Three-dimensional graphene-wrapped porous carbon/sulfur composite for cathode of lithium–sulfur battery

Lithium–sulfur battery with high theoretical capacity becomes the subject of recent attention. Its commercial progress is impeded by its poor electrical conductivity and high dissolubility of intermediate products in organic electrolyte. In the present work, we report a novel three-dimensional graph...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 2; no. 7; p. 1276
Main Authors Wang, Yating, Liu, Bin, Zhang, Wei, Shao, Changhong, Lan, Daoyun, Qu, Xiaofeng, Chen, Rongfeng, Zhang, Weiqing, Zhao, Weimin, Liu, Jun, Zhang, Yinghe, Shi, Zhicong
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur battery with high theoretical capacity becomes the subject of recent attention. Its commercial progress is impeded by its poor electrical conductivity and high dissolubility of intermediate products in organic electrolyte. In the present work, we report a novel three-dimensional graphene-wrapped porous carbon (3D-G) to accommodate sulfur, which consists of outside highly stable interconnected graphene-like sheets and inner activated porous carbon. The 3D-G was synthesized from cheap polyacrylic acid cation-exchange resin, which introduces nickel ions as catalysts in the carbonization process, as a cost effective, facile and simple method. This 3D-G showed hierarchical pores: 0.7 nm micropores and macropores, providing a large specific surface area of 1375.08 m 2  g −1 . Benefiting from this unique structure, the 3D-G performed well as host materials to achieve a high sulfur content (75.4 wt%). Such a 3D-G@S composite exhibits capacity-fading rate as low as 0.28% per cycle over 100 cycles at 0.1 C, and good cyclability at various cycling rates (0.1–1 C).
AbstractList Lithium–sulfur battery with high theoretical capacity becomes the subject of recent attention. Its commercial progress is impeded by its poor electrical conductivity and high dissolubility of intermediate products in organic electrolyte. In the present work, we report a novel three-dimensional graphene-wrapped porous carbon (3D-G) to accommodate sulfur, which consists of outside highly stable interconnected graphene-like sheets and inner activated porous carbon. The 3D-G was synthesized from cheap polyacrylic acid cation-exchange resin, which introduces nickel ions as catalysts in the carbonization process, as a cost effective, facile and simple method. This 3D-G showed hierarchical pores: 0.7 nm micropores and macropores, providing a large specific surface area of 1375.08 m2 g−1. Benefiting from this unique structure, the 3D-G performed well as host materials to achieve a high sulfur content (75.4 wt%). Such a 3D-G@S composite exhibits capacity-fading rate as low as 0.28% per cycle over 100 cycles at 0.1 C, and good cyclability at various cycling rates (0.1–1 C).
Lithium–sulfur battery with high theoretical capacity becomes the subject of recent attention. Its commercial progress is impeded by its poor electrical conductivity and high dissolubility of intermediate products in organic electrolyte. In the present work, we report a novel three-dimensional graphene-wrapped porous carbon (3D-G) to accommodate sulfur, which consists of outside highly stable interconnected graphene-like sheets and inner activated porous carbon. The 3D-G was synthesized from cheap polyacrylic acid cation-exchange resin, which introduces nickel ions as catalysts in the carbonization process, as a cost effective, facile and simple method. This 3D-G showed hierarchical pores: 0.7 nm micropores and macropores, providing a large specific surface area of 1375.08 m 2  g −1 . Benefiting from this unique structure, the 3D-G performed well as host materials to achieve a high sulfur content (75.4 wt%). Such a 3D-G@S composite exhibits capacity-fading rate as low as 0.28% per cycle over 100 cycles at 0.1 C, and good cyclability at various cycling rates (0.1–1 C).
ArticleNumber 1276
Author Shi, Zhicong
Liu, Bin
Chen, Rongfeng
Zhang, Wei
Zhang, Yinghe
Wang, Yating
Shao, Changhong
Zhao, Weimin
Lan, Daoyun
Zhang, Weiqing
Liu, Jun
Qu, Xiaofeng
Author_xml – sequence: 1
  givenname: Yating
  surname: Wang
  fullname: Wang, Yating
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 2
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 3
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 4
  givenname: Changhong
  surname: Shao
  fullname: Shao, Changhong
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 5
  givenname: Daoyun
  surname: Lan
  fullname: Lan, Daoyun
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 6
  givenname: Xiaofeng
  surname: Qu
  fullname: Qu, Xiaofeng
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 7
  givenname: Rongfeng
  surname: Chen
  fullname: Chen, Rongfeng
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 8
  givenname: Weiqing
  surname: Zhang
  fullname: Zhang, Weiqing
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 9
  givenname: Weimin
  surname: Zhao
  fullname: Zhao, Weimin
  organization: College of Chemical Engineering and Safety, Binzhou University
– sequence: 10
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  email: junliu23@gdut.edu.cn
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
– sequence: 11
  givenname: Yinghe
  surname: Zhang
  fullname: Zhang, Yinghe
  email: Caroline.w.2006@gmail.com
  organization: Nanotechnology Department, Helmholtz Association
– sequence: 12
  givenname: Zhicong
  orcidid: 0000-0003-2360-7668
  surname: Shi
  fullname: Shi, Zhicong
  email: zhicong@gdut.edu.cn
  organization: Guangdong Provincial Engineering Technology Research Centre for New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology
BookMark eNp9kM1KAzEQx4NUsNY-gLcFz7H52s3uUYpfUPBSzyG7SdqU7WZNskh78h18Q5_ElIqCoKeZgf9vmPmdg1HnOg3AJUbXGCE-C4ywnEBEEKSII7g_AWOSEwppxfHouy_oGZiGsEEIEV5RVtIxsMu11xoqu9VdsK6Tbbbysl_rTsPX1PRaZb3zbghZI33tulkYWjP4rHHb3gUbdWZcmmRcO6UzZ7LWxrUdth9v71_JWsao_e4CnBrZBj39qhPwfHe7nD_AxdP94_xmARuaVxHSWuaUEcmqukKlNEXR4Lxh2JSGlKomVJm6rGWBa8oKw3GuFM95hfICK1WYgk7A1XFv793LoEMUGzf49FgQhJdlUsUYTil-TDXeheC1EY2NMiYD0UvbCozEQa04qhVJrTioFftE4l9k7-1W-t2_DDkyIWW7lfY_N_0NfQKdopEN
CitedBy_id crossref_primary_10_1039_D4YA00480A
crossref_primary_10_1016_j_matchemphys_2022_127246
crossref_primary_10_3390_nano11020541
crossref_primary_10_1016_j_jpowsour_2024_235322
crossref_primary_10_1039_D3RA01496G
Cites_doi 10.1039/C5CS00410A
10.1002/chem.201500429
10.1021/acsnano.7b03591
10.1039/b925751a
10.1021/am507660y
10.1039/c3ta13541a
10.1149/2.0321912jes
10.1098/rsta.2010.0112
10.1016/j.jpowsour.2013.01.132
10.1002/anie.201107817
10.1063/1.438736
10.1007/s10853-018-2370-9
10.1007/s13369-019-03808-8
10.1016/j.jallcom.2014.09.055
10.1016/j.ssi.2019.04.004
10.1002/adma.201705219
10.1016/j.jpowsour.2014.02.075
10.1002/adma.201800561
10.1016/j.nanoen.2016.10.049
10.1016/j.jechem.2018.12.012
10.1016/j.ensm.2019.04.001
10.1016/j.ssi.2016.10.012
10.1007/s10853-017-1678-1
10.1149/1.1576766
10.1002/aenm.201402263
10.1002/aenm.201502518
10.1021/ja308170k
10.1002/adma.201103392
10.1016/j.jallcom.2016.11.075
10.1016/j.jpowsour.2019.226925
10.1093/nsr/nwu072
10.1021/nn501284q
10.1016/j.jallcom.2017.05.206
10.1002/anie.201205292
10.1149/2.020211jes
10.1021/ja206955k
10.1016/j.nanoen.2013.12.013
10.1021/nn503220h
10.1021/nl2027684
10.1021/nl902515k
10.1016/j.electacta.2019.03.124
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
DOI 10.1007/s42452-020-3070-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
ExternalDocumentID 10_1007_s42452_020_3070_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51604086; 21673051
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Guangdong Science and Technology Department
  grantid: 2016A010104015
  funderid: http://dx.doi.org/10.13039/501100007162
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c359t-3ba5342a49b908af66c15c41f8f28db23dfb8ba61b346f715dd75790561dd6f63
ISSN 2523-3963
IngestDate Wed Aug 13 03:35:26 EDT 2025
Tue Jul 01 04:23:20 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Fri Feb 21 02:29:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Porous carbon
Three-dimensional graphene
Lithium sulfur battery
Polyacrylic acid cation-exchange resin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-3ba5342a49b908af66c15c41f8f28db23dfb8ba61b346f715dd75790561dd6f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2360-7668
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s42452-020-3070-z.pdf
PQID 2788424441
PQPubID 5758472
ParticipantIDs proquest_journals_2788424441
crossref_citationtrail_10_1007_s42452_020_3070_z
crossref_primary_10_1007_s42452_020_3070_z
springer_journals_10_1007_s42452_020_3070_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200700
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Schuster, He, Mandlmeier, Yim, Lee, Bein, Nazar (CR10) 2012; 51
Seh, Sun, Zhang, Cui (CR14) 2016; 45
Li, Yin (CR8) 2015; 7
Xue, Chen, Tan, Ren, Li, Zhang (CR5) 2018; 53
Diao, Xie, Xiong, Hong (CR18) 2013; 235
Zheng, Yang, Cha, Hong, Cui (CR33) 2011; 11
Lu, Chen, Yuan, Du, Wang, Liu, Hou, Zhang, Fang, Qu (CR20) 2019; 166
Kaiser, Ma, Wang, Han, Gao, Fan, Wang, Liu, Dou, Wang (CR36) 2017; 11
Li, Lu, Chen, Amine (CR2) 2018; 30
Walle, Zhang, Zhang, You, Li, Liu (CR25) 2018; 53
Cheng, Huang, Zhang, Peng, Zhao, Wei (CR28) 2014; 4
Han, Song, Lee, Kim, Ahn, Lee (CR30) 2013; 150
Kong, Chen, Li, Peng, Huang, Xie, Zhang (CR7) 2018; 30
Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (CR22) 2012; 134
Kong, Jin, Zhang, Li, Chen, Zhu, Huang, Zhang (CR1) 2019; 39
Zhang, Wu, Yuan, Guo, Lou (CR37) 2012; 51
Ma, Chen (CR26) 2015; 2
Zhang, Guo (CR19) 2019; 44
Wang, Wang (CR21) 2019; 306
Liu, Liu, Wang, Huang, Hu, Ke, Liu, Shi, Guo (CR29) 2017; 718
Diao, Xie, Xiong, Hong (CR17) 2012; 159
Li, Cai, Colombo, Ruoff (CR39) 2019; 9
Kaiser, Han, Wang (CR13) 2019; 437
Zhu, Xu, Zhang, Wang, Li, Wang (CR41) 2017; 695
Li, Jiang, Yuan, Yi, Wu, Liu, Strasser, Huang (CR9) 2014; 8
Ji, Rao, Zheng, Zhang, Li, Duan, Guo, Cairns, Zhang (CR23) 2011; 133
Zhou, Zhao, Manthiram (CR38) 2015; 5
PółrolniczakP, Wasiński, Pietrzak, Walkowiak (CR34) 2016; 297
Cheng, Cai, Wang (CR6) 2019; 337
Eizenberg, Blakely (CR40) 1979; 71
Jia, Nazar (CR3) 2010; 20
Rehman, Gu, Khan, Mahmood, Yang, Huang, Guo, Hou (CR11) 2016; 6
Kaiser, Liang, Konstantinov, Liu, Dou, Wang (CR35) 2015; 21
Xu, Deng, Shi, Qian, Meng, Chen (CR27) 2013; 1
Kaiser, Han, Liang, Dou, Wang (CR4) 2019; 19
Zhang, Zhao, Konarov, Li, Chen (CR32) 2015; 619
Tarascon (CR12) 2010; 368
Wang, Gao, Han, Ma, Zhang, Li, Wang (CR15) 2016; 30
Yang, Zhang, Zhang, Huang, Chen (CR24) 2014; 8
Xiao, Cao, Xiao, Schwenzer, Engelhard, Saraf, Nie, Exarhos, Liu (CR31) 2012; 24
Busche, Adelhelm, Sommer, Schneider, Leitner, Janek (CR16) 2014; 259
M Xue (3070_CR5) 2018; 53
YF Ma (3070_CR26) 2015; 2
XW Wang (3070_CR15) 2016; 30
L Kong (3070_CR1) 2019; 39
XB Cheng (3070_CR28) 2014; 4
H Cheng (3070_CR6) 2019; 337
S Rehman (3070_CR11) 2016; 6
LW Ji (3070_CR23) 2011; 133
H Xu (3070_CR27) 2013; 1
XS Li (3070_CR39) 2019; 9
GM Zhou (3070_CR38) 2015; 5
MR Kaiser (3070_CR4) 2019; 19
J Liu (3070_CR29) 2017; 718
XL Jia (3070_CR3) 2010; 20
M Eizenberg (3070_CR40) 1979; 71
M Li (3070_CR2) 2018; 30
MR Busche (3070_CR16) 2014; 259
SC Han (3070_CR30) 2013; 150
LF Xiao (3070_CR31) 2012; 24
ZQ Li (3070_CR8) 2015; 7
X Yang (3070_CR24) 2014; 8
MR Kaiser (3070_CR36) 2017; 11
GY Zheng (3070_CR33) 2011; 11
Y Diao (3070_CR17) 2012; 159
ZW Seh (3070_CR14) 2016; 45
L Zhang (3070_CR19) 2019; 44
MR Kaiser (3070_CR13) 2019; 437
YG Zhang (3070_CR32) 2015; 619
ZW Wang (3070_CR21) 2019; 306
S Xin (3070_CR22) 2012; 134
Nowicki P PółrolniczakP (3070_CR34) 2016; 297
MR Kaiser (3070_CR35) 2015; 21
H Lu (3070_CR20) 2019; 166
Y Zhu (3070_CR41) 2017; 695
J Schuster (3070_CR10) 2012; 51
JM Tarascon (3070_CR12) 2010; 368
L Kong (3070_CR7) 2018; 30
MD Walle (3070_CR25) 2018; 53
Z Li (3070_CR9) 2014; 8
CF Zhang (3070_CR37) 2012; 51
Y Diao (3070_CR18) 2013; 235
References_xml – volume: 45
  start-page: 5605
  year: 2016
  end-page: 5634
  ident: CR14
  article-title: Designing high-energy lithium–sulfur batteries
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00410A
– volume: 21
  start-page: 10061
  year: 2015
  end-page: 10069
  ident: CR35
  publication-title: Chem Eur J
  doi: 10.1002/chem.201500429
– volume: 11
  start-page: 9048
  issue: 9
  year: 2017
  end-page: 9056
  ident: CR36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03591
– volume: 20
  start-page: 9821
  year: 2010
  end-page: 9826
  ident: CR3
  article-title: Advances in Li–S batteries
  publication-title: J Mater Chem
  doi: 10.1039/b925751a
– volume: 7
  start-page: 4029
  year: 2015
  end-page: 4038
  ident: CR8
  article-title: Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am507660y
– volume: 1
  start-page: 15142
  year: 2013
  end-page: 15149
  ident: CR27
  article-title: Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta13541a
– volume: 166
  start-page: A2453
  year: 2019
  end-page: A2458
  ident: CR20
  article-title: A rational balance design of hybrid electrolyte based on ionic liquid and fluorinated ether in lithium sulfur batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0321912jes
– volume: 368
  start-page: 3227
  year: 2010
  end-page: 3241
  ident: CR12
  article-title: Key challenges in future Li-battery research
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2010.0112
– volume: 235
  start-page: 181
  year: 2013
  end-page: 186
  ident: CR18
  article-title: Shuttle phenomenon-The irreversible oxidation mechanism of sulfur active material in Li–S battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.01.132
– volume: 51
  start-page: 3591
  year: 2012
  end-page: 3595
  ident: CR10
  article-title: Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201107817
– volume: 71
  start-page: 3467
  year: 1979
  end-page: 3477
  ident: CR40
  article-title: Carbon interaction with nickel surfaces: monolayer formation and structural stability
  publication-title: J Chem Phys
  doi: 10.1063/1.438736
– volume: 53
  start-page: 11062
  year: 2018
  end-page: 11077
  ident: CR5
  article-title: Mangosteen peel-derived porous carbon: synthesis and its application in the sulfur cathode for lithium sulfur battery
  publication-title: J Mater Sci
  doi: 10.1007/s10853-018-2370-9
– volume: 44
  start-page: 6217
  year: 2019
  end-page: 6229
  ident: CR19
  article-title: Understanding the reaction mechanism of lithium–sulfur batteries by in situ/operando X-ray absorption spectroscopy
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-03808-8
– volume: 619
  start-page: 298
  year: 2015
  end-page: 302
  ident: CR32
  article-title: Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in Li/S batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.09.055
– volume: 337
  start-page: 12
  year: 2019
  end-page: 18
  ident: CR6
  article-title: Facile and scalable synthesis of micro-mesoporous carbon/magnesium oxide/sulfur composite for lithium–sulfur batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2019.04.004
– volume: 30
  start-page: 1705219
  year: 2018
  ident: CR7
  article-title: A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable lithium–sulfur Batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201705219
– volume: 259
  start-page: 289
  year: 2014
  end-page: 299
  ident: CR16
  article-title: Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.02.075
– volume: 30
  start-page: 1800561
  year: 2018
  ident: CR2
  article-title: 30 years of lithium-ion batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201800561
– volume: 30
  start-page: 700
  year: 2016
  end-page: 708
  ident: CR15
  article-title: Stabilizing high sulfur loading Li–S batteries by chemisorption of polysulfide on three-dimensional current collector
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.049
– volume: 39
  start-page: 17
  year: 2019
  end-page: 22
  ident: CR1
  article-title: Towards full demonstration of high areal loading sulfur cathode in lithium–sulfur batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2018.12.012
– volume: 19
  start-page: 1
  year: 2019
  end-page: 15
  ident: CR4
  publication-title: Energy storage materials
  doi: 10.1016/j.ensm.2019.04.001
– volume: 297
  start-page: 59
  year: 2016
  end-page: 63
  ident: CR34
  article-title: Biomass-derived hierarchical carbon as sulfur cathode stabilizing agent for lithium–sulfur batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.10.012
– volume: 53
  start-page: 2685
  year: 2018
  end-page: 2696
  ident: CR25
  article-title: Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1678-1
– volume: 150
  start-page: A889
  year: 2013
  end-page: A893
  ident: CR30
  article-title: Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1576766
– volume: 5
  start-page: 1402263
  year: 2015
  ident: CR38
  article-title: Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402263
– volume: 6
  start-page: 1502518
  year: 2016
  ident: CR11
  article-title: 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium–sulfur batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201502518
– volume: 134
  start-page: 18510
  year: 2012
  end-page: 18513
  ident: CR22
  article-title: Smaller sulfur molecules promise better lithium–sulfur batteries
  publication-title: J Am Chem Soc
  doi: 10.1021/ja308170k
– volume: 24
  start-page: 1176
  year: 2012
  end-page: 1181
  ident: CR31
  article-title: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life
  publication-title: Adv Mater
  doi: 10.1002/adma.201103392
– volume: 695
  start-page: 2246
  year: 2017
  end-page: 2252
  ident: CR41
  article-title: Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium–sulfur batteries
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.11.075
– volume: 437
  start-page: 226925
  year: 2019
  ident: CR13
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.226925
– volume: 2
  start-page: 40
  year: 2015
  end-page: 53
  ident: CR26
  article-title: Three-dimensional graphene networks: synthesis, properties and applications
  publication-title: Nat Sci Rev
  doi: 10.1093/nsr/nwu072
– volume: 8
  start-page: 5208
  year: 2014
  end-page: 5215
  ident: CR24
  article-title: Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/nn501284q
– volume: 718
  start-page: 373
  year: 2017
  end-page: 378
  ident: CR29
  article-title: Walnut shell-derived activated carbon: synthesis and its application in the sulfur cathode for lithium–sulfur batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.05.206
– volume: 51
  start-page: 9592
  year: 2012
  end-page: 9595
  ident: CR37
  article-title: Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201205292
– volume: 159
  start-page: A1816
  year: 2012
  end-page: A1821
  ident: CR17
  article-title: Insights into Li–S battery cathode capacity fading mechanisms: irreversible oxidation of active mass during cycling
  publication-title: J Electrochem Soc
  doi: 10.1149/2.020211jes
– volume: 133
  start-page: 18522
  year: 2011
  end-page: 18525
  ident: CR23
  article-title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
  publication-title: J Am Chem Soc
  doi: 10.1021/ja206955k
– volume: 4
  start-page: 65
  year: 2014
  end-page: 72
  ident: CR28
  article-title: Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.013
– volume: 8
  start-page: 9295
  year: 2014
  end-page: 9303
  ident: CR9
  article-title: A highly ordered Meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li–S batteries
  publication-title: ACS Nano
  doi: 10.1021/nn503220h
– volume: 11
  start-page: 4462
  year: 2011
  end-page: 4467
  ident: CR33
  article-title: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
  publication-title: Nano Lett
  doi: 10.1021/nl2027684
– volume: 9
  start-page: 4268
  year: 2019
  end-page: 4272
  ident: CR39
  article-title: Evolution of graphene growth on Ni and Cu by carbon isotope labeling
  publication-title: Nano Lett
  doi: 10.1021/nl902515k
– volume: 306
  start-page: 229
  year: 2019
  end-page: 237
  ident: CR21
  article-title: Synergistic suppression of the shuttle effect and absorption of electrolytes using a functional rich amine porous organic polymer/acetylene black-polypropylene separator in Li–S batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.03.124
– volume: 235
  start-page: 181
  year: 2013
  ident: 3070_CR18
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.01.132
– volume: 2
  start-page: 40
  year: 2015
  ident: 3070_CR26
  publication-title: Nat Sci Rev
  doi: 10.1093/nsr/nwu072
– volume: 159
  start-page: A1816
  year: 2012
  ident: 3070_CR17
  publication-title: J Electrochem Soc
  doi: 10.1149/2.020211jes
– volume: 30
  start-page: 1800561
  year: 2018
  ident: 3070_CR2
  publication-title: Adv Mater
  doi: 10.1002/adma.201800561
– volume: 150
  start-page: A889
  year: 2013
  ident: 3070_CR30
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1576766
– volume: 53
  start-page: 2685
  year: 2018
  ident: 3070_CR25
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1678-1
– volume: 11
  start-page: 4462
  year: 2011
  ident: 3070_CR33
  publication-title: Nano Lett
  doi: 10.1021/nl2027684
– volume: 6
  start-page: 1502518
  year: 2016
  ident: 3070_CR11
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201502518
– volume: 8
  start-page: 9295
  year: 2014
  ident: 3070_CR9
  publication-title: ACS Nano
  doi: 10.1021/nn503220h
– volume: 21
  start-page: 10061
  year: 2015
  ident: 3070_CR35
  publication-title: Chem Eur J
  doi: 10.1002/chem.201500429
– volume: 24
  start-page: 1176
  year: 2012
  ident: 3070_CR31
  publication-title: Adv Mater
  doi: 10.1002/adma.201103392
– volume: 166
  start-page: A2453
  year: 2019
  ident: 3070_CR20
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0321912jes
– volume: 718
  start-page: 373
  year: 2017
  ident: 3070_CR29
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.05.206
– volume: 51
  start-page: 9592
  year: 2012
  ident: 3070_CR37
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201205292
– volume: 30
  start-page: 1705219
  year: 2018
  ident: 3070_CR7
  publication-title: Adv Mater
  doi: 10.1002/adma.201705219
– volume: 437
  start-page: 226925
  year: 2019
  ident: 3070_CR13
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.226925
– volume: 297
  start-page: 59
  year: 2016
  ident: 3070_CR34
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.10.012
– volume: 7
  start-page: 4029
  year: 2015
  ident: 3070_CR8
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am507660y
– volume: 11
  start-page: 9048
  issue: 9
  year: 2017
  ident: 3070_CR36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03591
– volume: 368
  start-page: 3227
  year: 2010
  ident: 3070_CR12
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2010.0112
– volume: 8
  start-page: 5208
  year: 2014
  ident: 3070_CR24
  publication-title: ACS Nano
  doi: 10.1021/nn501284q
– volume: 44
  start-page: 6217
  year: 2019
  ident: 3070_CR19
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-03808-8
– volume: 20
  start-page: 9821
  year: 2010
  ident: 3070_CR3
  publication-title: J Mater Chem
  doi: 10.1039/b925751a
– volume: 9
  start-page: 4268
  year: 2019
  ident: 3070_CR39
  publication-title: Nano Lett
  doi: 10.1021/nl902515k
– volume: 259
  start-page: 289
  year: 2014
  ident: 3070_CR16
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.02.075
– volume: 71
  start-page: 3467
  year: 1979
  ident: 3070_CR40
  publication-title: J Chem Phys
  doi: 10.1063/1.438736
– volume: 19
  start-page: 1
  year: 2019
  ident: 3070_CR4
  publication-title: Energy storage materials
  doi: 10.1016/j.ensm.2019.04.001
– volume: 53
  start-page: 11062
  year: 2018
  ident: 3070_CR5
  publication-title: J Mater Sci
  doi: 10.1007/s10853-018-2370-9
– volume: 5
  start-page: 1402263
  year: 2015
  ident: 3070_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402263
– volume: 306
  start-page: 229
  year: 2019
  ident: 3070_CR21
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.03.124
– volume: 1
  start-page: 15142
  year: 2013
  ident: 3070_CR27
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta13541a
– volume: 337
  start-page: 12
  year: 2019
  ident: 3070_CR6
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2019.04.004
– volume: 51
  start-page: 3591
  year: 2012
  ident: 3070_CR10
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201107817
– volume: 39
  start-page: 17
  year: 2019
  ident: 3070_CR1
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2018.12.012
– volume: 133
  start-page: 18522
  year: 2011
  ident: 3070_CR23
  publication-title: J Am Chem Soc
  doi: 10.1021/ja206955k
– volume: 30
  start-page: 700
  year: 2016
  ident: 3070_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.049
– volume: 4
  start-page: 65
  year: 2014
  ident: 3070_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.013
– volume: 45
  start-page: 5605
  year: 2016
  ident: 3070_CR14
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00410A
– volume: 134
  start-page: 18510
  year: 2012
  ident: 3070_CR22
  publication-title: J Am Chem Soc
  doi: 10.1021/ja308170k
– volume: 619
  start-page: 298
  year: 2015
  ident: 3070_CR32
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.09.055
– volume: 695
  start-page: 2246
  year: 2017
  ident: 3070_CR41
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.11.075
SSID ssj0002793483
ssib051670015
Score 2.1548936
Snippet Lithium–sulfur battery with high theoretical capacity becomes the subject of recent attention. Its commercial progress is impeded by its poor electrical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1276
SubjectTerms Activated carbon
Application
Applied and Technical Physics
Batteries
Carbon
Catalysts
Cation exchanging
Cationic polymerization
Characterization
Chemistry/Food Science
Chemistry: Polymer
Earth Sciences
Electrical conductivity
Electrical resistivity
Electrodes
Electrolytes
Energy
Engineering
Environment
Ethanol
Graphene
Graphite
High temperature
Lithium
Lithium sulfur batteries
Materials Science
Nanocomposites: Synthesis
Nickel
Nonaqueous electrolytes
Polyacrylic acid
Potassium
Research Article
Scanning electron microscopy
Sulfur
Three dimensional composites
Zeolite
Title Three-dimensional graphene-wrapped porous carbon/sulfur composite for cathode of lithium–sulfur battery
URI https://link.springer.com/article/10.1007/s42452-020-3070-z
https://www.proquest.com/docview/2788424441
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikKC8qBE5WhiR9JjivYVXlshbS72uUU-RHToKVZtYmQekD8B_4hvwSP46RpF1bAJYpcx408X8YznpnPCD1TnMmYJgKHSo4xFTnHMtUMa5JooYyJdQrFyYdTPjmhb8_Y2WDQz1qqK_lCrX5bV_I_UrVtVq5QJfsPku0GtQ323srXXq2E7fUvZbzIc6yBoL8h1xg5_mmrvvBXe3NhjUlrXkOSqxIL6Yy8ZX1u6oXLJId0rYbyG7hbS-12D6xVPivqL20OBPH9paPh3AgBH01HwpuwfhntzPNTvwn9UVTtygg5P0Xt0FR0eOx2q0_zotvqmYnS5wHMP81K_7jfl7BOaJvDurkvCUnXEArp6mZAtUXW_cUk9aot77c1B7K0ujnqQTDu6dkwak6NubQANDkfS4jnRhjeCnQaXq1XuzbCP9k7yj68Psjev5m-u4auR9bLgAMwDr_tt-qIhVDC5K2lzy5GmxLqiF2792_j5FCMuf2fm5bO2n3Zirg7Q-b4NrrlPZBgr4HTHTTI53fRzR4v5T1UXAJWsA2soAFW0ADrZQOToINVYGEVeFgFpQk8rH5-_-F7ekDdRycH-8evJtifyYEVYWmFiRSM0EjQVKbjRBjOVcgUDU1iokTLiGgjEyl4KAnlJg6Z1jEDEjgeas0NJw_Qzryc5w9RwIwyuXV34dhQmpOxTFOdAtmScY4rH6JxO3-Z8oT1cG7KedZRbbspz-yUZzDl2WqInnePXDRsLVd13m2FkvmPeplFcZJA7ScNh2jUCmr98x8He3T1YI_RjfU3sot2qkWdP7HWbCWfOsz9AtgHn8Y
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+graphene-wrapped+porous+carbon%2Fsulfur+composite+for+cathode+of+lithium%E2%80%93sulfur+battery&rft.jtitle=SN+applied+sciences&rft.au=Wang%2C+Yating&rft.au=Liu%2C+Bin&rft.au=Zhang%2C+Wei&rft.au=Shao%2C+Changhong&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=7&rft.spage=1276&rft_id=info:doi/10.1007%2Fs42452-020-3070-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon