Emulation and Malicious Attacks to Doppler and FMCW Radars for Human Sensing Applications
This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars employed for noninvasive vital signs measurement and human presence sensing. In contrast to existing radar threat models, the proposed model is tu...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 71; no. 2; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars employed for noninvasive vital signs measurement and human presence sensing. In contrast to existing radar threat models, the proposed model is tuned to mimic two characteristics of a human target measured by radars, i.e., the motion artifacts generated by a walking human and the inherent chest motion. Electronically synthesizing the abovementioned characteristics can interfere with the normal operation of radar systems used for automation, bioauthentication, and surveillance applications. The attacking/emulation systems were realized using commercially available radio frequency (RF) components. The 5.8-GHz benchtop prototypes of the Doppler-and FMCW-mode systems were designed, and experiments were conducted to validate the threat of these systems. First, a single-sideband (SSB) mixer is utilized to electronically modulate the continuous-wave (CW) signal transmitted by a Doppler radar to resemble a walking human subject. Next, fake human targets are injected into an FMCW radar by using an analog phase shifter that mimics the vital sign motion of a real human subject. In addition to impersonating the human vital sign motion, the FMCW mode spoofing system has the capability to alter the range of the human target without requiring any synchronization with the victim radar. The FMCW mode spoofing system successfully deceived two state-of-the-art human detection algorithms. Finally, a brief discussion is presented on the feasibility of using the proposed Doppler and FMCW mode spoofing device architecture as respective radar target emulators. |
---|---|
AbstractList | This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars employed for noninvasive vital signs measurement and human presence sensing. In contrast to existing radar threat models, the proposed model is tuned to mimic two characteristics of a human target measured by radars, i.e., the motion artifacts generated by a walking human and the inherent chest motion. Electronically synthesizing the abovementioned characteristics can interfere with the normal operation of radar systems used for automation, bioauthentication, and surveillance applications. The attacking/emulation systems were realized using commercially available radio frequency (RF) components. The 5.8-GHz benchtop prototypes of the Doppler- and FMCW-mode systems were designed, and experiments were conducted to validate the threat of these systems. First, a single-sideband (SSB) mixer is utilized to electronically modulate the continuous-wave (CW) signal transmitted by a Doppler radar to resemble a walking human subject. Next, fake human targets are injected into an FMCW radar by using an analog phase shifter that mimics the vital sign motion of a real human subject. In addition to impersonating the human vital sign motion, the FMCW mode spoofing system has the capability to alter the range of the human target without requiring any synchronization with the victim radar. The FMCW mode spoofing system successfully deceived two state-of-the-art human detection algorithms. Finally, a brief discussion is presented on the feasibility of using the proposed Doppler and FMCW mode spoofing device architecture as respective radar target emulators. |
Author | Rodriguez, Daniel Li, Changzhi Nallabolu, Prateek |
Author_xml | – sequence: 1 givenname: Prateek orcidid: 0000-0002-5719-3515 surname: Nallabolu fullname: Nallabolu, Prateek organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA – sequence: 2 givenname: Daniel orcidid: 0000-0001-7215-0831 surname: Rodriguez fullname: Rodriguez, Daniel organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA – sequence: 3 givenname: Changzhi orcidid: 0000-0003- 2188-4506 surname: Li fullname: Li, Changzhi organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA |
BookMark | eNp9kE1Lw0AQhhepYFv9AeJlwXPqfiaZY6mtFVoEjYinZZNsZGuarbvJwX9v-oEHD56Gged5Z3hHaNC4xiB0TcmEUgJ32TrLJowwNuGMpITFZ2hIpUwiiBMyQENCaBqBSMkFGoWw6VchSTpE7_NtV-vWugbrpsRrXdvCui7gadvq4jPg1uF7t9vVxh-AxXr2hp91qX3AlfN42W11g19ME2zzgac9aItDXLhE55Wug7k6zTF6Xcyz2TJaPT08zqarqOAS2ogDKcGIVBRCAuSCVbxMODDDjdEmyYWpIOZVKctU8DinpQTKBOic8IICAB-j22PuzruvzoRWbVznm_6kYkkiOGMURE8lR6rwLgRvKlXY9vBo67WtFSVq36Pa96j2PapTj71J_5g7b7faf__r3Bwda4z55QGITOOU_wB8S39V |
CODEN | IETMAB |
CitedBy_id | crossref_primary_10_1016_j_optlaseng_2024_108527 crossref_primary_10_1109_TRS_2024_3398127 crossref_primary_10_1109_ACCESS_2024_3501363 crossref_primary_10_1109_TAES_2024_3411594 crossref_primary_10_3390_s24175709 crossref_primary_10_1109_ACCESS_2023_3288423 crossref_primary_10_1587_bplus_18_172 crossref_primary_10_1109_TIM_2024_3462983 crossref_primary_10_1109_TMTT_2024_3457163 |
Cites_doi | 10.3390/s16081169 10.1109/LSENS.2018.2852263 10.1109/MWSYM.2019.8700983 10.23919/USNC-URSI52669.2022.9887409 10.1109/JSEN.2019.2892073 10.1109/JSEN.2021.3095674 10.1109/TIM.2013.2277530 10.1109/TIM.2009.2025986 10.1109/MWSCAS.2015.7282120 10.1109/TMTT.2013.2256924 10.1109/TGRS.2018.2816812 10.1109/WiSNeT46826.2020.9037593 10.1109/TGRS.2012.2217975 10.1109/JSEN.2018.2823588 10.1109/JSEN.2019.2941198 10.1109/ACCESS.2021.3080655 10.1109/MWSYM.2012.6258400 10.1109/RADAR41533.2019.171307 10.1109/TMTT.2014.2358572 10.1109/IEMBS.2011.6090541 10.3390/s22062145 10.1109/TIFS.2021.3076287 10.3390/bdcc3010003 10.1109/TAES.2019.2910980 10.1109/SMC42975.2020.9282881 10.1109/MMM.2015.2419771 10.1109/TBME.1986.325760 10.1109/TMTT.2012.2228223 10.1117/12.266733 10.1109/JSEN.2019.2914365 10.1109/TMTT.2008.2007139 10.1145/3474376.3487283 10.1109/TMTT.2011.2171712 10.3390/s16010124 10.1007/s13389-020-00252-5 10.1109/TMTT.2021.3115804 10.1109/MWSYM.2019.8700731 10.23919/IRS.2018.8448017 10.1186/s13634-022-00838-7 10.1109/ACSSC.2001.987041 10.1109/TMTT.2016.2610427 10.3390/rs11091068 10.1049/iet-rsn.2015.0173 10.1109/RWS50353.2021.9360393 10.1109/TIM.2009.2028208 10.1109/RTAS.2019.00012 10.1109/TAP.2015.2389793 10.1109/7.395232 10.1109/VTCFall.2018.8690734 10.1109/TMTT.2016.2633352 10.1109/WISNET.2019.8711801 10.1109/CCST.1999.797891 10.1109/JSEN.2022.3165207 10.1109/LMWC.2013.2250269 10.1109/LMWC.2021.3057867 10.1109/ARRAY.2010.5613314 10.1109/TMTT.2014.2320464 10.1109/TGRS.2020.3006387 10.5162/sensor2017/D3.4 10.1109/TIM.2020.2982233 10.1145/2185448.2185453 10.1109/TGRS.2008.2010709 10.1109/TMTT.2017.2650909 10.1109/RWS.2013.6486726 10.1109/TMTT.2014.2342663 10.1117/12.488286 10.1109/TMTT.2017.2650911 10.3390/s19132879 10.1109/MMM.2008.930675 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TMTT.2022.3208026 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9670 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TMTT_2022_3208026 9905868 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: ECCS-1808613; ECCS-2028863 funderid: 10.13039/100000001 |
GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c359t-390d9e484c4599b42f3d7392e3eeae7b4ef963fd5d8436b1d591249ab03c19993 |
IEDL.DBID | RIE |
ISSN | 0018-9480 |
IngestDate | Mon Jun 30 10:20:07 EDT 2025 Tue Jul 01 02:00:25 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Wed Aug 27 02:29:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-390d9e484c4599b42f3d7392e3eeae7b4ef963fd5d8436b1d591249ab03c19993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7215-0831 0000-0002-5719-3515 0000-0003- 2188-4506 0000-0003-2188-4506 |
PQID | 2774322194 |
PQPubID | 106035 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TMTT_2022_3208026 crossref_primary_10_1109_TMTT_2022_3208026 ieee_primary_9905868 proquest_journals_2774322194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on microwave theory and techniques |
PublicationTitleAbbrev | TMTT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Yavari (ref23) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 (ref65) 2020 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Chauhan (ref58) 2014 ref71 ref70 ref73 ref72 ref24 ref68 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 (ref66) 2022 ref62 ref61 |
References_xml | – ident: ref8 doi: 10.3390/s16081169 – ident: ref43 doi: 10.1109/LSENS.2018.2852263 – ident: ref53 doi: 10.1109/MWSYM.2019.8700983 – ident: ref67 doi: 10.23919/USNC-URSI52669.2022.9887409 – ident: ref18 doi: 10.1109/JSEN.2019.2892073 – ident: ref48 doi: 10.1109/JSEN.2021.3095674 – ident: ref1 doi: 10.1109/TIM.2013.2277530 – ident: ref10 doi: 10.1109/TIM.2009.2025986 – ident: ref72 doi: 10.1109/MWSCAS.2015.7282120 – ident: ref5 doi: 10.1109/TMTT.2013.2256924 – ident: ref41 doi: 10.1109/TGRS.2018.2816812 – ident: ref54 doi: 10.1109/WiSNeT46826.2020.9037593 – ident: ref33 doi: 10.1109/TGRS.2012.2217975 – ident: ref29 doi: 10.1109/JSEN.2018.2823588 – ident: ref14 doi: 10.1109/JSEN.2019.2941198 – ident: ref69 doi: 10.1109/ACCESS.2021.3080655 – ident: ref32 doi: 10.1109/MWSYM.2012.6258400 – ident: ref46 doi: 10.1109/RADAR41533.2019.171307 – ident: ref47 doi: 10.1109/TMTT.2014.2358572 – ident: ref22 doi: 10.1109/IEMBS.2011.6090541 – ident: ref62 doi: 10.3390/s22062145 – ident: ref61 doi: 10.1109/TIFS.2021.3076287 – ident: ref12 doi: 10.3390/bdcc3010003 – ident: ref45 doi: 10.1109/TAES.2019.2910980 – volume-title: DARTS 9040-G the First True 5 GHz Bandwidth Radar Target Simulator year: 2020 ident: ref65 – ident: ref50 doi: 10.1109/SMC42975.2020.9282881 – ident: ref13 doi: 10.1109/MMM.2015.2419771 – ident: ref16 doi: 10.1109/TBME.1986.325760 – ident: ref31 doi: 10.1109/TMTT.2012.2228223 – ident: ref36 doi: 10.1117/12.266733 – ident: ref38 doi: 10.1109/JSEN.2019.2914365 – ident: ref9 doi: 10.1109/TMTT.2008.2007139 – ident: ref60 doi: 10.1145/3474376.3487283 – ident: ref11 doi: 10.1109/TMTT.2011.2171712 – ident: ref70 doi: 10.3390/s16010124 – ident: ref59 doi: 10.1007/s13389-020-00252-5 – ident: ref63 doi: 10.1109/TMTT.2021.3115804 – ident: ref68 doi: 10.1109/MWSYM.2019.8700731 – ident: ref55 doi: 10.23919/IRS.2018.8448017 – volume-title: A platform for false data injection in frequency modulated continuous wave radar year: 2014 ident: ref58 – ident: ref73 doi: 10.1186/s13634-022-00838-7 – ident: ref19 doi: 10.1109/ACSSC.2001.987041 – ident: ref17 doi: 10.1109/TMTT.2016.2610427 – ident: ref44 doi: 10.3390/rs11091068 – ident: ref35 doi: 10.1049/iet-rsn.2015.0173 – ident: ref64 doi: 10.1109/RWS50353.2021.9360393 – ident: ref7 doi: 10.1109/TIM.2009.2028208 – ident: ref25 doi: 10.1109/RTAS.2019.00012 – ident: ref30 doi: 10.1109/TAP.2015.2389793 – ident: ref52 doi: 10.1109/7.395232 – ident: ref56 doi: 10.1109/VTCFall.2018.8690734 – start-page: 444 volume-title: Proc. Asia Pacific Microw. Conf. ident: ref23 article-title: Radar and conventional occupancy sensors performance comparison – ident: ref37 doi: 10.1109/TMTT.2016.2633352 – volume-title: Radar Scene Emulator year: 2022 ident: ref66 – ident: ref26 doi: 10.1109/WISNET.2019.8711801 – ident: ref51 doi: 10.1109/CCST.1999.797891 – ident: ref49 doi: 10.1109/JSEN.2022.3165207 – ident: ref2 doi: 10.1109/LMWC.2013.2250269 – ident: ref40 doi: 10.1109/LMWC.2021.3057867 – ident: ref34 doi: 10.1109/ARRAY.2010.5613314 – ident: ref42 doi: 10.1109/TMTT.2014.2320464 – ident: ref71 doi: 10.1109/TGRS.2020.3006387 – ident: ref27 doi: 10.5162/sensor2017/D3.4 – ident: ref3 doi: 10.1109/TIM.2020.2982233 – ident: ref57 doi: 10.1145/2185448.2185453 – ident: ref28 doi: 10.1109/TGRS.2008.2010709 – ident: ref39 doi: 10.1109/TMTT.2017.2650909 – ident: ref21 doi: 10.1109/RWS.2013.6486726 – ident: ref24 doi: 10.1109/TMTT.2014.2342663 – ident: ref20 doi: 10.1117/12.488286 – ident: ref4 doi: 10.1109/TMTT.2017.2650911 – ident: ref15 doi: 10.3390/s19132879 – ident: ref6 doi: 10.1109/MMM.2008.930675 |
SSID | ssj0014508 |
Score | 2.469331 |
Snippet | This article presents emulation and adverse attack scenarios for Doppler radar-based motion sensors and frequency-modulated continuous-wave (FMCW) radars... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Computer architecture Continuous radiation Doppler effect Doppler radar frequency-modulated continuous-wave (FMCW) radar Human motion human presence sensing Human subjects Mixers Motion measurement Motion sensors Phase shifters Radar Radar equipment Radar measurements radar security Radar targets Radio frequency Sensors Single sideband transmission Spoofing Synchronism vital sign detection Walking |
Title | Emulation and Malicious Attacks to Doppler and FMCW Radars for Human Sensing Applications |
URI | https://ieeexplore.ieee.org/document/9905868 https://www.proquest.com/docview/2774322194 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4I8pLHpgQKU7sPDxWhQohhQGKgCmK7QsDkKKSLvx6zkla8RJi83CWrDvf-TvfC-CIkJDJiwg9n9w2T8a00oihFwRxLIyxUWHch356FV3cysv78L4DJ_NaGESsk8-w55Z1LN-OzdR9lZ2S5QyTKFmABXLcmlqtecRAhry1uqTAMplFMH2uTkfpaESeYBD0ROBKS6Mvb1A9VOWHJa6fl-EqpLODNVklT71ppXvm_VvPxv-efA1WWpzJ-s3FWIcOlhuw_Kn74CY8nL-0s7tYXlqWEiI3LiOW9avKVd6zaszOxoRScVITDNPBHbvOLbnCjKAuq___2Y3LgC8fWf9TJHwLbofno8GF105a8IwIVeUJxa1CmUgjQ6W0DAphY0JOKBBzjLXEghS1sKFNpIi0b0Plhlbnmgvj-hiIbVgsxyXuAOPItYh9EwVaSotCFbRJkB9mIx7nWnWBz3ifmbYNuZuG8ZzV7ghXmRNX5sSVteLqwvF8y2vTg-Mv4k3H_jlhy_ku7M8EnLVa-pbRfZRk0Hwld3_ftQdLbrx8k6W9D4vVZIoHBEIqfVjfvg-gX9fP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROFAOlJYillLwoaeKLE5sJ_FxRVktj3CAoNJTFNuTHgpZBNkLv55xkl3RhypuPngka8Yz_sbzAvhCSMiWVYxBSG5bIBNaGUQVRFGSCGtdXFn_oZ9dxJNreXqjbpbgYFELg4ht8hkO_bKN5bupnfmvskOynCqN0zewQu--CrtqrUXMQCre211SYZnOY5gh14d5lufkC0bRUES-uDT-7RVqx6r8ZYvbB2b8DrL50bq8kl_DWWOG9umPro2vPfsGrPdIk426q_EelrD-AGsv-g9uwo_ju356FytrxzLC5NbnxLJR0_jae9ZM2bcp4VR8aDeMs6Pv7LJ05AwzArusjQCwK58DX_9koxex8I9wPT7OjyZBP2shsELpJhCaO40ylVYqrY2MKuESwk4oEEtMjMSKVLVyyqVSxCZ0Svux1aXhwvpOBmILlutpjdvAOHIjktDGkZHSodAVEQnyxFzMk9LoAfA57wvbNyL38zBui9Yh4brw4iq8uIpeXAP4uiC577pw_G_zpmf_YmPP-QHszgVc9Hr6WNCNlGTSQi13_k21D6uTPDsvzk8uzj7BWz9svsvZ3oXl5mGGnwmSNGavvYnPDq3bGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emulation+and+Malicious+Attacks+to+Doppler+and+FMCW+Radars+for+Human+Sensing+Applications&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Nallabolu%2C+Prateek&rft.au=Rodriguez%2C+Daniel&rft.au=Li%2C+Changzhi&rft.date=2023-02-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=71&rft.issue=2&rft.spage=805&rft.epage=817&rft_id=info:doi/10.1109%2FTMTT.2022.3208026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2022_3208026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |