An Ensemble Bayesian Dynamic Linear Model for Human Activity Recognition

Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and surveillance. Due to the current ubiquity of inertial measurement units (IMUs) in consumer electronics, including accelerometers and gyroscopes, HAR...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; p. 1
Main Authors Pitombeira-Neto, Anselmo R., De Franca, Diego S., Cruz, Livia A., Da Silva, Ticiana L. C., De Macedo, Jose Antonio F.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3541385

Cover

Loading…
Abstract Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and surveillance. Due to the current ubiquity of inertial measurement units (IMUs) in consumer electronics, including accelerometers and gyroscopes, HAR applications have increasingly used signals produced by these sensors. However, HAR from IMU data is challenging, since time-series data generated from human activity are typically multivariate, non-stationary, and noisy. In this work, we investigate the application of Bayesian dynamic linear models (BDLMs) to the online classification of time-series data of human activity acquired from IMUs. BDLMs are promising in HAR from IMU signals because they seamlessly handle temporal dependencies and uncertainty inherent in sensor data. Unlike static classifiers, BDLMs account for the sequential nature of IMU signals, enabling more accurate tracking of transitions between activities. In particular, we propose a method based on an ensemble BDLM for online HAR that is fully transparent and requires little preprocessing of data. We test the proposed method in two tasks, activity classification and intensity classification, and use two real datasets with diverse activities and subjects. The experimental results indicate that the proposed ensemble BDLM is competitive with consolidated benchmark methods and can be an effective method in real applications of online HAR.
AbstractList Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and surveillance. Due to the current ubiquity of inertial measurement units (IMUs) in consumer electronics, including accelerometers and gyroscopes, HAR applications have increasingly used signals produced by these sensors. However, HAR from IMU data is challenging, since time-series data generated from human activity are typically multivariate, non-stationary, and noisy. In this work, we investigate the application of Bayesian dynamic linear models (BDLMs) to the online classification of time-series data of human activity acquired from IMUs. BDLMs are promising in HAR from IMU signals because they seamlessly handle temporal dependencies and uncertainty inherent in sensor data. Unlike static classifiers, BDLMs account for the sequential nature of IMU signals, enabling more accurate tracking of transitions between activities. In particular, we propose a method based on an ensemble BDLM for online HAR that is fully transparent and requires little preprocessing of data. We test the proposed method in two tasks, activity classification and intensity classification, and use two real datasets with diverse activities and subjects. The experimental results indicate that the proposed ensemble BDLM is competitive with consolidated benchmark methods and can be an effective method in real applications of online HAR.
Author Pitombeira-Neto, Anselmo R.
Cruz, Livia A.
Da Silva, Ticiana L. C.
De Franca, Diego S.
De Macedo, Jose Antonio F.
Author_xml – sequence: 1
  givenname: Anselmo R.
  orcidid: 0000-0001-9234-8917
  surname: Pitombeira-Neto
  fullname: Pitombeira-Neto, Anselmo R.
  organization: Department of Industrial Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
– sequence: 2
  givenname: Diego S.
  surname: De Franca
  fullname: De Franca, Diego S.
  organization: Department of Applied Mathematics and Statistics, Federal University of Ceará, Fortaleza, Ceará, Brazil
– sequence: 3
  givenname: Livia A.
  surname: Cruz
  fullname: Cruz, Livia A.
  organization: Insight Data Science Lab, Federal University of Ceará, Fortaleza, Ceará, Brazil
– sequence: 4
  givenname: Ticiana L. C.
  surname: Da Silva
  fullname: Da Silva, Ticiana L. C.
  organization: Insight Data Science Lab, Federal University of Ceará, Fortaleza, Ceará, Brazil
– sequence: 5
  givenname: Jose Antonio F.
  surname: De Macedo
  fullname: De Macedo, Jose Antonio F.
  organization: Insight Data Science Lab, Federal University of Ceará, Fortaleza, Ceará, Brazil
BookMark eNpNUU1LAzEQDaLg5y_Qw4Ln1mwmyWaPtVYrVAQ_ziGbzEpKm2h2K_TfG90incsMb-a9GeadksMQAxJyWdJxWdL6ZjKdzl5fx4wyMQbBS1DigJywUtYjECAP9-pjctF1S5pDZUhUJ2Q-CcUsdLhuVljcmi123oTibhvM2tti4QOaVDxFh6uijamYb9a5PbG9__b9tnhBGz-C730M5-SoNasOL3b5jLzfz96m89Hi-eFxOlmMLIi6z1c4Bs61zLSuosI6UQJXjRLU1ZXjllPkjWsYOqCtqq2EhilAbiWlzjIJZ-Rx0HXRLPVn8muTtjoar_-AmD60Sb23K9QUhGXAuWqZ5RUTNcqKt1Ka2lRgG5q1rgetzxS_Ntj1ehk3KeTzNeT_MM5lVeYpGKZsil2XsP3fWlL964AeHNC_DuidA5l1NbA8Iu4xlIJacvgBNvuCAA
CODEN IAECCG
Cites_doi 10.1109/SURV.2012.110112.00192
10.2307/2171813
10.2307/2348524
10.1007/s11042-021-11410-0
10.1145/2499621
10.1137/0916069
10.1016/j.procs.2019.08.100
10.1016/j.jspi.2007.03.057
10.1007/s12652-011-0064-0
10.1109/ACCESS.2022.3204739
10.3390/s150102059
10.1016/j.knosys.2021.106970
10.3390/s151229858
10.1007/s11067-019-09490-5
10.1109/JBHI.2024.3368042
10.1007/978-3-319-66185-8_44
10.1249/MSS.0b013e31821ece12
10.1016/j.patrec.2018.02.010
10.1145/2370216.2370438
10.1016/j.future.2017.11.029
10.1093/biomet/68.1.265
10.5220/0005792401430151
10.1109/JSEN.2021.3122258
10.1109/ACCESS.2017.2676168
10.1109/TCE.2024.3373824
10.1002/atr.1449
10.3390/s21165613
10.1214/aos/1176325375
10.3390/s16010115
10.1007/978-1-4757-9365-9
10.1016/j.neunet.2014.01.008
10.1038/s41746-021-00514-4
10.1007/s00521-022-07937-4
10.1109/CVPRW63382.2024.00344
10.1016/j.knosys.2024.112480
10.1109/COMST.2024.3357591
10.1109/ICTAI.2012.169
10.1029/2021WR031745
10.14569/IJACSA.2019.0100311
10.1109/TKDE.2018.2855159
10.1145/3584986
10.1109/CVPR.2019.00792
10.3390/urbansci2040117
10.1016/j.renene.2020.05.182
10.1016/j.eswa.2021.116287
10.1007/s12652-019-01380-5
10.1371/journal.pone.0038346
10.1007/978-981-13-2553-3_24
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3541385
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_035c23448f2c47259e674f66a9a73cb0
10_1109_ACCESS_2025_3541385
10883964
Genre orig-research
GrantInformation_xml – fundername: Samsung Eletr?nica da Amaz?nia
  funderid: 10.13039/100020144
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-35d23ddf2afd705cd51348b850d97d4c40e4bdb2ed30f89c63b283e4c600dc263
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:11:08 EDT 2025
Mon Jun 30 12:43:11 EDT 2025
Tue Jul 01 05:29:54 EDT 2025
Wed Aug 27 01:52:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-35d23ddf2afd705cd51348b850d97d4c40e4bdb2ed30f89c63b283e4c600dc263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9234-8917
0000-0003-2327-9692
0000-0001-7686-9827
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10883964
PQID 3169244671
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_10883964
proquest_journals_3169244671
doaj_primary_oai_doaj_org_article_035c23448f2c47259e674f66a9a73cb0
crossref_primary_10_1109_ACCESS_2025_3541385
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Titsias (ref50) 2023
ref11
ref10
ref17
ref16
ref19
ref18
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Reiss (ref46) 2012
References_xml – ident: ref9
  doi: 10.1109/SURV.2012.110112.00192
– ident: ref44
  doi: 10.2307/2171813
– ident: ref42
  doi: 10.2307/2348524
– ident: ref15
  doi: 10.1007/s11042-021-11410-0
– ident: ref7
  doi: 10.1145/2499621
– ident: ref45
  doi: 10.1137/0916069
– ident: ref4
  doi: 10.1016/j.procs.2019.08.100
– ident: ref33
  doi: 10.1016/j.jspi.2007.03.057
– ident: ref28
  doi: 10.1007/s12652-011-0064-0
– ident: ref8
  doi: 10.1109/ACCESS.2022.3204739
– ident: ref10
  doi: 10.3390/s150102059
– ident: ref12
  doi: 10.1016/j.knosys.2021.106970
– ident: ref18
  doi: 10.3390/s151229858
– ident: ref40
  doi: 10.1007/s11067-019-09490-5
– ident: ref25
  doi: 10.1109/JBHI.2024.3368042
– ident: ref37
  doi: 10.1007/978-3-319-66185-8_44
– year: 2023
  ident: ref50
  article-title: Kalman filter for online classification of non-stationary data
  publication-title: arXiv:2306.08448
– ident: ref48
  doi: 10.1249/MSS.0b013e31821ece12
– ident: ref13
  doi: 10.1016/j.patrec.2018.02.010
– ident: ref47
  doi: 10.1145/2370216.2370438
– ident: ref19
  doi: 10.1016/j.future.2017.11.029
– ident: ref41
  doi: 10.1093/biomet/68.1.265
– ident: ref49
  doi: 10.5220/0005792401430151
– ident: ref20
  doi: 10.1109/JSEN.2021.3122258
– ident: ref22
  doi: 10.1109/ACCESS.2017.2676168
– ident: ref3
  doi: 10.1109/TCE.2024.3373824
– ident: ref38
  doi: 10.1002/atr.1449
– year: 2012
  ident: ref46
  article-title: PAMAP2 physical activity monitoring
– ident: ref31
  doi: 10.3390/s21165613
– ident: ref43
  doi: 10.1214/aos/1176325375
– ident: ref21
  doi: 10.3390/s16010115
– ident: ref32
  doi: 10.1007/978-1-4757-9365-9
– ident: ref27
  doi: 10.1016/j.neunet.2014.01.008
– ident: ref14
  doi: 10.1038/s41746-021-00514-4
– ident: ref5
  doi: 10.1007/s00521-022-07937-4
– ident: ref1
  doi: 10.1109/CVPRW63382.2024.00344
– ident: ref2
  doi: 10.1016/j.knosys.2024.112480
– ident: ref11
  doi: 10.1109/COMST.2024.3357591
– ident: ref26
  doi: 10.1109/ICTAI.2012.169
– ident: ref34
  doi: 10.1029/2021WR031745
– ident: ref6
  doi: 10.14569/IJACSA.2019.0100311
– ident: ref29
  doi: 10.1109/TKDE.2018.2855159
– ident: ref23
  doi: 10.1145/3584986
– ident: ref30
  doi: 10.1109/CVPR.2019.00792
– ident: ref39
  doi: 10.3390/urbansci2040117
– ident: ref35
  doi: 10.1016/j.renene.2020.05.182
– ident: ref17
  doi: 10.1016/j.eswa.2021.116287
– ident: ref24
  doi: 10.1007/s12652-019-01380-5
– ident: ref36
  doi: 10.1371/journal.pone.0038346
– ident: ref16
  doi: 10.1007/978-981-13-2553-3_24
SSID ssj0000816957
Score 2.3406265
Snippet Human activity recognition (HAR) has been gaining attention in recent years as a result of its many applications in health, sports, entertainment, and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accelerometers
Bayes methods
Bayesian analysis
Bayesian dynamic linear models
Classification
Computational modeling
Data acquisition
Data models
Feature extraction
Hidden Markov models
Human activity recognition
inertial measurement unit
Inertial platforms
Kalman filter
Nusselt number
Sensor phenomena and characterization
Sensors
Time series
Time series analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjwwEur6GY9paVUhwYCo1M3yK1NJES0D_55zkqJIDCysUSLH3_nuvrPs-xC6dYJbnxwQ0g3NeB5D5pSV4O6Ocs-BIJN0G_npWc4X_HEplh2pr3QmrGkP3AA3JEx4yqCIKCl8CmQ9SsVLKa22inlXV-uQ8zrFVB2D85HUQrVthkZED4vJBGYEBSEV90xA6E7qyZ1UVHfsbyVWfsXlOtnMjtFRyxJx0fzdCdqL1Sk67PQOPEPzosLTahPf3Crisf2K6TYkfmgE5jGUmLCEcVI6W2HgpbjerMeFb8Qi8Mvu3NC66qHFbPo6mWetLELmmdDbjIlAWQgltWVQRPggRoznLhckaBUAYBK5C47GwEiZay-ZAw4RuQduEzyV7BztV-sqXiAsnXXEMs9d1Fxpp6mSPDpBondWUNJHdzuEzHvT_cLUVQPRpgHUJEBNC2gfjROKP6-m1tX1AzCoaQ1q_jJoH_WSDTrj5UDiJO-jwc4opvWzjWFgZiAoUo0u_2PsK3SQ5tNssQzQ_vbjM14D6di6m3p9fQNlWc8E
  priority: 102
  providerName: Directory of Open Access Journals
Title An Ensemble Bayesian Dynamic Linear Model for Human Activity Recognition
URI https://ieeexplore.ieee.org/document/10883964
https://www.proquest.com/docview/3169244671
https://doaj.org/article/035c23448f2c47259e674f66a9a73cb0
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp_ZQCqXqUkA-cGy2Xj_j47KAVkhwqIrEzfJjcoFmEewe6K_v2M6iFahSb1GUyI5nxjPfxDMfISdBSR-zAaK74Y1sITXBeI3mHriMEgNklquRr671_EZe3qrboVi91MIAQDl8BuN8Wf7lp0Vc5VQZWniL_lzLLbKFyK0Wa70kVDKDhFVm6Cw0YfbHdDbDj0AMyNVYKNytM2HyhvcpTfoHVpU3W3HxLxc75Ho9s3qs5G68WoZx_POqaeN_T_0T-ThEmnRaVWOXvIN-j3zY6D_4mcynPT3vn-B3uAd66p8hV1TSs0pSTxGmohnQzJZ2TzG2pSXhT6exEk7Qn-uzR4t-n9xcnP-azZuBWqGJQtllI1TiIqWO-y4ZpmJSEyHb0CqWrEkoJAYypMAhCda1NmoRMA4BGTE-SpFr8YVs94sevhKqgw_MiygDWGlssNxoCUExiMErzkbk-3rJ3UPtoOEK8mDWVQm5LCE3SGhETrNYXh7N7a_LDVxON1iTY0JFLhBZdhz1CREcaCM7rb31RsSAY-5nEWyMV1d_RA7XUnaDrT45gXqDQY42k4N_vPaNvM9TrJmXQ7K9fFzBEcYiy3BcMPxx0cS_7qTbHA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHKCH8ioipQUfOLLB8XN9TNNWAdocUCv1Zvkxe6FsEE0O5dcztjdVBELitlrtyl7PjOebWc98hLwPSvqYDRDdDW9kC6kJxms098BllAiQWa5Gvljo-ZX8fK2uh2L1UgsDAOXwGYzzZfmXn5ZxnVNlaOEt-nMtH5JH6PilreVa9ymVzCFhlRl6C02Y_TidzfAzMArkaiwU7teZMnnL_5Q2_QOvyl-bcfEwZ0_JYjO3erDk23i9CuP464-2jf89-Wdkb8CadFqV4zl5AP0LsrvVgfAlmU97etrfwvdwA_TY30GuqaQnlaaeYqCKhkAzX9oNRXRLS8qfTmOlnKBfN6ePlv0-uTo7vZzNm4FcoYlC2VUjVOIipY77LhmmYlITIdvQKpasSSgmBjKkwCEJ1rU2ahEQiYCMiJBS5Fq8Ijv9sofXhOrgA_MiygBWGhssN1pCUAxi8IqzEfmwWXL3o_bQcCX2YNZVCbksITdIaESOs1juH80NsMsNXE432JNjQkUuMLbsOGoUxnCgjey09tYbEQOOuZ9FsDVeXf0ROdxI2Q3WeusE6g3CHG0mB_947R15PL-8OHfnnxZf3pAnebo1D3NIdlY_13CEyGQV3hZ9_A1sBN13
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Bayesian+Dynamic+Linear+Model+for+Human+Activity+Recognition&rft.jtitle=IEEE+access&rft.au=Pitombeira-Neto%2C+Anselmo+R.&rft.au=Fran%C3%A7a%2C+Diego+S.+de&rft.au=Cruz%2C+L%C3%ADvia+A.&rft.au=Silva%2C+Ticiana+L.+C.+da&rft.date=2025-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=30316&rft.epage=30333&rft_id=info:doi/10.1109%2FACCESS.2025.3541385&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3541385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon