AEnet: Automatic Picking of P-Wave First Arrivals Using Deep Learning

First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes. Because of massive monitoring data, the automatic arrival time picking technique is particularly desired. Inspired by recent successful appl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 59; no. 6; pp. 5293 - 5303
Main Authors Guo, Chao, Zhu, Tieyuan, Gao, Yongtao, Wu, Shunchuan, Sun, Jian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2020.3010541

Cover

Abstract First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes. Because of massive monitoring data, the automatic arrival time picking technique is particularly desired. Inspired by recent successful applications of machine learning (ML) in earthquake phase identification, we propose a deep learning (DL)-based P-wave first arrival time picking method named AE Network (AEnet) for laboratory AE monitoring data. Our approach consists of two steps: classification and picking. The convolutional neural network (CNN) is used to classify each sample point of acoustic waveforms into either noise or signal. Different from prior DL-based phase picking studies using raw waveforms, we combine the waveform and high-order statistics as the input to enrich the input data features and accelerate the CNN model learning process. Our approach is examined using the laboratory AE monitoring data and the performance of each component of AEnet is also analyzed. The results show that the CNN model can classify the sample points accurately for the picking procedure. With this classification result, we pick the first arrival time of each trace using the curve fitting method and an unsupervised clustering algorithm. To evaluate the performance of AEnet, we apply Akaike Information Criterion-Short Term Averaging/Long Term Averaging Method (AIC-STA/LTA), one of the most popular and traditional picking methods, on the same waveforms and use the manual picks as the reference. Error analysis results show that AEnet outperforms AIC-STA/LTA.
AbstractList First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes. Because of massive monitoring data, the automatic arrival time picking technique is particularly desired. Inspired by recent successful applications of machine learning (ML) in earthquake phase identification, we propose a deep learning (DL)-based P-wave first arrival time picking method named AE Network (AEnet) for laboratory AE monitoring data. Our approach consists of two steps: classification and picking. The convolutional neural network (CNN) is used to classify each sample point of acoustic waveforms into either noise or signal. Different from prior DL-based phase picking studies using raw waveforms, we combine the waveform and high-order statistics as the input to enrich the input data features and accelerate the CNN model learning process. Our approach is examined using the laboratory AE monitoring data and the performance of each component of AEnet is also analyzed. The results show that the CNN model can classify the sample points accurately for the picking procedure. With this classification result, we pick the first arrival time of each trace using the curve fitting method and an unsupervised clustering algorithm. To evaluate the performance of AEnet, we apply Akaike Information Criterion-Short Term Averaging/Long Term Averaging Method (AIC-STA/LTA), one of the most popular and traditional picking methods, on the same waveforms and use the manual picks as the reference. Error analysis results show that AEnet outperforms AIC-STA/LTA.
Author Guo, Chao
Zhu, Tieyuan
Gao, Yongtao
Wu, Shunchuan
Sun, Jian
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0003-3264-8947
  surname: Guo
  fullname: Guo, Chao
  email: guochao@xs.ustb.edu.cn
  organization: School of Civil and Mineral Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Tieyuan
  orcidid: 0000-0003-3172-8240
  surname: Zhu
  fullname: Zhu, Tieyuan
  email: tyzhu@psu.edu
  organization: Department of Geoscience, Pennsylvania State University, University Park, PA, USA
– sequence: 3
  givenname: Yongtao
  surname: Gao
  fullname: Gao, Yongtao
  email: gyt1962@163.com
  organization: School of Civil and Mineral Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Shunchuan
  orcidid: 0000-0001-6369-4896
  surname: Wu
  fullname: Wu, Shunchuan
  email: wushunchuan@kmust.edu.cn
  organization: School of Land Resource Engineering, Kunming University of Science and Technology, Kunming, China
– sequence: 5
  givenname: Jian
  orcidid: 0000-0001-6530-9007
  surname: Sun
  fullname: Sun, Jian
  email: jbs6371@psu.edu
  organization: Department of Geoscience, Pennsylvania State University, University Park, PA, USA
BookMark eNp9kEFLAzEQhYNUsK3-APES8Lw1s9nsJt6W2lahYNGKx5DuJpLa7tYkLfjvzdLiwYOnYZj3zcx7A9Rr2kYjdA1kBEDE3XL28jpKSUpGlABhGZyhPjDGE5JnWQ_1CYg8SblIL9DA-zUhkDEo-mhSThod7nG5D-1WBVvhha0-bfOBW4MXybs6aDy1zgdcOmcPauPxm-_GD1rv8Fwr18TuEp2bONJXpzpEy-lkOX5M5s-zp3E5TyrKREioMtxQYnKTQVXTmnPNmeF6lan4Ma-zYkULla9qxguRCwEm5QXkBc2IrkHTIbo9rt259muvfZDrdu-aeFGmLPoGJnIWVcVRVbnWe6eNrGyI1tomOGU3EojsIpNdZLKLTJ4iiyT8IXfObpX7_pe5OTJWa_2rF8CoAE5_ANZzdvw
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TIM_2022_3165276
crossref_primary_10_1109_TGRS_2024_3466903
crossref_primary_10_1109_TGRS_2024_3436817
crossref_primary_10_1007_s00024_024_03537_6
crossref_primary_10_3390_app12136470
crossref_primary_10_1109_TGRS_2022_3230411
crossref_primary_10_1785_0220200188
crossref_primary_10_1109_TGRS_2024_3400977
crossref_primary_10_1109_TUFFC_2022_3232174
crossref_primary_10_1016_j_jgsce_2024_205222
crossref_primary_10_1784_insi_2023_65_6_327
crossref_primary_10_1093_gji_ggad410
crossref_primary_10_18303_2619_1563_2021_2_13
crossref_primary_10_1080_08123985_2022_2086798
crossref_primary_10_1093_gji_ggae420
crossref_primary_10_1007_s11600_024_01385_5
crossref_primary_10_1016_j_tafmec_2023_103804
crossref_primary_10_1016_j_geoen_2024_213230
crossref_primary_10_1190_geo2022_0712_1
crossref_primary_10_3233_JIFS_220246
crossref_primary_10_3390_pr10122505
crossref_primary_10_1109_TGRS_2023_3298431
crossref_primary_10_1016_j_tafmec_2022_103391
crossref_primary_10_1190_geo2023_0065_1
crossref_primary_10_1016_j_jrmge_2023_07_003
crossref_primary_10_1177_14759217231223078
crossref_primary_10_1109_TGRS_2023_3280364
crossref_primary_10_3390_math12010130
crossref_primary_10_1190_geo2023_0110_1
crossref_primary_10_1109_LSP_2025_3542700
crossref_primary_10_1109_TGRS_2022_3206283
crossref_primary_10_1016_j_ymssp_2024_111442
crossref_primary_10_1109_TGRS_2021_3121032
crossref_primary_10_1109_TGRS_2024_3439685
crossref_primary_10_1016_j_engfailanal_2024_109191
crossref_primary_10_1016_j_engfailanal_2024_108035
crossref_primary_10_3390_s23208420
crossref_primary_10_1007_s10489_021_02285_7
crossref_primary_10_3390_buildings14051331
crossref_primary_10_1016_j_ymssp_2022_108867
crossref_primary_10_1109_TCI_2022_3225670
crossref_primary_10_1016_j_soildyn_2022_107560
crossref_primary_10_3389_feart_2022_986470
crossref_primary_10_1016_j_tafmec_2024_104550
crossref_primary_10_3390_s24051682
crossref_primary_10_1109_TGRS_2025_3533741
crossref_primary_10_1109_TGRS_2024_3476329
crossref_primary_10_1007_s00603_024_04296_5
crossref_primary_10_1016_j_measurement_2024_115381
crossref_primary_10_3389_feart_2023_1052431
crossref_primary_10_1016_j_tust_2022_104791
crossref_primary_10_1109_TGRS_2024_3462935
crossref_primary_10_1109_TGRS_2022_3196409
crossref_primary_10_1007_s10712_022_09702_7
crossref_primary_10_1016_j_cageo_2024_105844
crossref_primary_10_1007_s13202_024_01805_8
crossref_primary_10_1109_LGRS_2021_3107477
crossref_primary_10_3390_rs17020232
crossref_primary_10_3390_sym13050790
crossref_primary_10_3390_pr12061135
crossref_primary_10_3390_s23239421
crossref_primary_10_1109_ACCESS_2023_3317084
crossref_primary_10_1016_j_resourpol_2022_103212
Cites_doi 10.1111/1365-2478.12125
10.1007/978-3-319-99247-1_24
10.1093/gji/ggx487
10.1016/S0031-9201(99)00007-2
10.1785/0120020241
10.1016/S0034-4257(97)00083-7
10.15446/esrj.v18n2.35887
10.1007/s12594-010-0042-8
10.1029/2018GL077870
10.1029/2017JB015251
10.21437/Interspeech.2018-1898
10.1785/0120180080
10.1093/gji/ggy423
10.1109/LGRS.2004.828915
10.1190/geo2014-0500.1
10.1126/sciadv.1700578
10.1109/TGRS.2018.2852302
10.1109/ICCV.2017.74
10.1016/j.jcmg.2018.01.020
10.1109/LGRS.2017.2785834
10.1016/S0377-2217(96)00385-2
10.1007/s10950-006-2296-6
10.1090/qam/139498
10.1785/BSSA07206B0225
10.1109/TGRS.2002.800438
10.1785/BSSA0680051521
10.1785/BSSA0770041437
10.1029/2019JB017536
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3010541
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 5303
ExternalDocumentID 10_1109_TGRS_2020_3010541
9153918
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: Program for Innovative Research Team (in Science and Technology), University of Yunnan Province
– fundername: ICDS, Pennsylvania State University through an ICDS Seed Grant
  funderid: 10.13039/100008321
– fundername: National Natural Science Foundation of China
  grantid: 51774020; 51934003
  funderid: 10.13039/501100001809
– fundername: Program for Yunnan Thousand Talents Plan High-Level Innovation and Entrepreneurship Team
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-3af8f30f6f41cd3d88e85f8eb4a5418d47b37a6bd58796991f287167340ed1e3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:07:29 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Tue Jul 01 01:34:21 EDT 2025
Wed Aug 27 02:51:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3af8f30f6f41cd3d88e85f8eb4a5418d47b37a6bd58796991f287167340ed1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6369-4896
0000-0003-3264-8947
0000-0003-3172-8240
0000-0001-6530-9007
PQID 2530115965
PQPubID 85465
PageCount 11
ParticipantIDs proquest_journals_2530115965
crossref_citationtrail_10_1109_TGRS_2020_3010541
crossref_primary_10_1109_TGRS_2020_3010541
ieee_primary_9153918
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
olsen (ref31) 2008
ref15
ref30
ref11
ref32
ref10
allen (ref2) 1982; 72
krizhevsky (ref14) 2012
ref17
ref16
ref19
baer (ref6) 1987; 77
ref18
teh (ref27) 2001
allen (ref1) 1978; 68
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref8
ref7
ref9
ref4
ref3
ref5
ester (ref29) 0; 96
References_xml – ident: ref11
  doi: 10.1111/1365-2478.12125
– ident: ref22
  doi: 10.1007/978-3-319-99247-1_24
– ident: ref17
  doi: 10.1093/gji/ggx487
– ident: ref7
  doi: 10.1016/S0031-9201(99)00007-2
– ident: ref8
  doi: 10.1785/0120020241
– ident: ref30
  doi: 10.1016/S0034-4257(97)00083-7
– ident: ref9
  doi: 10.15446/esrj.v18n2.35887
– ident: ref13
  doi: 10.1007/s12594-010-0042-8
– ident: ref26
  doi: 10.1029/2018GL077870
– ident: ref19
  doi: 10.1029/2017JB015251
– ident: ref15
  doi: 10.21437/Interspeech.2018-1898
– ident: ref21
  doi: 10.1785/0120180080
– ident: ref23
  doi: 10.1093/gji/ggy423
– volume: 96
  start-page: 226
  year: 0
  ident: ref29
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc KDD
– ident: ref5
  doi: 10.1109/LGRS.2004.828915
– ident: ref12
  doi: 10.1190/geo2014-0500.1
– ident: ref25
  doi: 10.1126/sciadv.1700578
– ident: ref20
  doi: 10.1109/TGRS.2018.2852302
– year: 2008
  ident: ref31
  publication-title: Advanced Data Mining Techniques
– ident: ref32
  doi: 10.1109/ICCV.2017.74
– start-page: 1097
  year: 2012
  ident: ref14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1016/j.jcmg.2018.01.020
– ident: ref18
  doi: 10.1109/LGRS.2017.2785834
– ident: ref28
  doi: 10.1016/S0377-2217(96)00385-2
– ident: ref10
  doi: 10.1007/s10950-006-2296-6
– ident: ref3
  doi: 10.1090/qam/139498
– start-page: 908
  year: 2001
  ident: ref27
  article-title: Rate-coded restricted Boltzmann machines for face recognition
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 72
  start-page: 225s
  year: 1982
  ident: ref2
  article-title: Automatic phase pickers: Their present use and future prospects
  publication-title: Bull Seismol Soc Amer
  doi: 10.1785/BSSA07206B0225
– ident: ref4
  doi: 10.1109/TGRS.2002.800438
– volume: 68
  start-page: 1521
  year: 1978
  ident: ref1
  article-title: Automatic earthquake recognition and timing from single traces
  publication-title: Bull Seismol Soc Amer
  doi: 10.1785/BSSA0680051521
– volume: 77
  start-page: 1437
  year: 1987
  ident: ref6
  article-title: An automatic phase picker for local and teleseismic events
  publication-title: Bull Seismol Soc Amer
  doi: 10.1785/BSSA0770041437
– ident: ref24
  doi: 10.1029/2019JB017536
SSID ssj0014517
Score 2.5934312
Snippet First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5293
SubjectTerms Acoustic emission
Acoustic noise
Acoustics
Algorithms
Artificial neural networks
Classification
Clustering
Convolutional neural network (CNN)
Curve fitting
Data
Data models
Data preprocessing
Deep learning
deep learning (DL)
Earthquakes
Emission analysis
Error analysis
Feature extraction
Laboratories
Learning algorithms
Machine learning
Microseisms
Monitoring
Neural networks
P waves
P-wave first arrival time picking
Performance evaluation
Picking
Seismic activity
Statistical analysis
Statistical methods
Waveforms
Title AEnet: Automatic Picking of P-Wave First Arrivals Using Deep Learning
URI https://ieeexplore.ieee.org/document/9153918
https://www.proquest.com/docview/2530115965
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTxQxFH8BEhI9iIDGVTQ9eDJ2mU7bmZbbBnYhJBgCa-Q26bSvZqPZJewsB_562253I2iMtzm0k-a9177v3wP4WFnmC14ayjVyKoLzRVvHFPWFR9Y6ZaSNjcIXX6qzr-L8Rt5swOd1LwwipuIz7MfPlMt3M7uIobJDHa6nZmoTNoOYLXu11hkDIVluja5ocCLKnMFkhT4cn15dB0-wDA5qnAcp2CMdlIaq_PESJ_Uy2oGL1cGWVSU_-ouu7duHJ5iN_3vyl_Ai25lksBSMXdjA6R48_w19cA-2U_Wnne_DcDCcYndEBotuliBcyeXExhg6mXlySb-ZeySjSbATw__uJkE25ySVGpATxFuSIVq_v4LxaDg-PqN5vgK1XOqOcuOV54WvvGDWcacUKukVtsIEIikn6pbXpmqdVLWugiHpk3tVc1GgY8hfw9Z0NsU3QGquCyPqoO61FagrI1pZGxt7ETmvS9eDYkXwxmbs8TgC42eTfJBCN5FHTeRRk3nUg0_rLbdL4I1_Ld6PNF8vzOTuwcGKq02-mvOmlPFNk7qSb_--6x08K2PhSgq1HMBWd7fA98Hy6NoPSeR-AYTu0XA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIkQ58GiLCBTwgRPC6Xpt79rcIkgI0FQVBNHbymuPUVSUVM2GA78e23EiXkLc9mCvrJmx5_0NwLPKMl_w0lCukVMRnC_aOqaoLzyy1ikjbWwUnpxW40_i3bk834EX214YREzFZ9iPnymX7xZ2FUNlxzpcT83UNbge9L6Q626tbc5ASJaboysa3Igy5zBZoY-nbz58DL5gGVzUOBFSsF-0UBqr8sdbnBTM6A5MNkdb15Vc9Fdd27fff0Nt_N-z34Xb2dIkg7Vo3IMdnO_DrZ_wB_fhRqr_tMsDGA6Gc-xeksGqWyQQV3I2szGKThaenNHP5huS0SxYiuF_V7MgnUuSig3Ia8RLkkFavxzCdDScvhrTPGGBWi51R7nxyvPCV14w67hTCpX0ClthApGUE3XLa1O1TqpaV8GU9MnBqrko0DHk92F3vpjjAyA114URdVD42grUlRGtrI2N3Yic16XrQbEheGMz-ngcgvG1SV5IoZvIoybyqMk86sHz7ZbLNfTGvxYfRJpvF2Zy9-Bow9UmX85lU8r4qkldyYd_3_UUbo6nk5Pm5O3p-0ewV8YylhR4OYLd7mqFj4Md0rVPkvj9AKu_1L0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEnet%3A+Automatic+Picking+of+P-Wave+First+Arrivals+Using+Deep+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Guo%2C+Chao&rft.au=Zhu%2C+Tieyuan&rft.au=Gao%2C+Yongtao&rft.au=Wu%2C+Shunchuan&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=59&rft.issue=6&rft.spage=5293&rft.epage=5303&rft_id=info:doi/10.1109%2FTGRS.2020.3010541&rft.externalDocID=9153918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon