An Ensemble Bayesian Dynamic Linear Model for Human Activity Recognition
Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and surveillance. Due to the current ubiquity of inertial measurement units (IMUs) in consumer electronics, including accelerometers and gyroscopes, HAR...
Saved in:
Published in | IEEE access Vol. 13; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2025.3541385 |
Cover
Loading…
Abstract | Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and surveillance. Due to the current ubiquity of inertial measurement units (IMUs) in consumer electronics, including accelerometers and gyroscopes, HAR applications have increasingly used signals produced by these sensors. However, HAR from IMU data is challenging, since time-series data generated from human activity are typically multivariate, non-stationary, and noisy. In this work, we investigate the application of Bayesian dynamic linear models (BDLMs) to the online classification of time-series data of human activity acquired from IMUs. BDLMs are promising in HAR from IMU signals because they seamlessly handle temporal dependencies and uncertainty inherent in sensor data. Unlike static classifiers, BDLMs account for the sequential nature of IMU signals, enabling more accurate tracking of transitions between activities. In particular, we propose a method based on an ensemble BDLM for online HAR that is fully transparent and requires little preprocessing of data. We test the proposed method in two tasks, activity classification and intensity classification, and use two real datasets with diverse activities and subjects. The experimental results indicate that the proposed ensemble BDLM is competitive with consolidated benchmark methods and can be an effective method in real applications of online HAR. |
---|---|
AbstractList | Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and surveillance. Due to the current ubiquity of inertial measurement units (IMUs) in consumer electronics, including accelerometers and gyroscopes, HAR applications have increasingly used signals produced by these sensors. However, HAR from IMU data is challenging, since time-series data generated from human activity are typically multivariate, non-stationary, and noisy. In this work, we investigate the application of Bayesian dynamic linear models (BDLMs) to the online classification of time-series data of human activity acquired from IMUs. BDLMs are promising in HAR from IMU signals because they seamlessly handle temporal dependencies and uncertainty inherent in sensor data. Unlike static classifiers, BDLMs account for the sequential nature of IMU signals, enabling more accurate tracking of transitions between activities. In particular, we propose a method based on an ensemble BDLM for online HAR that is fully transparent and requires little preprocessing of data. We test the proposed method in two tasks, activity classification and intensity classification, and use two real datasets with diverse activities and subjects. The experimental results indicate that the proposed ensemble BDLM is competitive with consolidated benchmark methods and can be an effective method in real applications of online HAR. |
Author | Pitombeira-Neto, Anselmo R. Cruz, Livia A. Da Silva, Ticiana L. C. De Franca, Diego S. De Macedo, Jose Antonio F. |
Author_xml | – sequence: 1 givenname: Anselmo R. orcidid: 0000-0001-9234-8917 surname: Pitombeira-Neto fullname: Pitombeira-Neto, Anselmo R. organization: Department of Industrial Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil – sequence: 2 givenname: Diego S. surname: De Franca fullname: De Franca, Diego S. organization: Department of Applied Mathematics and Statistics, Federal University of Ceará, Fortaleza, Ceará, Brazil – sequence: 3 givenname: Livia A. surname: Cruz fullname: Cruz, Livia A. organization: Insight Data Science Lab, Federal University of Ceará, Fortaleza, Ceará, Brazil – sequence: 4 givenname: Ticiana L. C. surname: Da Silva fullname: Da Silva, Ticiana L. C. organization: Insight Data Science Lab, Federal University of Ceará, Fortaleza, Ceará, Brazil – sequence: 5 givenname: Jose Antonio F. surname: De Macedo fullname: De Macedo, Jose Antonio F. organization: Insight Data Science Lab, Federal University of Ceará, Fortaleza, Ceará, Brazil |
BookMark | eNpNUU1LAzEQDaLg5y_Qw4Ln1mwmyWaPtVYrVAQ_ziGbzEpKm2h2K_TfG90incsMb-a9GeadksMQAxJyWdJxWdL6ZjKdzl5fx4wyMQbBS1DigJywUtYjECAP9-pjctF1S5pDZUhUJ2Q-CcUsdLhuVljcmi123oTibhvM2tti4QOaVDxFh6uijamYb9a5PbG9__b9tnhBGz-C730M5-SoNasOL3b5jLzfz96m89Hi-eFxOlmMLIi6z1c4Bs61zLSuosI6UQJXjRLU1ZXjllPkjWsYOqCtqq2EhilAbiWlzjIJZ-Rx0HXRLPVn8muTtjoar_-AmD60Sb23K9QUhGXAuWqZ5RUTNcqKt1Ka2lRgG5q1rgetzxS_Ntj1ehk3KeTzNeT_MM5lVeYpGKZsil2XsP3fWlL964AeHNC_DuidA5l1NbA8Iu4xlIJacvgBNvuCAA |
CODEN | IAECCG |
Cites_doi | 10.1109/SURV.2012.110112.00192 10.2307/2171813 10.2307/2348524 10.1007/s11042-021-11410-0 10.1145/2499621 10.1137/0916069 10.1016/j.procs.2019.08.100 10.1016/j.jspi.2007.03.057 10.1007/s12652-011-0064-0 10.1109/ACCESS.2022.3204739 10.3390/s150102059 10.1016/j.knosys.2021.106970 10.3390/s151229858 10.1007/s11067-019-09490-5 10.1109/JBHI.2024.3368042 10.1007/978-3-319-66185-8_44 10.1249/MSS.0b013e31821ece12 10.1016/j.patrec.2018.02.010 10.1145/2370216.2370438 10.1016/j.future.2017.11.029 10.1093/biomet/68.1.265 10.5220/0005792401430151 10.1109/JSEN.2021.3122258 10.1109/ACCESS.2017.2676168 10.1109/TCE.2024.3373824 10.1002/atr.1449 10.3390/s21165613 10.1214/aos/1176325375 10.3390/s16010115 10.1007/978-1-4757-9365-9 10.1016/j.neunet.2014.01.008 10.1038/s41746-021-00514-4 10.1007/s00521-022-07937-4 10.1109/CVPRW63382.2024.00344 10.1016/j.knosys.2024.112480 10.1109/COMST.2024.3357591 10.1109/ICTAI.2012.169 10.1029/2021WR031745 10.14569/IJACSA.2019.0100311 10.1109/TKDE.2018.2855159 10.1145/3584986 10.1109/CVPR.2019.00792 10.3390/urbansci2040117 10.1016/j.renene.2020.05.182 10.1016/j.eswa.2021.116287 10.1007/s12652-019-01380-5 10.1371/journal.pone.0038346 10.1007/978-981-13-2553-3_24 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3541385 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_035c23448f2c47259e674f66a9a73cb0 10_1109_ACCESS_2025_3541385 10883964 |
Genre | orig-research |
GrantInformation_xml | – fundername: Samsung Eletr?nica da Amaz?nia funderid: 10.13039/100020144 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-35d23ddf2afd705cd51348b850d97d4c40e4bdb2ed30f89c63b283e4c600dc263 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:11:08 EDT 2025 Mon Jun 30 12:43:11 EDT 2025 Tue Jul 01 05:29:54 EDT 2025 Wed Aug 27 01:52:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-35d23ddf2afd705cd51348b850d97d4c40e4bdb2ed30f89c63b283e4c600dc263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9234-8917 0000-0003-2327-9692 0000-0001-7686-9827 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10883964 |
PQID | 3169244671 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10883964 proquest_journals_3169244671 doaj_primary_oai_doaj_org_article_035c23448f2c47259e674f66a9a73cb0 crossref_primary_10_1109_ACCESS_2025_3541385 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 Titsias (ref50) 2023 ref11 ref10 ref17 ref16 ref19 ref18 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Reiss (ref46) 2012 |
References_xml | – ident: ref9 doi: 10.1109/SURV.2012.110112.00192 – ident: ref44 doi: 10.2307/2171813 – ident: ref42 doi: 10.2307/2348524 – ident: ref15 doi: 10.1007/s11042-021-11410-0 – ident: ref7 doi: 10.1145/2499621 – ident: ref45 doi: 10.1137/0916069 – ident: ref4 doi: 10.1016/j.procs.2019.08.100 – ident: ref33 doi: 10.1016/j.jspi.2007.03.057 – ident: ref28 doi: 10.1007/s12652-011-0064-0 – ident: ref8 doi: 10.1109/ACCESS.2022.3204739 – ident: ref10 doi: 10.3390/s150102059 – ident: ref12 doi: 10.1016/j.knosys.2021.106970 – ident: ref18 doi: 10.3390/s151229858 – ident: ref40 doi: 10.1007/s11067-019-09490-5 – ident: ref25 doi: 10.1109/JBHI.2024.3368042 – ident: ref37 doi: 10.1007/978-3-319-66185-8_44 – year: 2023 ident: ref50 article-title: Kalman filter for online classification of non-stationary data publication-title: arXiv:2306.08448 – ident: ref48 doi: 10.1249/MSS.0b013e31821ece12 – ident: ref13 doi: 10.1016/j.patrec.2018.02.010 – ident: ref47 doi: 10.1145/2370216.2370438 – ident: ref19 doi: 10.1016/j.future.2017.11.029 – ident: ref41 doi: 10.1093/biomet/68.1.265 – ident: ref49 doi: 10.5220/0005792401430151 – ident: ref20 doi: 10.1109/JSEN.2021.3122258 – ident: ref22 doi: 10.1109/ACCESS.2017.2676168 – ident: ref3 doi: 10.1109/TCE.2024.3373824 – ident: ref38 doi: 10.1002/atr.1449 – year: 2012 ident: ref46 article-title: PAMAP2 physical activity monitoring – ident: ref31 doi: 10.3390/s21165613 – ident: ref43 doi: 10.1214/aos/1176325375 – ident: ref21 doi: 10.3390/s16010115 – ident: ref32 doi: 10.1007/978-1-4757-9365-9 – ident: ref27 doi: 10.1016/j.neunet.2014.01.008 – ident: ref14 doi: 10.1038/s41746-021-00514-4 – ident: ref5 doi: 10.1007/s00521-022-07937-4 – ident: ref1 doi: 10.1109/CVPRW63382.2024.00344 – ident: ref2 doi: 10.1016/j.knosys.2024.112480 – ident: ref11 doi: 10.1109/COMST.2024.3357591 – ident: ref26 doi: 10.1109/ICTAI.2012.169 – ident: ref34 doi: 10.1029/2021WR031745 – ident: ref6 doi: 10.14569/IJACSA.2019.0100311 – ident: ref29 doi: 10.1109/TKDE.2018.2855159 – ident: ref23 doi: 10.1145/3584986 – ident: ref30 doi: 10.1109/CVPR.2019.00792 – ident: ref39 doi: 10.3390/urbansci2040117 – ident: ref35 doi: 10.1016/j.renene.2020.05.182 – ident: ref17 doi: 10.1016/j.eswa.2021.116287 – ident: ref24 doi: 10.1007/s12652-019-01380-5 – ident: ref36 doi: 10.1371/journal.pone.0038346 – ident: ref16 doi: 10.1007/978-981-13-2553-3_24 |
SSID | ssj0000816957 |
Score | 2.3406265 |
Snippet | Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accelerometers Bayes methods Bayesian analysis Bayesian dynamic linear models Classification Computational modeling Data acquisition Data models Feature extraction Hidden Markov models Human activity recognition inertial measurement unit Inertial platforms Kalman filter Nusselt number Sensor phenomena and characterization Sensors Time series Time series analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjwwEur6GY9paVUhwYCo1M3yK1NJES0D_55zkqJIDCysUSLH3_nuvrPs-xC6dYJbnxwQ0g3NeB5D5pSV4O6Ocs-BIJN0G_npWc4X_HEplh2pr3QmrGkP3AA3JEx4yqCIKCl8CmQ9SsVLKa22inlXV-uQ8zrFVB2D85HUQrVthkZED4vJBGYEBSEV90xA6E7qyZ1UVHfsbyVWfsXlOtnMjtFRyxJx0fzdCdqL1Sk67PQOPEPzosLTahPf3Crisf2K6TYkfmgE5jGUmLCEcVI6W2HgpbjerMeFb8Qi8Mvu3NC66qHFbPo6mWetLELmmdDbjIlAWQgltWVQRPggRoznLhckaBUAYBK5C47GwEiZay-ZAw4RuQduEzyV7BztV-sqXiAsnXXEMs9d1Fxpp6mSPDpBondWUNJHdzuEzHvT_cLUVQPRpgHUJEBNC2gfjROKP6-m1tX1AzCoaQ1q_jJoH_WSDTrj5UDiJO-jwc4opvWzjWFgZiAoUo0u_2PsK3SQ5tNssQzQ_vbjM14D6di6m3p9fQNlWc8E priority: 102 providerName: Directory of Open Access Journals |
Title | An Ensemble Bayesian Dynamic Linear Model for Human Activity Recognition |
URI | https://ieeexplore.ieee.org/document/10883964 https://www.proquest.com/docview/3169244671 https://doaj.org/article/035c23448f2c47259e674f66a9a73cb0 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp_ZQCqXqUkA-cGy2Xj_j47KAVkhwqIrEzfJjcoFmEewe6K_v2M6iFahSb1GUyI5nxjPfxDMfISdBSR-zAaK74Y1sITXBeI3mHriMEgNklquRr671_EZe3qrboVi91MIAQDl8BuN8Wf7lp0Vc5VQZWniL_lzLLbKFyK0Wa70kVDKDhFVm6Cw0YfbHdDbDj0AMyNVYKNytM2HyhvcpTfoHVpU3W3HxLxc75Ho9s3qs5G68WoZx_POqaeN_T_0T-ThEmnRaVWOXvIN-j3zY6D_4mcynPT3vn-B3uAd66p8hV1TSs0pSTxGmohnQzJZ2TzG2pSXhT6exEk7Qn-uzR4t-n9xcnP-azZuBWqGJQtllI1TiIqWO-y4ZpmJSEyHb0CqWrEkoJAYypMAhCda1NmoRMA4BGTE-SpFr8YVs94sevhKqgw_MiygDWGlssNxoCUExiMErzkbk-3rJ3UPtoOEK8mDWVQm5LCE3SGhETrNYXh7N7a_LDVxON1iTY0JFLhBZdhz1CREcaCM7rb31RsSAY-5nEWyMV1d_RA7XUnaDrT45gXqDQY42k4N_vPaNvM9TrJmXQ7K9fFzBEcYiy3BcMPxx0cS_7qTbHA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHKCH8ioipQUfOLLB8XN9TNNWAdocUCv1Zvkxe6FsEE0O5dcztjdVBELitlrtyl7PjOebWc98hLwPSvqYDRDdDW9kC6kJxms098BllAiQWa5Gvljo-ZX8fK2uh2L1UgsDAOXwGYzzZfmXn5ZxnVNlaOEt-nMtH5JH6PilreVa9ymVzCFhlRl6C02Y_TidzfAzMArkaiwU7teZMnnL_5Q2_QOvyl-bcfEwZ0_JYjO3erDk23i9CuP464-2jf89-Wdkb8CadFqV4zl5AP0LsrvVgfAlmU97etrfwvdwA_TY30GuqaQnlaaeYqCKhkAzX9oNRXRLS8qfTmOlnKBfN6ePlv0-uTo7vZzNm4FcoYlC2VUjVOIipY77LhmmYlITIdvQKpasSSgmBjKkwCEJ1rU2ahEQiYCMiJBS5Fq8Ijv9sofXhOrgA_MiygBWGhssN1pCUAxi8IqzEfmwWXL3o_bQcCX2YNZVCbksITdIaESOs1juH80NsMsNXE432JNjQkUuMLbsOGoUxnCgjey09tYbEQOOuZ9FsDVeXf0ROdxI2Q3WeusE6g3CHG0mB_947R15PL-8OHfnnxZf3pAnebo1D3NIdlY_13CEyGQV3hZ9_A1sBN13 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Bayesian+Dynamic+Linear+Model+for+Human+Activity+Recognition&rft.jtitle=IEEE+access&rft.au=Pitombeira-Neto%2C+Anselmo+R.&rft.au=Fran%C3%A7a%2C+Diego+S.+de&rft.au=Cruz%2C+L%C3%ADvia+A.&rft.au=Silva%2C+Ticiana+L.+C.+da&rft.date=2025-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=30316&rft.epage=30333&rft_id=info:doi/10.1109%2FACCESS.2025.3541385&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3541385 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |