Unveiling genetic anchors in Saccharomyces cerevisiae: QTL mapping identifies IRA2 as a key player in ethanol tolerance and beyond
Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, prima...
Saved in:
Published in | Molecular genetics and genomics : MGG Vol. 299; no. 1; p. 103 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ethanol stress in
Saccharomyces cerevisiae
is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol
S. cerevisiae
strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011
S. cerevisiae
strains, we uncovered rare occurrences in gene
IRA2
. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol.
IRA2
pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in
S. cerevisiae
holds promise for developing robust yeast strains tailored for industrial applications. |
---|---|
AbstractList | Ethanol stress in
Saccharomyces cerevisiae
is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol
S. cerevisiae
strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011
S. cerevisiae
strains, we uncovered rare occurrences in gene
IRA2
. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol.
IRA2
pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in
S. cerevisiae
holds promise for developing robust yeast strains tailored for industrial applications. Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications.Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications. Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications. |
ArticleNumber | 103 |
Author | Tristão, Larissa Escalfi de Oliveira Vargas, Beatriz de Sousa, Lara Isensee Saboya Pereira, Gonçalo Amarante Guimarães Silva, Eduardo Menoti José, Juliana Carazzolle, Marcelo Falsarella de Mello, Fellipe da Silveira Bezerra Galhardo, Juliana Pimentel |
Author_xml | – sequence: 1 givenname: Larissa Escalfi surname: Tristão fullname: Tristão, Larissa Escalfi organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 2 givenname: Lara Isensee Saboya surname: de Sousa fullname: de Sousa, Lara Isensee Saboya organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 3 givenname: Beatriz surname: de Oliveira Vargas fullname: de Oliveira Vargas, Beatriz organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 4 givenname: Juliana surname: José fullname: José, Juliana organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 5 givenname: Marcelo Falsarella surname: Carazzolle fullname: Carazzolle, Marcelo Falsarella organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 6 givenname: Eduardo Menoti surname: Silva fullname: Silva, Eduardo Menoti organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 7 givenname: Juliana Pimentel surname: Galhardo fullname: Galhardo, Juliana Pimentel organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 8 givenname: Gonçalo Amarante Guimarães orcidid: 0000-0003-4140-3482 surname: Pereira fullname: Pereira, Gonçalo Amarante Guimarães email: goncalo@unicamp.br organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp – sequence: 9 givenname: Fellipe da Silveira Bezerra surname: de Mello fullname: de Mello, Fellipe da Silveira Bezerra organization: Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39461918$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1rFTEYhYNU7If-ARcScONmNB-TyYy7UqoWLojarkMmeXNv6kwyJnMLs_WXm9upFVyIiyQv4Tnv4XBO0VGIARB6SclbSoh8lwmpeVsRVpdDu6YST9AJbais6obxo8eZimN0mvMtIVQ2TD5Dx7wrvx1tT9DPm3AHfvBhi7cQYPYG62B2MWXsA_6mjdnpFMfFQMYGEtz57DW8x1-uN3jU03QQegth9s4X5OrrOcM6Y42_w4KnQS-QDotg3ukQBzzHAVIxgOJicQ9LDPY5eur0kOHFw3uGbj5cXl98qjafP15dnG8qw0U3V9yAdYQIWQtOW0kNJaJm1jjWOs6Bade41hLbC8FLUEaktML1fS36zjAi-Bl6s-6dUvyxhzyr0WcDw6ADxH1WnAre1uVu_gNllDSC3aOv_0Jv4z6FEmSlhOw6UqhXD9S-H8GqKflRp0X9LqIAbAVMijkncI8IJerQtlrbVqVtdd-2OiTiqygXOGwh_fH-h-oXaLWq6A |
Cites_doi | 10.3934/microbiol.2020001 10.1534/g3.118.200566 10.1186/s13068-019-1398-7 10.1016/S0014-5793(01)02503-0 10.1371/journal.pgen.1008037 10.1111/j.1567-1364.2008.00428.x 10.1186/s13068-021-02059-w 10.1128/AEM.02759-16 10.3389/fgene.2019.00998 10.1016/0092-8674(90)90094-U 10.1111/j.1567-1364.2008.00456.x 10.1007/s12155-020-10228-2 10.1016/S1389-1723(00)80087-0 10.1186/s13068-020-01761-5 10.1016/j.jbiotec.2007.05.010 10.3390/fermentation8100470 10.1016/j.biombioe.2018.10.019 10.1042/EBC20200160 10.1093/molbev/mst010 10.1371/journal.pgen.1006158 10.1093/bioinformatics/btn013 10.1038/ng1674 10.1371/journal.pgen.1011154 10.1101/gr.116731.110 10.1101/gr.185538.114 10.1074/jbc.M401595200 10.3835/plantgenome2018.01.0006 10.1042/BJ20110607 10.1186/1471-2164-15-207 10.1111/tpj.12105 10.1074/jbc.M105829200 10.3390/antiox10111735 10.1186/s13059-019-1832-y 10.1093/bioinformatics/btv351 10.1007/s00253-008-1698-5 10.1038/s41586-018-0030-5 10.1099/13500872-140-11-3031 10.1016/j.procbio.2023.12.024 10.1074/jbc.M112.449751 10.1007/s00253-010-2594-3 10.1101/gr.131698.111 10.1016/j.bpj.2011.12.038 10.1534/genetics.113.155341 10.1016/j.bjm.2016.10.003 10.21203/rs.3.rs-827768/v1 10.1016/j.micres.2022.127138 10.1128/mra.00071-19 10.5772/17047 10.1186/s43141-022-00359-8 10.1111/fyr.2009.9.issue-1 10.1111/j.1567-1364.2008.00456.x |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00438-024-02196-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Entomology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1617-4623 |
EndPage | 103 |
ExternalDocumentID | 39461918 10_1007_s00438_024_02196_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 88887.479699/2020-0 funderid: http://dx.doi.org/10.13039/501100002322 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2022/07061-4; 2022/13111-4 funderid: http://dx.doi.org/10.13039/501100001807 – fundername: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis funderid: http://dx.doi.org/10.13039/501100006487 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2022/13111-4 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 88887.479699/2020-0 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2022/07061-4 |
GroupedDBID | --- -DZ -Y2 -~X .55 .86 .GJ 06C 06D 0R~ 0VY 199 1N0 2.D 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5RE 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDYV AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ATHPR AXYYD AYFIA AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L7B LAS LK8 LLZTM M1P M4Y M7P MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF- PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOR QOS R89 R9I RHV RIG RNS ROL RPX RRX RSV S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 X7M YLTOR Z45 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAYOK AAYXX CITATION -4W -56 -5G -BR -EM -~C ADINQ CGR CUY CVF ECM EIF GQ6 NPM Z7U Z7V Z7W Z7Y Z87 Z8O Z8P Z8Q Z8S Z91 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c359t-3cedf00574531871c10542dcf28f33e2af6f8d0db5530172077d5fbb45b9c2053 |
IEDL.DBID | U2A |
ISSN | 1617-4615 1617-4623 |
IngestDate | Fri Jul 11 08:40:16 EDT 2025 Fri Jul 11 15:32:34 EDT 2025 Fri Jul 25 19:04:33 EDT 2025 Wed Feb 19 02:15:45 EST 2025 Tue Jul 01 04:35:24 EDT 2025 Mon Jul 21 06:23:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | IRA2 Ethanol tolerance QTL mapping |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-3cedf00574531871c10542dcf28f33e2af6f8d0db5530172077d5fbb45b9c2053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4140-3482 |
PMID | 39461918 |
PQID | 3121057990 |
PQPubID | 55367 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3153843156 proquest_miscellaneous_3121065256 proquest_journals_3121057990 pubmed_primary_39461918 crossref_primary_10_1007_s00438_024_02196_5 springer_journals_10_1007_s00438_024_02196_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Molecular genetics and genomics : MGG |
PublicationTitleAbbrev | Mol Genet Genomics |
PublicationTitleAlternate | Mol Genet Genomics |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Umebayashi, Fukuda, Hirata, Horiuchi, Nakano, Ohta, Takagi (CR45) 2001; 276 Stojiljkovic, Foulquié-Moreno, Thevelein (CR38) 2020; 13 Jhariya, Dafale, Srivastava, Bhende, Kapley, Purohit (CR18) 2021; 14 Casado, González, Platara, Ruiz, Ariño (CR5) 2011; 438 Ma, Liu (CR22) 2010; 87 Peter, De Chiara, Friedrich, Yue, Pflieger, Bergström, Sigwalt, Barre, Freel, Llored, Cruaud, Labadie, Aury, Istace, Lebrigand, Barbry, Engelen, Lemainque, Wincker, Liti, Schacherer (CR31) 2018; 556 CR2 CR6 CR8 Yoshikawa, Tanaka, Furusawa, Nagahisa, Hirasawa, Shimizu (CR49) 2009; 9 CR9 Sunyer-Figueres, Mas, Beltran, Torija (CR40) 2021; 10 Dasgupta, Dasgupta (CR7) 2017 Stanke, Diekhans, Baertsch, Haussler (CR37) 2008; 24 Basso, de Amorim, de Oliveira, Lopes (CR3) 2008; 8 Duitama, Sánchez-Rodríguez, Goovaerts, Pulido-Tamayo, Hubmann, Foulquié-Moreno, Thevelein, Verstrepen, Marchal (CR12) 2014; 15 Li, Wang (CR20) 2013; 288 Takagi, Abe, Yoshida, Kosugi, Natsume, Mitsuoka, Uemura, Utsushi, Tamiru, Takuno, Innan, Cano, Kamoun, Terauchi (CR43) 2013; 74 Simão, Waterhouse, Ioannidis, Kriventseva, Zdobnov (CR36) 2015; 31 Tanaka, Nakafuku, Satoh, Marshall, Gibbs, Matsumoto, Kaziro, Toh-e (CR44) 1990; 60 Piper, Talreja, Panaretou, Moradas-Ferreira, Byrne, Praekelt, Meacock, Récnacq, Boucherie (CR32) 1994; 140 Strope, Skelly, Kozmin, Mahadevan, Stone, Magwene, Dietrich, McCusker (CR39) 2015; 25 Varize, Bücker, Lopes, Christofoleti-Furlan, Raposo, Basso, Stambuk (CR47) 2022; 8 Haas, Horev, Lipkin, Kesten, Portnoy, Buhnik-Rosenblau, Soller, Kashi (CR14) 2019; 10 Myers, Riley, MacGilvray, Sato, McGee, Heilberger, Coon, Gasch (CR26) 2019; 15 Vanegas, Contreras, Faller, Longo (CR46) 2012; 102 Parapouli, Vasileiadis, Afendra, Hatziloukas (CR29) 2020; 6 Riles, Fay (CR33) 2019; 9 Jacobus, Gross, Evans, Ceccato-Antonini, Gombert (CR17) 2021; 65 Parts, Cubillos, Warringer, Jain, Salinas, Bumpstead, Molin, Zia, Simpson, Quail, Moses, Louis, Durbin, Liti (CR30) 2011; 21 Swinnen, Schaerlaekens, Pais, Claesen, Hubmann, Yang, Demeke, Foulquié-Moreno, Goovaerts, Souvereyns, Clement, Dumortier, Thevelein (CR41) 2012; 22 Roop, Brem (CR34) 2013; 195 Wang, Qi, Lin, Guo, Liu, Wang (CR48) 2019; 12 De Mello, Coradini, Tizei, Carazzolle, Pereira, Teixeira (CR10) 2019; 120 CR51 Ogawa, Nitta, Uchiyama, Imamura, Shimoi, Ito (CR28) 2000; 90 Matsui, Ehrenreich (CR24) 2016; 12 Takagi (CR42) 2008; 81 Emms, Kelly (CR13) 2019; 20 Mansfeld, Grumet (CR23) 2018 Zyrina, Smirnova, Markova, Severin, Knorre (CR50) 2017; 83 Katoh, Standley (CR19) 2013; 30 Betz, Schlenstedt, Bailer (CR4) 2004; 279 CR27 Hirasawa, Yoshikawa, Nakakura, Nagahisa, Furusawa, Katakura, Shimizu, Shioya (CR15) 2007; 131 Sahana, Balasubramanian, Joseph, Pappuswamy, Liu, Meyyazhagan, Kamyab, Chelliapan, Joseph (CR35) 2024; 138 CR21 Ho, Piampongsant, Gallone, Del Cortona, Peeters, Reijbroek, Verbaet, Herrera, Cortebeeck, Nolmans, Saels, Steensels, Jarosz, Verstrepen (CR16) 2021; 14 Alexandre, Ansanay-Galeote, Dequin, Blondin (CR1) 2001; 498 Molinet, Navarrete, Villarroel, Villarreal, Sandoval, Nespolo, Stelkens, Cubillos (CR25) 2024; 20 Deutschbauer, Davis (CR11) 2005; 37 M Parapouli (2196_CR29) 2020; 6 JM Vanegas (2196_CR46) 2012; 102 Y Li (2196_CR20) 2013; 288 A Dasgupta (2196_CR7) 2017 2196_CR21 K Tanaka (2196_CR44) 1990; 60 2196_CR27 J Peter (2196_CR31) 2018; 556 JI Roop (2196_CR34) 2013; 195 KS Myers (2196_CR26) 2019; 15 H Alexandre (2196_CR1) 2001; 498 L Parts (2196_CR30) 2011; 21 FDSB De Mello (2196_CR10) 2019; 120 L Riles (2196_CR33) 2019; 9 C Casado (2196_CR5) 2011; 438 PK Strope (2196_CR39) 2015; 25 Y Ogawa (2196_CR28) 2000; 90 J Molinet (2196_CR25) 2024; 20 GR Sahana (2196_CR35) 2024; 138 P-W Ho (2196_CR16) 2021; 14 BN Mansfeld (2196_CR23) 2018 J Duitama (2196_CR12) 2014; 15 2196_CR51 M Sunyer-Figueres (2196_CR40) 2021; 10 FA Simão (2196_CR36) 2015; 31 DM Emms (2196_CR13) 2019; 20 M Ma (2196_CR22) 2010; 87 PW Piper (2196_CR32) 1994; 140 CS Varize (2196_CR47) 2022; 8 M Stojiljkovic (2196_CR38) 2020; 13 K Katoh (2196_CR19) 2013; 30 T Matsui (2196_CR24) 2016; 12 K Umebayashi (2196_CR45) 2001; 276 AN Zyrina (2196_CR50) 2017; 83 M Stanke (2196_CR37) 2008; 24 H Takagi (2196_CR42) 2008; 81 Z Wang (2196_CR48) 2019; 12 LC Basso (2196_CR3) 2008; 8 AP Jacobus (2196_CR17) 2021; 65 K Yoshikawa (2196_CR49) 2009; 9 T Hirasawa (2196_CR15) 2007; 131 R Haas (2196_CR14) 2019; 10 H Takagi (2196_CR43) 2013; 74 2196_CR6 2196_CR9 2196_CR8 S Swinnen (2196_CR41) 2012; 22 2196_CR2 AM Deutschbauer (2196_CR11) 2005; 37 C Betz (2196_CR4) 2004; 279 U Jhariya (2196_CR18) 2021; 14 |
References_xml | – volume: 6 start-page: 1 year: 2020 end-page: 31 ident: CR29 article-title: Saccharomyces cerevisiae and its industrial applications publication-title: AIMS Microbiol doi: 10.3934/microbiol.2020001 – volume: 9 start-page: 179 year: 2019 end-page: 188 ident: CR33 article-title: Genetic basis of variation in heat and ethanol tolerance in publication-title: G3 Bethesda Md doi: 10.1534/g3.118.200566 – volume: 12 start-page: 59 year: 2019 ident: CR48 article-title: QTL analysis reveals genomic variants linked to high-temperature fermentation performance in the industrial yeast publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1398-7 – volume: 498 start-page: 98 year: 2001 end-page: 103 ident: CR1 article-title: Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae publication-title: FEBS Lett doi: 10.1016/S0014-5793(01)02503-0 – volume: 15 year: 2019 ident: CR26 article-title: Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008037 – volume: 8 start-page: 1155 year: 2008 end-page: 1163 ident: CR3 article-title: Yeast selection for fuel ethanol production in Brazil publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2008.00428.x – ident: CR51 – start-page: 1 year: 2017 end-page: 21 ident: CR7 article-title: 1—Alcohol a double-edged sword: health benefits with moderate consumption but a health hazard with excess alcohol intake publication-title: Alcohol, drugs, genes and the clinical laboratory – volume: 14 start-page: 211 year: 2021 ident: CR16 article-title: Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae publication-title: Biotechnol Biofuels doi: 10.1186/s13068-021-02059-w – volume: 83 start-page: e02759 year: 2017 end-page: e2816 ident: CR50 article-title: Mitochondrial superoxide dismutase and Yap1p act as a signaling module contributing to ethanol tolerance of the yeast publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02759-16 – volume: 10 start-page: 998 year: 2019 ident: CR14 article-title: Mapping ethanol tolerance in budding yeast reveals high genetic variation in a wild isolate publication-title: Front Genet doi: 10.3389/fgene.2019.00998 – volume: 60 start-page: 803 year: 1990 end-page: 807 ident: CR44 article-title: genes and encode proteins that may be functionally equivalent to mammalian GTPase activating protein publication-title: Cell doi: 10.1016/0092-8674(90)90094-U – ident: CR8 – volume: 9 start-page: 32 year: 2009 end-page: 44 ident: CR49 article-title: Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2008.00456.x – volume: 14 start-page: 670 year: 2021 end-page: 688 ident: CR18 article-title: Understanding ethanol tolerance mechanism in saccharomyces cerevisiae to enhance the bioethanol production: current and future prospects publication-title: BioEnergy Res doi: 10.1007/s12155-020-10228-2 – volume: 90 start-page: 313 year: 2000 end-page: 320 ident: CR28 article-title: Tolerance mechanism of the ethanol-tolerant mutant of sake yeast publication-title: J Biosci Bioeng doi: 10.1016/S1389-1723(00)80087-0 – volume: 13 start-page: 126 year: 2020 ident: CR38 article-title: Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles publication-title: Biotechnol Biofuels doi: 10.1186/s13068-020-01761-5 – ident: CR21 – volume: 131 start-page: 34 year: 2007 end-page: 44 ident: CR15 article-title: Identification of target genes conferring ethanol stress tolerance to based on DNA microarray data analysis publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2007.05.010 – volume: 8 start-page: 470 year: 2022 ident: CR47 article-title: Increasing ethanol tolerance and ethanol production in an industrial fuel ethanol saccharomyces cerevisiae strain publication-title: Fermentation doi: 10.3390/fermentation8100470 – volume: 120 start-page: 49 year: 2019 end-page: 58 ident: CR10 article-title: Static microplate fermentation and automated growth analysis approaches identified a highly-aldehyde resistant Saccharomyces cerevisiae strain publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.10.019 – volume: 65 start-page: 147 year: 2021 end-page: 161 ident: CR17 article-title: Saccharomyces cerevisiae strains used industrially for bioethanol production publication-title: Essays Biochem doi: 10.1042/EBC20200160 – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: CR19 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – volume: 12 year: 2016 ident: CR24 article-title: Gene-environment interactions in stress response contribute additively to a genotype-environment interaction publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006158 – volume: 24 start-page: 637 year: 2008 end-page: 644 ident: CR37 article-title: Using native and syntenically mapped cDNA alignments to improve de novo gene finding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn013 – volume: 37 start-page: 1333 year: 2005 end-page: 1340 ident: CR11 article-title: Quantitative trait loci mapped to single-nucleotide resolution in yeast publication-title: Nat Genet doi: 10.1038/ng1674 – ident: CR9 – volume: 20 year: 2024 ident: CR25 article-title: Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing publication-title: PLoS Genet doi: 10.1371/journal.pgen.1011154 – volume: 21 start-page: 1131 year: 2011 end-page: 1138 ident: CR30 article-title: Revealing the genetic structure of a trait by sequencing a population under selection publication-title: Genome Res doi: 10.1101/gr.116731.110 – volume: 25 start-page: 762 year: 2015 end-page: 774 ident: CR39 article-title: The 100-genomes strains, an resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen publication-title: Genome Res doi: 10.1101/gr.185538.114 – volume: 279 start-page: 28174 year: 2004 end-page: 28181 ident: CR4 article-title: Asr1p, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus* publication-title: J Biol Chem doi: 10.1074/jbc.M401595200 – year: 2018 ident: CR23 article-title: QTLseqr: an R package for bulk segregant analysis with next-generation sequencing publication-title: Plant Genome doi: 10.3835/plantgenome2018.01.0006 – ident: CR2 – volume: 438 start-page: 523 year: 2011 end-page: 533 ident: CR5 article-title: The role of the protein kinase A pathway in the response to alkaline pH stress in yeast publication-title: Biochem J doi: 10.1042/BJ20110607 – volume: 15 start-page: 207 year: 2014 ident: CR12 article-title: Improved linkage analysis of quantitative trait loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast publication-title: BMC Genomics doi: 10.1186/1471-2164-15-207 – volume: 74 start-page: 174 year: 2013 end-page: 183 ident: CR43 article-title: QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations publication-title: Plant J doi: 10.1111/tpj.12105 – volume: 276 start-page: 41444 year: 2001 end-page: 41454 ident: CR45 article-title: Activation of the Ras-cAMP signal transduction pathway inhibits the proteasome-independent degradation of misfolded protein aggregates in the endoplasmic reticulum lumen publication-title: J Biol Chem doi: 10.1074/jbc.M105829200 – volume: 10 start-page: 1735 year: 2021 ident: CR40 article-title: Protective effects of melatonin on under ethanol stress publication-title: Antioxidants doi: 10.3390/antiox10111735 – ident: CR6 – volume: 20 start-page: 238 year: 2019 ident: CR13 article-title: OrthoFinder: phylogenetic orthology inference for comparative genomics publication-title: Genome Biol doi: 10.1186/s13059-019-1832-y – volume: 31 start-page: 3210 year: 2015 end-page: 3212 ident: CR36 article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 – volume: 81 start-page: 211 year: 2008 end-page: 223 ident: CR42 article-title: Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-008-1698-5 – volume: 556 start-page: 339 year: 2018 end-page: 344 ident: CR31 article-title: Genome evolution across 1,011 Saccharomyces cerevisiae isolates publication-title: Nature doi: 10.1038/s41586-018-0030-5 – volume: 140 start-page: 3031 year: 1994 end-page: 3038 ident: CR32 article-title: Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold publication-title: Microbiology doi: 10.1099/13500872-140-11-3031 – ident: CR27 – volume: 138 start-page: 1 year: 2024 end-page: 13 ident: CR35 article-title: A review on ethanol tolerance mechanisms in yeast: current knowledge in biotechnological applications and future directions publication-title: Process Biochem doi: 10.1016/j.procbio.2023.12.024 – volume: 288 start-page: 11358 year: 2013 end-page: 11365 ident: CR20 article-title: Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast* publication-title: J Biol Chem doi: 10.1074/jbc.M112.449751 – volume: 87 start-page: 829 year: 2010 end-page: 845 ident: CR22 article-title: Mechanisms of ethanol tolerance in Saccharomyces cerevisiae publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-010-2594-3 – volume: 22 start-page: 975 year: 2012 end-page: 984 ident: CR41 article-title: Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis publication-title: Genome Res doi: 10.1101/gr.131698.111 – volume: 102 start-page: 507 year: 2012 end-page: 516 ident: CR46 article-title: Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes publication-title: Biophys J doi: 10.1016/j.bpj.2011.12.038 – volume: 195 start-page: 513 year: 2013 end-page: 525 ident: CR34 article-title: Rare variants in hypermutable genes underlie common morphology and growth traits in wild publication-title: Genetics doi: 10.1534/genetics.113.155341 – volume: 65 start-page: 147 year: 2021 ident: 2196_CR17 publication-title: Essays Biochem doi: 10.1042/EBC20200160 – volume: 20 year: 2024 ident: 2196_CR25 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1011154 – volume: 8 start-page: 1155 year: 2008 ident: 2196_CR3 publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2008.00428.x – volume: 87 start-page: 829 year: 2010 ident: 2196_CR22 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-010-2594-3 – volume: 81 start-page: 211 year: 2008 ident: 2196_CR42 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-008-1698-5 – volume: 10 start-page: 998 year: 2019 ident: 2196_CR14 publication-title: Front Genet doi: 10.3389/fgene.2019.00998 – ident: 2196_CR21 doi: 10.1016/j.bjm.2016.10.003 – volume: 131 start-page: 34 year: 2007 ident: 2196_CR15 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2007.05.010 – volume: 21 start-page: 1131 year: 2011 ident: 2196_CR30 publication-title: Genome Res doi: 10.1101/gr.116731.110 – volume: 15 year: 2019 ident: 2196_CR26 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008037 – volume: 279 start-page: 28174 year: 2004 ident: 2196_CR4 publication-title: J Biol Chem doi: 10.1074/jbc.M401595200 – volume: 22 start-page: 975 year: 2012 ident: 2196_CR41 publication-title: Genome Res doi: 10.1101/gr.131698.111 – ident: 2196_CR6 doi: 10.21203/rs.3.rs-827768/v1 – volume: 90 start-page: 313 year: 2000 ident: 2196_CR28 publication-title: J Biosci Bioeng doi: 10.1016/S1389-1723(00)80087-0 – volume: 15 start-page: 207 year: 2014 ident: 2196_CR12 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-207 – volume: 9 start-page: 32 year: 2009 ident: 2196_CR49 publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2008.00456.x – volume: 438 start-page: 523 year: 2011 ident: 2196_CR5 publication-title: Biochem J doi: 10.1042/BJ20110607 – ident: 2196_CR8 doi: 10.1016/j.micres.2022.127138 – start-page: 1 volume-title: Alcohol, drugs, genes and the clinical laboratory year: 2017 ident: 2196_CR7 – volume: 8 start-page: 470 year: 2022 ident: 2196_CR47 publication-title: Fermentation doi: 10.3390/fermentation8100470 – volume: 25 start-page: 762 year: 2015 ident: 2196_CR39 publication-title: Genome Res doi: 10.1101/gr.185538.114 – volume: 60 start-page: 803 year: 1990 ident: 2196_CR44 publication-title: Cell doi: 10.1016/0092-8674(90)90094-U – volume: 9 start-page: 179 year: 2019 ident: 2196_CR33 publication-title: G3 Bethesda Md doi: 10.1534/g3.118.200566 – volume: 276 start-page: 41444 year: 2001 ident: 2196_CR45 publication-title: J Biol Chem doi: 10.1074/jbc.M105829200 – volume: 556 start-page: 339 year: 2018 ident: 2196_CR31 publication-title: Nature doi: 10.1038/s41586-018-0030-5 – volume: 14 start-page: 211 year: 2021 ident: 2196_CR16 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-021-02059-w – volume: 31 start-page: 3210 year: 2015 ident: 2196_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 – volume: 10 start-page: 1735 year: 2021 ident: 2196_CR40 publication-title: Antioxidants doi: 10.3390/antiox10111735 – volume: 102 start-page: 507 year: 2012 ident: 2196_CR46 publication-title: Biophys J doi: 10.1016/j.bpj.2011.12.038 – volume: 120 start-page: 49 year: 2019 ident: 2196_CR10 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.10.019 – volume: 74 start-page: 174 year: 2013 ident: 2196_CR43 publication-title: Plant J doi: 10.1111/tpj.12105 – volume: 6 start-page: 1 year: 2020 ident: 2196_CR29 publication-title: AIMS Microbiol doi: 10.3934/microbiol.2020001 – volume: 24 start-page: 637 year: 2008 ident: 2196_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn013 – volume: 83 start-page: e02759 year: 2017 ident: 2196_CR50 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02759-16 – volume: 498 start-page: 98 year: 2001 ident: 2196_CR1 publication-title: FEBS Lett doi: 10.1016/S0014-5793(01)02503-0 – volume: 288 start-page: 11358 year: 2013 ident: 2196_CR20 publication-title: J Biol Chem doi: 10.1074/jbc.M112.449751 – volume: 14 start-page: 670 year: 2021 ident: 2196_CR18 publication-title: BioEnergy Res doi: 10.1007/s12155-020-10228-2 – volume: 37 start-page: 1333 year: 2005 ident: 2196_CR11 publication-title: Nat Genet doi: 10.1038/ng1674 – ident: 2196_CR27 doi: 10.1128/mra.00071-19 – ident: 2196_CR2 doi: 10.5772/17047 – volume: 195 start-page: 513 year: 2013 ident: 2196_CR34 publication-title: Genetics doi: 10.1534/genetics.113.155341 – ident: 2196_CR9 doi: 10.1186/s43141-022-00359-8 – ident: 2196_CR51 doi: 10.1111/fyr.2009.9.issue-1 10.1111/j.1567-1364.2008.00456.x – year: 2018 ident: 2196_CR23 publication-title: Plant Genome doi: 10.3835/plantgenome2018.01.0006 – volume: 12 year: 2016 ident: 2196_CR24 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006158 – volume: 13 start-page: 126 year: 2020 ident: 2196_CR38 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-020-01761-5 – volume: 12 start-page: 59 year: 2019 ident: 2196_CR48 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1398-7 – volume: 138 start-page: 1 year: 2024 ident: 2196_CR35 publication-title: Process Biochem doi: 10.1016/j.procbio.2023.12.024 – volume: 30 start-page: 772 year: 2013 ident: 2196_CR19 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – volume: 140 start-page: 3031 year: 1994 ident: 2196_CR32 publication-title: Microbiology doi: 10.1099/13500872-140-11-3031 – volume: 20 start-page: 238 year: 2019 ident: 2196_CR13 publication-title: Genome Biol doi: 10.1186/s13059-019-1832-y |
SSID | ssj0017627 |
Score | 2.4115105 |
Snippet | Ethanol stress in
Saccharomyces cerevisiae
is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a... Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 103 |
SubjectTerms | Acetic acid acid tolerance alleles Animal Genetics and Genomics Biochemistry bioethanol Biofuels Biomedical and Life Sciences Chromosome Mapping Drug tolerance economic sustainability Ethanol Ethanol - metabolism Ethanol - pharmacology Fermentation Fermentation - genetics Gene frequency Gene mapping Genetic markers genomics GTPase-Activating Proteins heat tolerance Human Genetics Industrial applications Life Sciences Microbial Genetics and Genomics Missense mutation mutation rate Mutation, Missense Original Article oxygen Plant Genetics and Genomics Population genetics Population studies Quantitative Trait Loci Saccharomyces cerevisiae Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Strains (organisms) stress tolerance sugars Temperature tolerance Yeast yeasts |
Title | Unveiling genetic anchors in Saccharomyces cerevisiae: QTL mapping identifies IRA2 as a key player in ethanol tolerance and beyond |
URI | https://link.springer.com/article/10.1007/s00438-024-02196-5 https://www.ncbi.nlm.nih.gov/pubmed/39461918 https://www.proquest.com/docview/3121057990 https://www.proquest.com/docview/3121065256 https://www.proquest.com/docview/3153843156 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsRAEC1cELyIu-NGC960YUzSWbyN4rgLLgN6Cr3qwJiIGQWvfrnVnUXEBTyEHFJ0mryq1EuqXxfAZlsLEUVcUomhRgMmBIaUNDTUQjHJhOJOt3Z-ER71gpNbdluJwop6tXtdknRv6kbs5opWFHMKHug3lI3COLPf7ujFPa_T1A4wvF1LFczNNMCEXUllfh7jazr6xjG_1Udd2ulOw1TFF0mnBHgGRnQ2CxNlB8m3OXjvZa-6byXlBD3BChIJwviQPxekn5FrLq2qKn98w7cBkW5Jb9Hnepdc3pyRR273ZrgnfVWuGEKT46uOR3hBOMHYJk8DjoTcDqTtD_Z8QIb5QNtOHBrvoohw6pd56HUPbvaPaNVWgUqfJUPqS62MFaEGGH_4vSSRYgWeksaLje9rj5vQxKqthO0ohPymHUWKGSEQyER6GLQLMJblmV4CYmJMgjw2QaLsaHHiRSHfUY5JyUQHLdiqn276VO6ekTb7JDssUsQidVikrAWrNQBpFUlF6tsdzliESbMFG81ljAFb2OCZzl8qm5Ahe_vLBueHbMnaLJbgNlPyE_STZCduwXaN9ucEfp_v8v_MV2DSs57n1sKswtjw-UWvIaMZinUY73T39i7s-fDu9GDdOfQHG8PuoA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-tAEB48ihxfxNvRel3hvOlCTbK5-FZEqVoFPS34FvaqhZpI0wq--sud3VxE1AM-9CnDZuk3k_mSmW8H4G9bCxFFXFKJoUYDJgSGlDQ01EIxyYTiTrd2dR12B8HFHburRGFF3e1elyTdk7oRu7miFcWcgj_0G8p-wRySgdg2cg28TlM7wPB2I1UwN9MAE3Yllfl6jY_p6BPH_FQfdWnnbAkWK75IOiXAyzCjsxWYLydIvqzC6yB71kMrKSfoCVaQSBDGh3xckGFG_nFpVVX54ws-DYh0Lb3FkOtjctPvkUduz2a4J0NVdgyhyfltxyO8IJxgbJOnEUdCbhfS9gN7PiKTfKTtJA6Nd1FEOPXLGgzOTvsnXVqNVaDSZ8mE-lIrY0WoAcYfvi9JpFiBp6TxYuP72uMmNLFqK2EnCiG_aUeRYkYIBDKRHgbtH5jN8kxvADExJkEemyBRdrU48aKQHynHpGSigxYc1P9u-lSenpE25yQ7LFLEInVYpKwF2zUAaRVJRerbE85YhEmzBfvNZYwBW9jgmc6nlU3IkL39zwb3h2zJ2qyX4DZb8hP0k-QobsFhjfb7Br7f7-bPzPfgd7d_1Ut759eXW7DgWS90fTHbMDsZT_UOspuJ2HXO_AaOre6D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RUCsuCFoeoQEWqbeyIrG9fnCLgIhAimibSNysfUKkxI6IQeLKL-_s2nGLKEgccvJovco34_ns2W8G4FtLCxFFXFKJoUYDJgSGlDQ01EIxyYTiTrf24zI8Gwbn1-z6HxW_O-0-L0mWmgbbpSkrDqfKHNbCN1fAophf8Ic-RNkHWMLHcdv69dDr1HUEDHU3XgXzNA0weVeymf-v8Tw1veCbL2qlLgV1V2Gl4o6kU4K9Bgs6-wwfy2mSj1_gaZg96JGVlxP0CitOJAjpbX43I6OM_ObSKqzyySM-GYh0x3tnI66PyM9Bn0y47dNwQ0aqPD2EJr1fHY_wGeEE45xMxxzJuV1I24_t-ZgU-VjbqRwa76KIcEqYdRh2TwfHZ7QasUClz5KC-lIrYwWpAcYivjtJpFuBp6TxYuP72uMmNLFqKWGnCyHXaUWRYkYIBDWRHgbwBixmeaa3gJgYEyKPTZAou1qceFHI28qxKpnooAHf5_9uOi07aaR1z2SHRYpYpA6LlDWgOQcgraJqlvq22xmLMIE2YL--jPFgixw80_l9ZRMyZHJv2eD-kDlZm80S3HpLfoJ-krTjBhzM0f67gdf3u_0-8z34dHXSTfu9y4uvsOxZJ3RHZJqwWNzd6x0kOoXYdb78B2WD8r8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+genetic+anchors+in+Saccharomyces+cerevisiae%3A+QTL+mapping+identifies+IRA2+as+a+key+player+in+ethanol+tolerance+and+beyond&rft.jtitle=Molecular+genetics+and+genomics+%3A+MGG&rft.au=Trist%C3%A3o%2C+Larissa+Escalfi&rft.au=de+Sousa%2C+Lara+Isensee+Saboya&rft.au=de+Oliveira+Vargas%2C+Beatriz&rft.au=Jos%C3%A9%2C+Juliana&rft.date=2024-12-01&rft.issn=1617-4615&rft.volume=299&rft.issue=1+p.103-103&rft.spage=103&rft.epage=103&rft_id=info:doi/10.1007%2Fs00438-024-02196-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4615&client=summon |