AEnet: Automatic Picking of P-Wave First Arrivals Using Deep Learning
First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes. Because of massive monitoring data, the automatic arrival time picking technique is particularly desired. Inspired by recent successful appl...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 59; no. 6; pp. 5293 - 5303 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2020.3010541 |
Cover
Abstract | First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes. Because of massive monitoring data, the automatic arrival time picking technique is particularly desired. Inspired by recent successful applications of machine learning (ML) in earthquake phase identification, we propose a deep learning (DL)-based P-wave first arrival time picking method named AE Network (AEnet) for laboratory AE monitoring data. Our approach consists of two steps: classification and picking. The convolutional neural network (CNN) is used to classify each sample point of acoustic waveforms into either noise or signal. Different from prior DL-based phase picking studies using raw waveforms, we combine the waveform and high-order statistics as the input to enrich the input data features and accelerate the CNN model learning process. Our approach is examined using the laboratory AE monitoring data and the performance of each component of AEnet is also analyzed. The results show that the CNN model can classify the sample points accurately for the picking procedure. With this classification result, we pick the first arrival time of each trace using the curve fitting method and an unsupervised clustering algorithm. To evaluate the performance of AEnet, we apply Akaike Information Criterion-Short Term Averaging/Long Term Averaging Method (AIC-STA/LTA), one of the most popular and traditional picking methods, on the same waveforms and use the manual picks as the reference. Error analysis results show that AEnet outperforms AIC-STA/LTA. |
---|---|
AbstractList | First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes. Because of massive monitoring data, the automatic arrival time picking technique is particularly desired. Inspired by recent successful applications of machine learning (ML) in earthquake phase identification, we propose a deep learning (DL)-based P-wave first arrival time picking method named AE Network (AEnet) for laboratory AE monitoring data. Our approach consists of two steps: classification and picking. The convolutional neural network (CNN) is used to classify each sample point of acoustic waveforms into either noise or signal. Different from prior DL-based phase picking studies using raw waveforms, we combine the waveform and high-order statistics as the input to enrich the input data features and accelerate the CNN model learning process. Our approach is examined using the laboratory AE monitoring data and the performance of each component of AEnet is also analyzed. The results show that the CNN model can classify the sample points accurately for the picking procedure. With this classification result, we pick the first arrival time of each trace using the curve fitting method and an unsupervised clustering algorithm. To evaluate the performance of AEnet, we apply Akaike Information Criterion-Short Term Averaging/Long Term Averaging Method (AIC-STA/LTA), one of the most popular and traditional picking methods, on the same waveforms and use the manual picks as the reference. Error analysis results show that AEnet outperforms AIC-STA/LTA. |
Author | Guo, Chao Zhu, Tieyuan Gao, Yongtao Wu, Shunchuan Sun, Jian |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0003-3264-8947 surname: Guo fullname: Guo, Chao email: guochao@xs.ustb.edu.cn organization: School of Civil and Mineral Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Tieyuan orcidid: 0000-0003-3172-8240 surname: Zhu fullname: Zhu, Tieyuan email: tyzhu@psu.edu organization: Department of Geoscience, Pennsylvania State University, University Park, PA, USA – sequence: 3 givenname: Yongtao surname: Gao fullname: Gao, Yongtao email: gyt1962@163.com organization: School of Civil and Mineral Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Shunchuan orcidid: 0000-0001-6369-4896 surname: Wu fullname: Wu, Shunchuan email: wushunchuan@kmust.edu.cn organization: School of Land Resource Engineering, Kunming University of Science and Technology, Kunming, China – sequence: 5 givenname: Jian orcidid: 0000-0001-6530-9007 surname: Sun fullname: Sun, Jian email: jbs6371@psu.edu organization: Department of Geoscience, Pennsylvania State University, University Park, PA, USA |
BookMark | eNp9kEFLAzEQhYNUsK3-APES8Lw1s9nsJt6W2lahYNGKx5DuJpLa7tYkLfjvzdLiwYOnYZj3zcx7A9Rr2kYjdA1kBEDE3XL28jpKSUpGlABhGZyhPjDGE5JnWQ_1CYg8SblIL9DA-zUhkDEo-mhSThod7nG5D-1WBVvhha0-bfOBW4MXybs6aDy1zgdcOmcPauPxm-_GD1rv8Fwr18TuEp2bONJXpzpEy-lkOX5M5s-zp3E5TyrKREioMtxQYnKTQVXTmnPNmeF6lan4Ma-zYkULla9qxguRCwEm5QXkBc2IrkHTIbo9rt259muvfZDrdu-aeFGmLPoGJnIWVcVRVbnWe6eNrGyI1tomOGU3EojsIpNdZLKLTJ4iiyT8IXfObpX7_pe5OTJWa_2rF8CoAE5_ANZzdvw |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TIM_2022_3165276 crossref_primary_10_1109_TGRS_2024_3466903 crossref_primary_10_1109_TGRS_2024_3436817 crossref_primary_10_1007_s00024_024_03537_6 crossref_primary_10_3390_app12136470 crossref_primary_10_1109_TGRS_2022_3230411 crossref_primary_10_1785_0220200188 crossref_primary_10_1109_TGRS_2024_3400977 crossref_primary_10_1109_TUFFC_2022_3232174 crossref_primary_10_1016_j_jgsce_2024_205222 crossref_primary_10_1784_insi_2023_65_6_327 crossref_primary_10_1093_gji_ggad410 crossref_primary_10_18303_2619_1563_2021_2_13 crossref_primary_10_1080_08123985_2022_2086798 crossref_primary_10_1093_gji_ggae420 crossref_primary_10_1007_s11600_024_01385_5 crossref_primary_10_1016_j_tafmec_2023_103804 crossref_primary_10_1016_j_geoen_2024_213230 crossref_primary_10_1190_geo2022_0712_1 crossref_primary_10_3233_JIFS_220246 crossref_primary_10_3390_pr10122505 crossref_primary_10_1109_TGRS_2023_3298431 crossref_primary_10_1016_j_tafmec_2022_103391 crossref_primary_10_1190_geo2023_0065_1 crossref_primary_10_1016_j_jrmge_2023_07_003 crossref_primary_10_1177_14759217231223078 crossref_primary_10_1109_TGRS_2023_3280364 crossref_primary_10_3390_math12010130 crossref_primary_10_1190_geo2023_0110_1 crossref_primary_10_1109_LSP_2025_3542700 crossref_primary_10_1109_TGRS_2022_3206283 crossref_primary_10_1016_j_ymssp_2024_111442 crossref_primary_10_1109_TGRS_2021_3121032 crossref_primary_10_1109_TGRS_2024_3439685 crossref_primary_10_1016_j_engfailanal_2024_109191 crossref_primary_10_1016_j_engfailanal_2024_108035 crossref_primary_10_3390_s23208420 crossref_primary_10_1007_s10489_021_02285_7 crossref_primary_10_3390_buildings14051331 crossref_primary_10_1016_j_ymssp_2022_108867 crossref_primary_10_1109_TCI_2022_3225670 crossref_primary_10_1016_j_soildyn_2022_107560 crossref_primary_10_3389_feart_2022_986470 crossref_primary_10_1016_j_tafmec_2024_104550 crossref_primary_10_3390_s24051682 crossref_primary_10_1109_TGRS_2025_3533741 crossref_primary_10_1109_TGRS_2024_3476329 crossref_primary_10_1007_s00603_024_04296_5 crossref_primary_10_1016_j_measurement_2024_115381 crossref_primary_10_3389_feart_2023_1052431 crossref_primary_10_1016_j_tust_2022_104791 crossref_primary_10_1109_TGRS_2024_3462935 crossref_primary_10_1109_TGRS_2022_3196409 crossref_primary_10_1007_s10712_022_09702_7 crossref_primary_10_1016_j_cageo_2024_105844 crossref_primary_10_1007_s13202_024_01805_8 crossref_primary_10_1109_LGRS_2021_3107477 crossref_primary_10_3390_rs17020232 crossref_primary_10_3390_sym13050790 crossref_primary_10_3390_pr12061135 crossref_primary_10_3390_s23239421 crossref_primary_10_1109_ACCESS_2023_3317084 crossref_primary_10_1016_j_resourpol_2022_103212 |
Cites_doi | 10.1111/1365-2478.12125 10.1007/978-3-319-99247-1_24 10.1093/gji/ggx487 10.1016/S0031-9201(99)00007-2 10.1785/0120020241 10.1016/S0034-4257(97)00083-7 10.15446/esrj.v18n2.35887 10.1007/s12594-010-0042-8 10.1029/2018GL077870 10.1029/2017JB015251 10.21437/Interspeech.2018-1898 10.1785/0120180080 10.1093/gji/ggy423 10.1109/LGRS.2004.828915 10.1190/geo2014-0500.1 10.1126/sciadv.1700578 10.1109/TGRS.2018.2852302 10.1109/ICCV.2017.74 10.1016/j.jcmg.2018.01.020 10.1109/LGRS.2017.2785834 10.1016/S0377-2217(96)00385-2 10.1007/s10950-006-2296-6 10.1090/qam/139498 10.1785/BSSA07206B0225 10.1109/TGRS.2002.800438 10.1785/BSSA0680051521 10.1785/BSSA0770041437 10.1029/2019JB017536 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2020.3010541 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 5303 |
ExternalDocumentID | 10_1109_TGRS_2020_3010541 9153918 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: Program for Innovative Research Team (in Science and Technology), University of Yunnan Province – fundername: ICDS, Pennsylvania State University through an ICDS Seed Grant funderid: 10.13039/100008321 – fundername: National Natural Science Foundation of China grantid: 51774020; 51934003 funderid: 10.13039/501100001809 – fundername: Program for Yunnan Thousand Talents Plan High-Level Innovation and Entrepreneurship Team |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c359t-3af8f30f6f41cd3d88e85f8eb4a5418d47b37a6bd58796991f287167340ed1e3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 10:07:29 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Tue Jul 01 01:34:21 EDT 2025 Wed Aug 27 02:51:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-3af8f30f6f41cd3d88e85f8eb4a5418d47b37a6bd58796991f287167340ed1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6369-4896 0000-0003-3264-8947 0000-0003-3172-8240 0000-0001-6530-9007 |
PQID | 2530115965 |
PQPubID | 85465 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2530115965 crossref_citationtrail_10_1109_TGRS_2020_3010541 crossref_primary_10_1109_TGRS_2020_3010541 ieee_primary_9153918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 olsen (ref31) 2008 ref15 ref30 ref11 ref32 ref10 allen (ref2) 1982; 72 krizhevsky (ref14) 2012 ref17 ref16 ref19 baer (ref6) 1987; 77 ref18 teh (ref27) 2001 allen (ref1) 1978; 68 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref8 ref7 ref9 ref4 ref3 ref5 ester (ref29) 0; 96 |
References_xml | – ident: ref11 doi: 10.1111/1365-2478.12125 – ident: ref22 doi: 10.1007/978-3-319-99247-1_24 – ident: ref17 doi: 10.1093/gji/ggx487 – ident: ref7 doi: 10.1016/S0031-9201(99)00007-2 – ident: ref8 doi: 10.1785/0120020241 – ident: ref30 doi: 10.1016/S0034-4257(97)00083-7 – ident: ref9 doi: 10.15446/esrj.v18n2.35887 – ident: ref13 doi: 10.1007/s12594-010-0042-8 – ident: ref26 doi: 10.1029/2018GL077870 – ident: ref19 doi: 10.1029/2017JB015251 – ident: ref15 doi: 10.21437/Interspeech.2018-1898 – ident: ref21 doi: 10.1785/0120180080 – ident: ref23 doi: 10.1093/gji/ggy423 – volume: 96 start-page: 226 year: 0 ident: ref29 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc KDD – ident: ref5 doi: 10.1109/LGRS.2004.828915 – ident: ref12 doi: 10.1190/geo2014-0500.1 – ident: ref25 doi: 10.1126/sciadv.1700578 – ident: ref20 doi: 10.1109/TGRS.2018.2852302 – year: 2008 ident: ref31 publication-title: Advanced Data Mining Techniques – ident: ref32 doi: 10.1109/ICCV.2017.74 – start-page: 1097 year: 2012 ident: ref14 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref16 doi: 10.1016/j.jcmg.2018.01.020 – ident: ref18 doi: 10.1109/LGRS.2017.2785834 – ident: ref28 doi: 10.1016/S0377-2217(96)00385-2 – ident: ref10 doi: 10.1007/s10950-006-2296-6 – ident: ref3 doi: 10.1090/qam/139498 – start-page: 908 year: 2001 ident: ref27 article-title: Rate-coded restricted Boltzmann machines for face recognition publication-title: Proc Adv Neural Inf Process Syst – volume: 72 start-page: 225s year: 1982 ident: ref2 article-title: Automatic phase pickers: Their present use and future prospects publication-title: Bull Seismol Soc Amer doi: 10.1785/BSSA07206B0225 – ident: ref4 doi: 10.1109/TGRS.2002.800438 – volume: 68 start-page: 1521 year: 1978 ident: ref1 article-title: Automatic earthquake recognition and timing from single traces publication-title: Bull Seismol Soc Amer doi: 10.1785/BSSA0680051521 – volume: 77 start-page: 1437 year: 1987 ident: ref6 article-title: An automatic phase picker for local and teleseismic events publication-title: Bull Seismol Soc Amer doi: 10.1785/BSSA0770041437 – ident: ref24 doi: 10.1029/2019JB017536 |
SSID | ssj0014517 |
Score | 2.5934312 |
Snippet | First arrival time picking is one of the critical processing steps of acoustic emission (AE)/microseismic (MS) monitoring for studying rock fracture processes.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5293 |
SubjectTerms | Acoustic emission Acoustic noise Acoustics Algorithms Artificial neural networks Classification Clustering Convolutional neural network (CNN) Curve fitting Data Data models Data preprocessing Deep learning deep learning (DL) Earthquakes Emission analysis Error analysis Feature extraction Laboratories Learning algorithms Machine learning Microseisms Monitoring Neural networks P waves P-wave first arrival time picking Performance evaluation Picking Seismic activity Statistical analysis Statistical methods Waveforms |
Title | AEnet: Automatic Picking of P-Wave First Arrivals Using Deep Learning |
URI | https://ieeexplore.ieee.org/document/9153918 https://www.proquest.com/docview/2530115965 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTxQxFH8BEhI9iIDGVTQ9eDJ2mU7bmZbbBnYhJBgCa-Q26bSvZqPZJewsB_562253I2iMtzm0k-a9177v3wP4WFnmC14ayjVyKoLzRVvHFPWFR9Y6ZaSNjcIXX6qzr-L8Rt5swOd1LwwipuIz7MfPlMt3M7uIobJDHa6nZmoTNoOYLXu11hkDIVluja5ocCLKnMFkhT4cn15dB0-wDA5qnAcp2CMdlIaq_PESJ_Uy2oGL1cGWVSU_-ouu7duHJ5iN_3vyl_Ai25lksBSMXdjA6R48_w19cA-2U_Wnne_DcDCcYndEBotuliBcyeXExhg6mXlySb-ZeySjSbATw__uJkE25ySVGpATxFuSIVq_v4LxaDg-PqN5vgK1XOqOcuOV54WvvGDWcacUKukVtsIEIikn6pbXpmqdVLWugiHpk3tVc1GgY8hfw9Z0NsU3QGquCyPqoO61FagrI1pZGxt7ETmvS9eDYkXwxmbs8TgC42eTfJBCN5FHTeRRk3nUg0_rLbdL4I1_Ld6PNF8vzOTuwcGKq02-mvOmlPFNk7qSb_--6x08K2PhSgq1HMBWd7fA98Hy6NoPSeR-AYTu0XA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIkQ58GiLCBTwgRPC6Xpt79rcIkgI0FQVBNHbymuPUVSUVM2GA78e23EiXkLc9mCvrJmx5_0NwLPKMl_w0lCukVMRnC_aOqaoLzyy1ikjbWwUnpxW40_i3bk834EX214YREzFZ9iPnymX7xZ2FUNlxzpcT83UNbge9L6Q626tbc5ASJaboysa3Igy5zBZoY-nbz58DL5gGVzUOBFSsF-0UBqr8sdbnBTM6A5MNkdb15Vc9Fdd27fff0Nt_N-z34Xb2dIkg7Vo3IMdnO_DrZ_wB_fhRqr_tMsDGA6Gc-xeksGqWyQQV3I2szGKThaenNHP5huS0SxYiuF_V7MgnUuSig3Ia8RLkkFavxzCdDScvhrTPGGBWi51R7nxyvPCV14w67hTCpX0ClthApGUE3XLa1O1TqpaV8GU9MnBqrko0DHk92F3vpjjAyA114URdVD42grUlRGtrI2N3Yic16XrQbEheGMz-ngcgvG1SV5IoZvIoybyqMk86sHz7ZbLNfTGvxYfRJpvF2Zy9-Bow9UmX85lU8r4qkldyYd_3_UUbo6nk5Pm5O3p-0ewV8YylhR4OYLd7mqFj4Md0rVPkvj9AKu_1L0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEnet%3A+Automatic+Picking+of+P-Wave+First+Arrivals+Using+Deep+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Guo%2C+Chao&rft.au=Zhu%2C+Tieyuan&rft.au=Gao%2C+Yongtao&rft.au=Wu%2C+Shunchuan&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=59&rft.issue=6&rft.spage=5293&rft.epage=5303&rft_id=info:doi/10.1109%2FTGRS.2020.3010541&rft.externalDocID=9153918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |