen.1011154
10.1101/gr.116731.110
10.1101/gr.185538.114
10.1074/jbc.M401595200
10.3835/plantgenome2018.01.0006
10.1042/BJ20110607
10.1186/1471-2164-15-207
10.1111/tpj.12105
10.1074/jbc.M105829200
10.3390/antiox10111735
10.1186/s13059-019-1832-y
10.1093/bioinformatics/btv351
10.1007/s00253-008-1698-5
10.1038/s41586-018-0030-5
10.1099/13500872-140-11-3031
10.1016/j.procbio.2023.12.024
10.1074/jbc.M112.449751
10.1007/s00253-010-2594-3
10.1101/gr.131698.111
10.1016/j.bpj.2011.12.038
10.1534/genetics.113.155341
10.1016/j.bjm.2016.10.003
10.21203/rs.3.rs-827768/v1
10.1016/j.micres.2022.127138
10.1128/mra.00071-19
10.5772/17047
10.1186/s43141-022-00359-8
10.1111/fyr.2009.9.issue-1 10.1111/j.1567-1364.2008.00456.x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1007/s00438-024-02196-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
Entomology Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1617-4623
EndPage 103
ExternalDocumentID 39461918
10_1007_s00438_024_02196_5
Genre Journal Article
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 88887.479699/2020-0
  funderid: http://dx.doi.org/10.13039/501100002322
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2022/07061-4; 2022/13111-4
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis
  funderid: http://dx.doi.org/10.13039/501100006487
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2022/13111-4
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 88887.479699/2020-0
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2022/07061-4
GroupedDBID ---
-DZ
-Y2
-~X
.55
.86
.GJ
06C
06D
0R~
0VY
199
1N0
2.D
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5RE
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDYV
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
L7B
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOR
QOS
R89
R9I
RHV
RIG
RNS
ROL
RPX
RRX
RSV
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
X7M
YLTOR
Z45
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAYOK
AAYXX
CITATION
-4W
-56
-5G
-BR
-EM
-~C
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
NPM
Z7U
Z7V
Z7W
Z7Y
Z87
Z8O
Z8P
Z8Q
Z8S
Z91
7SS
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c359t-3cedf00574531871c10542dcf28f33e2af6f8d0db5530172077d5fbb45b9c2053
IEDL.DBID U2A
ISSN 1617-4615
1617-4623
IngestDate Fri Jul 11 08:40:16 EDT 2025
Fri Jul 11 15:32:34 EDT 2025
Fri Jul 25 19:04:33 EDT 2025
Wed Feb 19 02:15:45 EST 2025
Tue Jul 01 04:35:24 EDT 2025
Mon Jul 21 06:23:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords IRA2
Ethanol tolerance
QTL mapping
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3cedf00574531871c10542dcf28f33e2af6f8d0db5530172077d5fbb45b9c2053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4140-3482
PMID 39461918
PQID 3121057990
PQPubID 55367
PageCount 1
ParticipantIDs proquest_miscellaneous_3153843156
proquest_miscellaneous_3121065256
proquest_journals_3121057990
pubmed_primary_39461918
crossref_primary_10_1007_s00438_024_02196_5
springer_journals_10_1007_s00438_024_02196_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Molecular genetics and genomics : MGG
PublicationTitleAbbrev Mol Genet Genomics
PublicationTitleAlternate Mol Genet Genomics
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Umebayashi, Fukuda, Hirata, Horiuchi, Nakano, Ohta, Takagi (CR45) 2001; 276
Stojiljkovic, Foulquié-Moreno, Thevelein (CR38) 2020; 13
Jhariya, Dafale, Srivastava, Bhende, Kapley, Purohit (CR18) 2021; 14
Casado, González, Platara, Ruiz, Ariño (CR5) 2011; 438
Ma, Liu (CR22) 2010; 87
Peter, De Chiara, Friedrich, Yue, Pflieger, Bergström, Sigwalt, Barre, Freel, Llored, Cruaud, Labadie, Aury, Istace, Lebrigand, Barbry, Engelen, Lemainque, Wincker, Liti, Schacherer (CR31) 2018; 556
CR2
CR6
CR8
Yoshikawa, Tanaka, Furusawa, Nagahisa, Hirasawa, Shimizu (CR49) 2009; 9
CR9
Sunyer-Figueres, Mas, Beltran, Torija (CR40) 2021; 10
Dasgupta, Dasgupta (CR7) 2017
Stanke, Diekhans, Baertsch, Haussler (CR37) 2008; 24
Basso, de Amorim, de Oliveira, Lopes (CR3) 2008; 8
Duitama, Sánchez-Rodríguez, Goovaerts, Pulido-Tamayo, Hubmann, Foulquié-Moreno, Thevelein, Verstrepen, Marchal (CR12) 2014; 15
Li, Wang (CR20) 2013; 288
Takagi, Abe, Yoshida, Kosugi, Natsume, Mitsuoka, Uemura, Utsushi, Tamiru, Takuno, Innan, Cano, Kamoun, Terauchi (CR43) 2013; 74
Simão, Waterhouse, Ioannidis, Kriventseva, Zdobnov (CR36) 2015; 31
Tanaka, Nakafuku, Satoh, Marshall, Gibbs, Matsumoto, Kaziro, Toh-e (CR44) 1990; 60
Piper, Talreja, Panaretou, Moradas-Ferreira, Byrne, Praekelt, Meacock, Récnacq, Boucherie (CR32) 1994; 140
Strope, Skelly, Kozmin, Mahadevan, Stone, Magwene, Dietrich, McCusker (CR39) 2015; 25
Varize, Bücker, Lopes, Christofoleti-Furlan, Raposo, Basso, Stambuk (CR47) 2022; 8
Haas, Horev, Lipkin, Kesten, Portnoy, Buhnik-Rosenblau, Soller, Kashi (CR14) 2019; 10
Myers, Riley, MacGilvray, Sato, McGee, Heilberger, Coon, Gasch (CR26) 2019; 15
Vanegas, Contreras, Faller, Longo (CR46) 2012; 102
Parapouli, Vasileiadis, Afendra, Hatziloukas (CR29) 2020; 6
Riles, Fay (CR33) 2019; 9
Jacobus, Gross, Evans, Ceccato-Antonini, Gombert (CR17) 2021; 65
Parts, Cubillos, Warringer, Jain, Salinas, Bumpstead, Molin, Zia, Simpson, Quail, Moses, Louis, Durbin, Liti (CR30) 2011; 21
Swinnen, Schaerlaekens, Pais, Claesen, Hubmann, Yang, Demeke, Foulquié-Moreno, Goovaerts, Souvereyns, Clement, Dumortier, Thevelein (CR41) 2012; 22
Roop, Brem (CR34) 2013; 195
Wang, Qi, Lin, Guo, Liu, Wang (CR48) 2019; 12
De Mello, Coradini, Tizei, Carazzolle, Pereira, Teixeira (CR10) 2019; 120
CR51
Ogawa, Nitta, Uchiyama, Imamura, Shimoi, Ito (CR28) 2000; 90
Matsui, Ehrenreich (CR24) 2016; 12
Takagi (CR42) 2008; 81
Emms, Kelly (CR13) 2019; 20
Mansfeld, Grumet (CR23) 2018
Zyrina, Smirnova, Markova, Severin, Knorre (CR50) 2017; 83
Katoh, Standley (CR19) 2013; 30
Betz, Schlenstedt, Bailer (CR4) 2004; 279
CR27
Hirasawa, Yoshikawa, Nakakura, Nagahisa, Furusawa, Katakura, Shimizu, Shioya (CR15) 2007; 131
Sahana, Balasubramanian, Joseph, Pappuswamy, Liu, Meyyazhagan, Kamyab, Chelliapan, Joseph (CR35) 2024; 138
CR21
Ho, Piampongsant, Gallone, Del Cortona, Peeters, Reijbroek, Verbaet, Herrera, Cortebeeck, Nolmans, Saels, Steensels, Jarosz, Verstrepen (CR16) 2021; 14
Alexandre, Ansanay-Galeote, Dequin, Blondin (CR1) 2001; 498
Molinet, Navarrete, Villarroel, Villarreal, Sandoval, Nespolo, Stelkens, Cubillos (CR25) 2024; 20
Deutschbauer, Davis (CR11) 2005; 37
M Parapouli (2196_CR29) 2020; 6
JM Vanegas (2196_CR46) 2012; 102
Y Li (2196_CR20) 2013; 288
A Dasgupta (2196_CR7) 2017
2196_CR21
K Tanaka (2196_CR44) 1990; 60
2196_CR27
J Peter (2196_CR31) 2018; 556
JI Roop (2196_CR34) 2013; 195
KS Myers (2196_CR26) 2019; 15
H Alexandre (2196_CR1) 2001; 498
L Parts (2196_CR30) 2011; 21
FDSB De Mello (2196_CR10) 2019; 120
L Riles (2196_CR33) 2019; 9
C Casado (2196_CR5) 2011; 438
PK Strope (2196_CR39) 2015; 25
Y Ogawa (2196_CR28) 2000; 90
J Molinet (2196_CR25) 2024; 20
GR Sahana (2196_CR35) 2024; 138
P-W Ho (2196_CR16) 2021; 14
BN Mansfeld (2196_CR23) 2018
J Duitama (2196_CR12) 2014; 15
2196_CR51
M Sunyer-Figueres (2196_CR40) 2021; 10
FA Simão (2196_CR36) 2015; 31
DM Emms (2196_CR13) 2019; 20
M Ma (2196_CR22) 2010; 87
PW Piper (2196_CR32) 1994; 140
CS Varize (2196_CR47) 2022; 8
M Stojiljkovic (2196_CR38) 2020; 13
K Katoh (2196_CR19) 2013; 30
T Matsui (2196_CR24) 2016; 12
K Umebayashi (2196_CR45) 2001; 276
AN Zyrina (2196_CR50) 2017; 83
M Stanke (2196_CR37) 2008; 24
H Takagi (2196_CR42) 2008; 81
Z Wang (2196_CR48) 2019; 12
LC Basso (2196_CR3) 2008; 8
AP Jacobus (2196_CR17) 2021; 65
K Yoshikawa (2196_CR49) 2009; 9
T Hirasawa (2196_CR15) 2007; 131
R Haas (2196_CR14) 2019; 10
H Takagi (2196_CR43) 2013; 74
2196_CR6
2196_CR9
2196_CR8
S Swinnen (2196_CR41) 2012; 22
2196_CR2
AM Deutschbauer (2196_CR11) 2005; 37
C Betz (2196_CR4) 2004; 279
U Jhariya (2196_CR18) 2021; 14
References_xml – volume: 6
  start-page: 1
  year: 2020
  end-page: 31
  ident: CR29
  article-title: Saccharomyces cerevisiae and its industrial applications
  publication-title: AIMS Microbiol
  doi: 10.3934/microbiol.2020001
– volume: 9
  start-page: 179
  year: 2019
  end-page: 188
  ident: CR33
  article-title: Genetic basis of variation in heat and ethanol tolerance in
  publication-title: G3 Bethesda Md
  doi: 10.1534/g3.118.200566
– volume: 12
  start-page: 59
  year: 2019
  ident: CR48
  article-title: QTL analysis reveals genomic variants linked to high-temperature fermentation performance in the industrial yeast
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1398-7
– volume: 498
  start-page: 98
  year: 2001
  end-page: 103
  ident: CR1
  article-title: Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)02503-0
– volume: 15
  year: 2019
  ident: CR26
  article-title: Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008037
– volume: 8
  start-page: 1155
  year: 2008
  end-page: 1163
  ident: CR3
  article-title: Yeast selection for fuel ethanol production in Brazil
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2008.00428.x
– ident: CR51
– start-page: 1
  year: 2017
  end-page: 21
  ident: CR7
  article-title: 1—Alcohol a double-edged sword: health benefits with moderate consumption but a health hazard with excess alcohol intake
  publication-title: Alcohol, drugs, genes and the clinical laboratory
– volume: 14
  start-page: 211
  year: 2021
  ident: CR16
  article-title: Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-021-02059-w
– volume: 83
  start-page: e02759
  year: 2017
  end-page: e2816
  ident: CR50
  article-title: Mitochondrial superoxide dismutase and Yap1p act as a signaling module contributing to ethanol tolerance of the yeast
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02759-16
– volume: 10
  start-page: 998
  year: 2019
  ident: CR14
  article-title: Mapping ethanol tolerance in budding yeast reveals high genetic variation in a wild isolate
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00998
– volume: 60
  start-page: 803
  year: 1990
  end-page: 807
  ident: CR44
  article-title: genes and encode proteins that may be functionally equivalent to mammalian GTPase activating protein
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90094-U
– ident: CR8
– volume: 9
  start-page: 32
  year: 2009
  end-page: 44
  ident: CR49
  article-title: Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2008.00456.x
– volume: 14
  start-page: 670
  year: 2021
  end-page: 688
  ident: CR18
  article-title: Understanding ethanol tolerance mechanism in saccharomyces cerevisiae to enhance the bioethanol production: current and future prospects
  publication-title: BioEnergy Res
  doi: 10.1007/s12155-020-10228-2
– volume: 90
  start-page: 313
  year: 2000
  end-page: 320
  ident: CR28
  article-title: Tolerance mechanism of the ethanol-tolerant mutant of sake yeast
  publication-title: J Biosci Bioeng
  doi: 10.1016/S1389-1723(00)80087-0
– volume: 13
  start-page: 126
  year: 2020
  ident: CR38
  article-title: Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-020-01761-5
– ident: CR21
– volume: 131
  start-page: 34
  year: 2007
  end-page: 44
  ident: CR15
  article-title: Identification of target genes conferring ethanol stress tolerance to based on DNA microarray data analysis
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2007.05.010
– volume: 8
  start-page: 470
  year: 2022
  ident: CR47
  article-title: Increasing ethanol tolerance and ethanol production in an industrial fuel ethanol saccharomyces cerevisiae strain
  publication-title: Fermentation
  doi: 10.3390/fermentation8100470
– volume: 120
  start-page: 49
  year: 2019
  end-page: 58
  ident: CR10
  article-title: Static microplate fermentation and automated growth analysis approaches identified a highly-aldehyde resistant Saccharomyces cerevisiae strain
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2018.10.019
– volume: 65
  start-page: 147
  year: 2021
  end-page: 161
  ident: CR17
  article-title: Saccharomyces cerevisiae strains used industrially for bioethanol production
  publication-title: Essays Biochem
  doi: 10.1042/EBC20200160
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  ident: CR19
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– volume: 12
  year: 2016
  ident: CR24
  article-title: Gene-environment interactions in stress response contribute additively to a genotype-environment interaction
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006158
– volume: 24
  start-page: 637
  year: 2008
  end-page: 644
  ident: CR37
  article-title: Using native and syntenically mapped cDNA alignments to improve de novo gene finding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn013
– volume: 37
  start-page: 1333
  year: 2005
  end-page: 1340
  ident: CR11
  article-title: Quantitative trait loci mapped to single-nucleotide resolution in yeast
  publication-title: Nat Genet
  doi: 10.1038/ng1674
– ident: CR9
– volume: 20
  year: 2024
  ident: CR25
  article-title: Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1011154
– volume: 21
  start-page: 1131
  year: 2011
  end-page: 1138
  ident: CR30
  article-title: Revealing the genetic structure of a trait by sequencing a population under selection
  publication-title: Genome Res
  doi: 10.1101/gr.116731.110
– volume: 25
  start-page: 762
  year: 2015
  end-page: 774
  ident: CR39
  article-title: The 100-genomes strains, an resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen
  publication-title: Genome Res
  doi: 10.1101/gr.185538.114
– volume: 279
  start-page: 28174
  year: 2004
  end-page: 28181
  ident: CR4
  article-title: Asr1p, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus*
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M401595200
– year: 2018
  ident: CR23
  article-title: QTLseqr: an R package for bulk segregant analysis with next-generation sequencing
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2018.01.0006
– ident: CR2
– volume: 438
  start-page: 523
  year: 2011
  end-page: 533
  ident: CR5
  article-title: The role of the protein kinase A pathway in the response to alkaline pH stress in yeast
  publication-title: Biochem J
  doi: 10.1042/BJ20110607
– volume: 15
  start-page: 207
  year: 2014
  ident: CR12
  article-title: Improved linkage analysis of quantitative trait loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-207
– volume: 74
  start-page: 174
  year: 2013
  end-page: 183
  ident: CR43
  article-title: QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations
  publication-title: Plant J
  doi: 10.1111/tpj.12105
– volume: 276
  start-page: 41444
  year: 2001
  end-page: 41454
  ident: CR45
  article-title: Activation of the Ras-cAMP signal transduction pathway inhibits the proteasome-independent degradation of misfolded protein aggregates in the endoplasmic reticulum lumen
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M105829200
– volume: 10
  start-page: 1735
  year: 2021
  ident: CR40
  article-title: Protective effects of melatonin on under ethanol stress
  publication-title: Antioxidants
  doi: 10.3390/antiox10111735
– ident: CR6
– volume: 20
  start-page: 238
  year: 2019
  ident: CR13
  article-title: OrthoFinder: phylogenetic orthology inference for comparative genomics
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1832-y
– volume: 31
  start-page: 3210
  year: 2015
  end-page: 3212
  ident: CR36
  article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
– volume: 81
  start-page: 211
  year: 2008
  end-page: 223
  ident: CR42
  article-title: Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1698-5
– volume: 556
  start-page: 339
  year: 2018
  end-page: 344
  ident: CR31
  article-title: Genome evolution across 1,011 Saccharomyces cerevisiae isolates
  publication-title: Nature
  doi: 10.1038/s41586-018-0030-5
– volume: 140
  start-page: 3031
  year: 1994
  end-page: 3038
  ident: CR32
  article-title: Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold
  publication-title: Microbiology
  doi: 10.1099/13500872-140-11-3031
– ident: CR27
– volume: 138
  start-page: 1
  year: 2024
  end-page: 13
  ident: CR35
  article-title: A review on ethanol tolerance mechanisms in yeast: current knowledge in biotechnological applications and future directions
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2023.12.024
– volume: 288
  start-page: 11358
  year: 2013
  end-page: 11365
  ident: CR20
  article-title: Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast*
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.449751
– volume: 87
  start-page: 829
  year: 2010
  end-page: 845
  ident: CR22
  article-title: Mechanisms of ethanol tolerance in Saccharomyces cerevisiae
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-010-2594-3
– volume: 22
  start-page: 975
  year: 2012
  end-page: 984
  ident: CR41
  article-title: Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis
  publication-title: Genome Res
  doi: 10.1101/gr.131698.111
– volume: 102
  start-page: 507
  year: 2012
  end-page: 516
  ident: CR46
  article-title: Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2011.12.038
– volume: 195
  start-page: 513
  year: 2013
  end-page: 525
  ident: CR34
  article-title: Rare variants in hypermutable genes underlie common morphology and growth traits in wild
  publication-title: Genetics
  doi: 10.1534/genetics.113.155341
– volume: 65
  start-page: 147
  year: 2021
  ident: 2196_CR17
  publication-title: Essays Biochem
  doi: 10.1042/EBC20200160
– volume: 20
  year: 2024
  ident: 2196_CR25
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1011154
– volume: 8
  start-page: 1155
  year: 2008
  ident: 2196_CR3
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2008.00428.x
– volume: 87
  start-page: 829
  year: 2010
  ident: 2196_CR22
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-010-2594-3
– volume: 81
  start-page: 211
  year: 2008
  ident: 2196_CR42
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1698-5
– volume: 10
  start-page: 998
  year: 2019
  ident: 2196_CR14
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00998
– ident: 2196_CR21
  doi: 10.1016/j.bjm.2016.10.003
– volume: 131
  start-page: 34
  year: 2007
  ident: 2196_CR15
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2007.05.010
– volume: 21
  start-page: 1131
  year: 2011
  ident: 2196_CR30
  publication-title: Genome Res
  doi: 10.1101/gr.116731.110
– volume: 15
  year: 2019
  ident: 2196_CR26
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008037
– volume: 279
  start-page: 28174
  year: 2004
  ident: 2196_CR4
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M401595200
– volume: 22
  start-page: 975
  year: 2012
  ident: 2196_CR41
  publication-title: Genome Res
  doi: 10.1101/gr.131698.111
– ident: 2196_CR6
  doi: 10.21203/rs.3.rs-827768/v1
– volume: 90
  start-page: 313
  year: 2000
  ident: 2196_CR28
  publication-title: J Biosci Bioeng
  doi: 10.1016/S1389-1723(00)80087-0
– volume: 15
  start-page: 207
  year: 2014
  ident: 2196_CR12
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-207
– volume: 9
  start-page: 32
  year: 2009
  ident: 2196_CR49
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2008.00456.x
– volume: 438
  start-page: 523
  year: 2011
  ident: 2196_CR5
  publication-title: Biochem J
  doi: 10.1042/BJ20110607
– ident: 2196_CR8
  doi: 10.1016/j.micres.2022.127138
– start-page: 1
  volume-title: Alcohol, drugs, genes and the clinical laboratory
  year: 2017
  ident: 2196_CR7
– volume: 8
  start-page: 470
  year: 2022
  ident: 2196_CR47
  publication-title: Fermentation
  doi: 10.3390/fermentation8100470
– volume: 25
  start-page: 762
  year: 2015
  ident: 2196_CR39
  publication-title: Genome Res
  doi: 10.1101/gr.185538.114
– volume: 60
  start-page: 803
  year: 1990
  ident: 2196_CR44
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90094-U
– volume: 9
  start-page: 179
  year: 2019
  ident: 2196_CR33
  publication-title: G3 Bethesda Md
  doi: 10.1534/g3.118.200566
– volume: 276
  start-page: 41444
  year: 2001
  ident: 2196_CR45
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M105829200
– volume: 556
  start-page: 339
  year: 2018
  ident: 2196_CR31
  publication-title: Nature
  doi: 10.1038/s41586-018-0030-5
– volume: 14
  start-page: 211
  year: 2021
  ident: 2196_CR16
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-021-02059-w
– volume: 31
  start-page: 3210
  year: 2015
  ident: 2196_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
– volume: 10
  start-page: 1735
  year: 2021
  ident: 2196_CR40
  publication-title: Antioxidants
  doi: 10.3390/antiox10111735
– volume: 102
  start-page: 507
  year: 2012
  ident: 2196_CR46
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2011.12.038
– volume: 120
  start-page: 49
  year: 2019
  ident: 2196_CR10
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2018.10.019
– volume: 74
  start-page: 174
  year: 2013
  ident: 2196_CR43
  publication-title: Plant J
  doi: 10.1111/tpj.12105
– volume: 6
  start-page: 1
  year: 2020
  ident: 2196_CR29
  publication-title: AIMS Microbiol
  doi: 10.3934/microbiol.2020001
– volume: 24
  start-page: 637
  year: 2008
  ident: 2196_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn013
– volume: 83
  start-page: e02759
  year: 2017
  ident: 2196_CR50
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02759-16
– volume: 498
  start-page: 98
  year: 2001
  ident: 2196_CR1
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)02503-0
– volume: 288
  start-page: 11358
  year: 2013
  ident: 2196_CR20
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.449751
– volume: 14
  start-page: 670
  year: 2021
  ident: 2196_CR18
  publication-title: BioEnergy Res
  doi: 10.1007/s12155-020-10228-2
– volume: 37
  start-page: 1333
  year: 2005
  ident: 2196_CR11
  publication-title: Nat Genet
  doi: 10.1038/ng1674
– ident: 2196_CR27
  doi: 10.1128/mra.00071-19
– ident: 2196_CR2
  doi: 10.5772/17047
– volume: 195
  start-page: 513
  year: 2013
  ident: 2196_CR34
  publication-title: Genetics
  doi: 10.1534/genetics.113.155341
– ident: 2196_CR9
  doi: 10.1186/s43141-022-00359-8
– ident: 2196_CR51
  doi: 10.1111/fyr.2009.9.issue-1 10.1111/j.1567-1364.2008.00456.x
– year: 2018
  ident: 2196_CR23
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2018.01.0006
– volume: 12
  year: 2016
  ident: 2196_CR24
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006158
– volume: 13
  start-page: 126
  year: 2020
  ident: 2196_CR38
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-020-01761-5
– volume: 12
  start-page: 59
  year: 2019
  ident: 2196_CR48
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1398-7
– volume: 138
  start-page: 1
  year: 2024
  ident: 2196_CR35
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2023.12.024
– volume: 30
  start-page: 772
  year: 2013
  ident: 2196_CR19
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– volume: 140
  start-page: 3031
  year: 1994
  ident: 2196_CR32
  publication-title: Microbiology
  doi: 10.1099/13500872-140-11-3031
– volume: 20
  start-page: 238
  year: 2019
  ident: 2196_CR13
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1832-y
SSID ssj0017627
Score 2.4115105
Snippet Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a...
Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 103
SubjectTerms Acetic acid
acid tolerance
alleles
Animal Genetics and Genomics
Biochemistry
bioethanol
Biofuels
Biomedical and Life Sciences
Chromosome Mapping
Drug tolerance
economic sustainability
Ethanol
Ethanol - metabolism
Ethanol - pharmacology
Fermentation
Fermentation - genetics
Gene frequency
Gene mapping
Genetic markers
genomics
GTPase-Activating Proteins
heat tolerance
Human Genetics
Industrial applications
Life Sciences
Microbial Genetics and Genomics
Missense mutation
mutation rate
Mutation, Missense
Original Article
oxygen
Plant Genetics and Genomics
Population genetics
Population studies
Quantitative Trait Loci
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Strains (organisms)
stress tolerance
sugars
Temperature tolerance
Yeast
yeasts
Title Unveiling genetic anchors in Saccharomyces cerevisiae: QTL mapping identifies IRA2 as a key player in ethanol tolerance and beyond
URI https://link.springer.com/article/10.1007/s00438-024-02196-5
https://www.ncbi.nlm.nih.gov/pubmed/39461918
https://www.proquest.com/docview/3121057990
https://www.proquest.com/docview/3121065256
https://www.proquest.com/docview/3153843156
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsRAEC1cELyIu-NGC960YUzSWbyN4rgLLgN6Cr3qwJiIGQWvfrnVnUXEBTyEHFJ0mryq1EuqXxfAZlsLEUVcUomhRgMmBIaUNDTUQjHJhOJOt3Z-ER71gpNbdluJwop6tXtdknRv6kbs5opWFHMKHug3lI3COLPf7ujFPa_T1A4wvF1LFczNNMCEXUllfh7jazr6xjG_1Udd2ulOw1TFF0mnBHgGRnQ2CxNlB8m3OXjvZa-6byXlBD3BChIJwviQPxekn5FrLq2qKn98w7cBkW5Jb9Hnepdc3pyRR273ZrgnfVWuGEKT46uOR3hBOMHYJk8DjoTcDqTtD_Z8QIb5QNtOHBrvoohw6pd56HUPbvaPaNVWgUqfJUPqS62MFaEGGH_4vSSRYgWeksaLje9rj5vQxKqthO0ohPymHUWKGSEQyER6GLQLMJblmV4CYmJMgjw2QaLsaHHiRSHfUY5JyUQHLdiqn276VO6ekTb7JDssUsQidVikrAWrNQBpFUlF6tsdzliESbMFG81ljAFb2OCZzl8qm5Ahe_vLBueHbMnaLJbgNlPyE_STZCduwXaN9ucEfp_v8v_MV2DSs57n1sKswtjw-UWvIaMZinUY73T39i7s-fDu9GDdOfQHG8PuoA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-tAEB48ihxfxNvRel3hvOlCTbK5-FZEqVoFPS34FvaqhZpI0wq--sud3VxE1AM-9CnDZuk3k_mSmW8H4G9bCxFFXFKJoUYDJgSGlDQ01EIxyYTiTrd2dR12B8HFHburRGFF3e1elyTdk7oRu7miFcWcgj_0G8p-wRySgdg2cg28TlM7wPB2I1UwN9MAE3Yllfl6jY_p6BPH_FQfdWnnbAkWK75IOiXAyzCjsxWYLydIvqzC6yB71kMrKSfoCVaQSBDGh3xckGFG_nFpVVX54ws-DYh0Lb3FkOtjctPvkUduz2a4J0NVdgyhyfltxyO8IJxgbJOnEUdCbhfS9gN7PiKTfKTtJA6Nd1FEOPXLGgzOTvsnXVqNVaDSZ8mE-lIrY0WoAcYfvi9JpFiBp6TxYuP72uMmNLFqK2EnCiG_aUeRYkYIBDKRHgbtH5jN8kxvADExJkEemyBRdrU48aKQHynHpGSigxYc1P9u-lSenpE25yQ7LFLEInVYpKwF2zUAaRVJRerbE85YhEmzBfvNZYwBW9jgmc6nlU3IkL39zwb3h2zJ2qyX4DZb8hP0k-QobsFhjfb7Br7f7-bPzPfgd7d_1Ut759eXW7DgWS90fTHbMDsZT_UOspuJ2HXO_AaOre6D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RUCsuCFoeoQEWqbeyIrG9fnCLgIhAimibSNysfUKkxI6IQeLKL-_s2nGLKEgccvJovco34_ns2W8G4FtLCxFFXFKJoUYDJgSGlDQ01EIxyYTiTrf24zI8Gwbn1-z6HxW_O-0-L0mWmgbbpSkrDqfKHNbCN1fAophf8Ic-RNkHWMLHcdv69dDr1HUEDHU3XgXzNA0weVeymf-v8Tw1veCbL2qlLgV1V2Gl4o6kU4K9Bgs6-wwfy2mSj1_gaZg96JGVlxP0CitOJAjpbX43I6OM_ObSKqzyySM-GYh0x3tnI66PyM9Bn0y47dNwQ0aqPD2EJr1fHY_wGeEE45xMxxzJuV1I24_t-ZgU-VjbqRwa76KIcEqYdRh2TwfHZ7QasUClz5KC-lIrYwWpAcYivjtJpFuBp6TxYuP72uMmNLFqKWGnCyHXaUWRYkYIBDWRHgbwBixmeaa3gJgYEyKPTZAou1qceFHI28qxKpnooAHf5_9uOi07aaR1z2SHRYpYpA6LlDWgOQcgraJqlvq22xmLMIE2YL--jPFgixw80_l9ZRMyZHJv2eD-kDlZm80S3HpLfoJ-krTjBhzM0f67gdf3u_0-8z34dHXSTfu9y4uvsOxZJ3RHZJqwWNzd6x0kOoXYdb78B2WD8r8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+genetic+anchors+in+Saccharomyces+cerevisiae%3A+QTL+mapping+identifies+IRA2+as+a+key+player+in+ethanol+tolerance+and+beyond&rft.jtitle=Molecular+genetics+and+genomics+%3A+MGG&rft.au=Trist%C3%A3o%2C+Larissa+Escalfi&rft.au=de+Sousa%2C+Lara+Isensee+Saboya&rft.au=de+Oliveira+Vargas%2C+Beatriz&rft.au=Jos%C3%A9%2C+Juliana&rft.date=2024-12-01&rft.issn=1617-4615&rft.volume=299&rft.issue=1+p.103-103&rft.spage=103&rft.epage=103&rft_id=info:doi/10.1007%2Fs00438-024-02196-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4615&client=summon