Emulation and Malicious Attacks to Doppler and FMCW Radars for Human Sensing Applications

This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars employed for noninvasive vital signs measurement and human presence sensing. In contrast to existing radar threat models, the proposed model is tu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 71; no. 2; pp. 1 - 13
Main Authors Nallabolu, Prateek, Rodriguez, Daniel, Li, Changzhi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars employed for noninvasive vital signs measurement and human presence sensing. In contrast to existing radar threat models, the proposed model is tuned to mimic two characteristics of a human target measured by radars, i.e., the motion artifacts generated by a walking human and the inherent chest motion. Electronically synthesizing the abovementioned characteristics can interfere with the normal operation of radar systems used for automation, bioauthentication, and surveillance applications. The attacking/emulation systems were realized using commercially available radio frequency (RF) components. The 5.8-GHz benchtop prototypes of the Doppler-and FMCW-mode systems were designed, and experiments were conducted to validate the threat of these systems. First, a single-sideband (SSB) mixer is utilized to electronically modulate the continuous-wave (CW) signal transmitted by a Doppler radar to resemble a walking human subject. Next, fake human targets are injected into an FMCW radar by using an analog phase shifter that mimics the vital sign motion of a real human subject. In addition to impersonating the human vital sign motion, the FMCW mode spoofing system has the capability to alter the range of the human target without requiring any synchronization with the victim radar. The FMCW mode spoofing system successfully deceived two state-of-the-art human detection algorithms. Finally, a brief discussion is presented on the feasibility of using the proposed Doppler and FMCW mode spoofing device architecture as respective radar target emulators.
AbstractList This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars employed for noninvasive vital signs measurement and human presence sensing. In contrast to existing radar threat models, the proposed model is tuned to mimic two characteristics of a human target measured by radars, i.e., the motion artifacts generated by a walking human and the inherent chest motion. Electronically synthesizing the abovementioned characteristics can interfere with the normal operation of radar systems used for automation, bioauthentication, and surveillance applications. The attacking/emulation systems were realized using commercially available radio frequency (RF) components. The 5.8-GHz benchtop prototypes of the Doppler- and FMCW-mode systems were designed, and experiments were conducted to validate the threat of these systems. First, a single-sideband (SSB) mixer is utilized to electronically modulate the continuous-wave (CW) signal transmitted by a Doppler radar to resemble a walking human subject. Next, fake human targets are injected into an FMCW radar by using an analog phase shifter that mimics the vital sign motion of a real human subject. In addition to impersonating the human vital sign motion, the FMCW mode spoofing system has the capability to alter the range of the human target without requiring any synchronization with the victim radar. The FMCW mode spoofing system successfully deceived two state-of-the-art human detection algorithms. Finally, a brief discussion is presented on the feasibility of using the proposed Doppler and FMCW mode spoofing device architecture as respective radar target emulators.
Author Rodriguez, Daniel
Li, Changzhi
Nallabolu, Prateek
Author_xml – sequence: 1
  givenname: Prateek
  orcidid: 0000-0002-5719-3515
  surname: Nallabolu
  fullname: Nallabolu, Prateek
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0001-7215-0831
  surname: Rodriguez
  fullname: Rodriguez, Daniel
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
– sequence: 3
  givenname: Changzhi
  orcidid: 0000-0003- 2188-4506
  surname: Li
  fullname: Li, Changzhi
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
BookMark eNp9kE1Lw0AQhhepYFv9AeJlwXPqfiaZY6mtFVoEjYinZZNsZGuarbvJwX9v-oEHD56Gged5Z3hHaNC4xiB0TcmEUgJ32TrLJowwNuGMpITFZ2hIpUwiiBMyQENCaBqBSMkFGoWw6VchSTpE7_NtV-vWugbrpsRrXdvCui7gadvq4jPg1uF7t9vVxh-AxXr2hp91qX3AlfN42W11g19ME2zzgac9aItDXLhE55Wug7k6zTF6Xcyz2TJaPT08zqarqOAS2ogDKcGIVBRCAuSCVbxMODDDjdEmyYWpIOZVKctU8DinpQTKBOic8IICAB-j22PuzruvzoRWbVznm_6kYkkiOGMURE8lR6rwLgRvKlXY9vBo67WtFSVq36Pa96j2PapTj71J_5g7b7faf__r3Bwda4z55QGITOOU_wB8S39V
CODEN IETMAB
CitedBy_id crossref_primary_10_1016_j_optlaseng_2024_108527
crossref_primary_10_1109_TRS_2024_3398127
crossref_primary_10_1109_ACCESS_2024_3501363
crossref_primary_10_1109_TAES_2024_3411594
crossref_primary_10_3390_s24175709
crossref_primary_10_1109_ACCESS_2023_3288423
crossref_primary_10_1587_bplus_18_172
crossref_primary_10_1109_TIM_2024_3462983
crossref_primary_10_1109_TMTT_2024_3457163
Cites_doi 10.3390/s16081169
10.1109/LSENS.2018.2852263
10.1109/MWSYM.2019.8700983
10.23919/USNC-URSI52669.2022.9887409
10.1109/JSEN.2019.2892073
10.1109/JSEN.2021.3095674
10.1109/TIM.2013.2277530
10.1109/TIM.2009.2025986
10.1109/MWSCAS.2015.7282120
10.1109/TMTT.2013.2256924
10.1109/TGRS.2018.2816812
10.1109/WiSNeT46826.2020.9037593
10.1109/TGRS.2012.2217975
10.1109/JSEN.2018.2823588
10.1109/JSEN.2019.2941198
10.1109/ACCESS.2021.3080655
10.1109/MWSYM.2012.6258400
10.1109/RADAR41533.2019.171307
10.1109/TMTT.2014.2358572
10.1109/IEMBS.2011.6090541
10.3390/s22062145
10.1109/TIFS.2021.3076287
10.3390/bdcc3010003
10.1109/TAES.2019.2910980
10.1109/SMC42975.2020.9282881
10.1109/MMM.2015.2419771
10.1109/TBME.1986.325760
10.1109/TMTT.2012.2228223
10.1117/12.266733
10.1109/JSEN.2019.2914365
10.1109/TMTT.2008.2007139
10.1145/3474376.3487283
10.1109/TMTT.2011.2171712
10.3390/s16010124
10.1007/s13389-020-00252-5
10.1109/TMTT.2021.3115804
10.1109/MWSYM.2019.8700731
10.23919/IRS.2018.8448017
10.1186/s13634-022-00838-7
10.1109/ACSSC.2001.987041
10.1109/TMTT.2016.2610427
10.3390/rs11091068
10.1049/iet-rsn.2015.0173
10.1109/RWS50353.2021.9360393
10.1109/TIM.2009.2028208
10.1109/RTAS.2019.00012
10.1109/TAP.2015.2389793
10.1109/7.395232
10.1109/VTCFall.2018.8690734
10.1109/TMTT.2016.2633352
10.1109/WISNET.2019.8711801
10.1109/CCST.1999.797891
10.1109/JSEN.2022.3165207
10.1109/LMWC.2013.2250269
10.1109/LMWC.2021.3057867
10.1109/ARRAY.2010.5613314
10.1109/TMTT.2014.2320464
10.1109/TGRS.2020.3006387
10.5162/sensor2017/D3.4
10.1109/TIM.2020.2982233
10.1145/2185448.2185453
10.1109/TGRS.2008.2010709
10.1109/TMTT.2017.2650909
10.1109/RWS.2013.6486726
10.1109/TMTT.2014.2342663
10.1117/12.488286
10.1109/TMTT.2017.2650911
10.3390/s19132879
10.1109/MMM.2008.930675
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2022.3208026
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 13
ExternalDocumentID 10_1109_TMTT_2022_3208026
9905868
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: ECCS-1808613; ECCS-2028863
  funderid: 10.13039/100000001
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-390d9e484c4599b42f3d7392e3eeae7b4ef963fd5d8436b1d591249ab03c19993
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Mon Jun 30 10:20:07 EDT 2025
Tue Jul 01 02:00:25 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-390d9e484c4599b42f3d7392e3eeae7b4ef963fd5d8436b1d591249ab03c19993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7215-0831
0000-0002-5719-3515
0000-0003- 2188-4506
0000-0003-2188-4506
PQID 2774322194
PQPubID 106035
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TMTT_2022_3208026
crossref_primary_10_1109_TMTT_2022_3208026
ieee_primary_9905868
proquest_journals_2774322194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Yavari (ref23)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
(ref65) 2020
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Chauhan (ref58) 2014
ref71
ref70
ref73
ref72
ref24
ref68
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
(ref66) 2022
ref62
ref61
References_xml – ident: ref8
  doi: 10.3390/s16081169
– ident: ref43
  doi: 10.1109/LSENS.2018.2852263
– ident: ref53
  doi: 10.1109/MWSYM.2019.8700983
– ident: ref67
  doi: 10.23919/USNC-URSI52669.2022.9887409
– ident: ref18
  doi: 10.1109/JSEN.2019.2892073
– ident: ref48
  doi: 10.1109/JSEN.2021.3095674
– ident: ref1
  doi: 10.1109/TIM.2013.2277530
– ident: ref10
  doi: 10.1109/TIM.2009.2025986
– ident: ref72
  doi: 10.1109/MWSCAS.2015.7282120
– ident: ref5
  doi: 10.1109/TMTT.2013.2256924
– ident: ref41
  doi: 10.1109/TGRS.2018.2816812
– ident: ref54
  doi: 10.1109/WiSNeT46826.2020.9037593
– ident: ref33
  doi: 10.1109/TGRS.2012.2217975
– ident: ref29
  doi: 10.1109/JSEN.2018.2823588
– ident: ref14
  doi: 10.1109/JSEN.2019.2941198
– ident: ref69
  doi: 10.1109/ACCESS.2021.3080655
– ident: ref32
  doi: 10.1109/MWSYM.2012.6258400
– ident: ref46
  doi: 10.1109/RADAR41533.2019.171307
– ident: ref47
  doi: 10.1109/TMTT.2014.2358572
– ident: ref22
  doi: 10.1109/IEMBS.2011.6090541
– ident: ref62
  doi: 10.3390/s22062145
– ident: ref61
  doi: 10.1109/TIFS.2021.3076287
– ident: ref12
  doi: 10.3390/bdcc3010003
– ident: ref45
  doi: 10.1109/TAES.2019.2910980
– volume-title: DARTS 9040-G the First True 5 GHz Bandwidth Radar Target Simulator
  year: 2020
  ident: ref65
– ident: ref50
  doi: 10.1109/SMC42975.2020.9282881
– ident: ref13
  doi: 10.1109/MMM.2015.2419771
– ident: ref16
  doi: 10.1109/TBME.1986.325760
– ident: ref31
  doi: 10.1109/TMTT.2012.2228223
– ident: ref36
  doi: 10.1117/12.266733
– ident: ref38
  doi: 10.1109/JSEN.2019.2914365
– ident: ref9
  doi: 10.1109/TMTT.2008.2007139
– ident: ref60
  doi: 10.1145/3474376.3487283
– ident: ref11
  doi: 10.1109/TMTT.2011.2171712
– ident: ref70
  doi: 10.3390/s16010124
– ident: ref59
  doi: 10.1007/s13389-020-00252-5
– ident: ref63
  doi: 10.1109/TMTT.2021.3115804
– ident: ref68
  doi: 10.1109/MWSYM.2019.8700731
– ident: ref55
  doi: 10.23919/IRS.2018.8448017
– volume-title: A platform for false data injection in frequency modulated continuous wave radar
  year: 2014
  ident: ref58
– ident: ref73
  doi: 10.1186/s13634-022-00838-7
– ident: ref19
  doi: 10.1109/ACSSC.2001.987041
– ident: ref17
  doi: 10.1109/TMTT.2016.2610427
– ident: ref44
  doi: 10.3390/rs11091068
– ident: ref35
  doi: 10.1049/iet-rsn.2015.0173
– ident: ref64
  doi: 10.1109/RWS50353.2021.9360393
– ident: ref7
  doi: 10.1109/TIM.2009.2028208
– ident: ref25
  doi: 10.1109/RTAS.2019.00012
– ident: ref30
  doi: 10.1109/TAP.2015.2389793
– ident: ref52
  doi: 10.1109/7.395232
– ident: ref56
  doi: 10.1109/VTCFall.2018.8690734
– start-page: 444
  volume-title: Proc. Asia Pacific Microw. Conf.
  ident: ref23
  article-title: Radar and conventional occupancy sensors performance comparison
– ident: ref37
  doi: 10.1109/TMTT.2016.2633352
– volume-title: Radar Scene Emulator
  year: 2022
  ident: ref66
– ident: ref26
  doi: 10.1109/WISNET.2019.8711801
– ident: ref51
  doi: 10.1109/CCST.1999.797891
– ident: ref49
  doi: 10.1109/JSEN.2022.3165207
– ident: ref2
  doi: 10.1109/LMWC.2013.2250269
– ident: ref40
  doi: 10.1109/LMWC.2021.3057867
– ident: ref34
  doi: 10.1109/ARRAY.2010.5613314
– ident: ref42
  doi: 10.1109/TMTT.2014.2320464
– ident: ref71
  doi: 10.1109/TGRS.2020.3006387
– ident: ref27
  doi: 10.5162/sensor2017/D3.4
– ident: ref3
  doi: 10.1109/TIM.2020.2982233
– ident: ref57
  doi: 10.1145/2185448.2185453
– ident: ref28
  doi: 10.1109/TGRS.2008.2010709
– ident: ref39
  doi: 10.1109/TMTT.2017.2650909
– ident: ref21
  doi: 10.1109/RWS.2013.6486726
– ident: ref24
  doi: 10.1109/TMTT.2014.2342663
– ident: ref20
  doi: 10.1117/12.488286
– ident: ref4
  doi: 10.1109/TMTT.2017.2650911
– ident: ref15
  doi: 10.3390/s19132879
– ident: ref6
  doi: 10.1109/MMM.2008.930675
SSID ssj0014508
Score 2.469331
Snippet This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Computer architecture
Continuous radiation
Doppler effect
Doppler radar
frequency-modulated continuous-wave (FMCW) radar
Human motion
human presence sensing
Human subjects
Mixers
Motion measurement
Motion sensors
Phase shifters
Radar
Radar equipment
Radar measurements
radar security
Radar targets
Radio frequency
Sensors
Single sideband transmission
Spoofing
Synchronism
vital sign detection
Walking
Title Emulation and Malicious Attacks to Doppler and FMCW Radars for Human Sensing Applications
URI https://ieeexplore.ieee.org/document/9905868
https://www.proquest.com/docview/2774322194
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4I8pLHpgQKU7sPDxWhQohhQGKgCmK7QsDkKKSLvx6zkla8RJi83CWrDvf-TvfC-CIkJDJiwg9n9w2T8a00oihFwRxLIyxUWHch356FV3cysv78L4DJ_NaGESsk8-w55Z1LN-OzdR9lZ2S5QyTKFmABXLcmlqtecRAhry1uqTAMplFMH2uTkfpaESeYBD0ROBKS6Mvb1A9VOWHJa6fl-EqpLODNVklT71ppXvm_VvPxv-efA1WWpzJ-s3FWIcOlhuw_Kn74CY8nL-0s7tYXlqWEiI3LiOW9avKVd6zaszOxoRScVITDNPBHbvOLbnCjKAuq___2Y3LgC8fWf9TJHwLbofno8GF105a8IwIVeUJxa1CmUgjQ6W0DAphY0JOKBBzjLXEghS1sKFNpIi0b0Plhlbnmgvj-hiIbVgsxyXuAOPItYh9EwVaSotCFbRJkB9mIx7nWnWBz3ifmbYNuZuG8ZzV7ghXmRNX5sSVteLqwvF8y2vTg-Mv4k3H_jlhy_ku7M8EnLVa-pbRfZRk0Hwld3_ftQdLbrx8k6W9D4vVZIoHBEIqfVjfvg-gX9fP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROFAOlJYillLwoaeKLE5sJ_FxRVktj3CAoNJTFNuTHgpZBNkLv55xkl3RhypuPngka8Yz_sbzAvhCSMiWVYxBSG5bIBNaGUQVRFGSCGtdXFn_oZ9dxJNreXqjbpbgYFELg4ht8hkO_bKN5bupnfmvskOynCqN0zewQu--CrtqrUXMQCre211SYZnOY5gh14d5lufkC0bRUES-uDT-7RVqx6r8ZYvbB2b8DrL50bq8kl_DWWOG9umPro2vPfsGrPdIk426q_EelrD-AGsv-g9uwo_ju356FytrxzLC5NbnxLJR0_jae9ZM2bcp4VR8aDeMs6Pv7LJ05AwzArusjQCwK58DX_9koxex8I9wPT7OjyZBP2shsELpJhCaO40ylVYqrY2MKuESwk4oEEtMjMSKVLVyyqVSxCZ0Svux1aXhwvpOBmILlutpjdvAOHIjktDGkZHSodAVEQnyxFzMk9LoAfA57wvbNyL38zBui9Yh4brw4iq8uIpeXAP4uiC577pw_G_zpmf_YmPP-QHszgVc9Hr6WNCNlGTSQi13_k21D6uTPDsvzk8uzj7BWz9svsvZ3oXl5mGGnwmSNGavvYnPDq3bGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emulation+and+Malicious+Attacks+to+Doppler+and+FMCW+Radars+for+Human+Sensing+Applications&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Nallabolu%2C+Prateek&rft.au=Rodriguez%2C+Daniel&rft.au=Li%2C+Changzhi&rft.date=2023-02-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=71&rft.issue=2&rft.spage=805&rft.epage=817&rft_id=info:doi/10.1109%2FTMTT.2022.3208026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2022_3208026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon