Federated learning for 6G communications: Challenges, methods, and future directions

As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML)...

Full description

Saved in:
Bibliographic Details
Published inChina communications Vol. 17; no. 9; pp. 105 - 118
Main Authors Liu, Yi, Yuan, Xingliang, Xiong, Zehui, Kang, Jiawen, Wang, Xiaofei, Niyato, Dusit
Format Journal Article
LanguageEnglish
Published China Institute of Communications 01.09.2020
School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore
Subjects
Online AccessGet full text
ISSN1673-5447
DOI10.23919/JCC.2020.09.009

Cover

Loading…
Abstract As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML) solutions in heterogeneous and massive-scale networks. However, traditional ML techniques require centralized data collection and processing by a central server, which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns. Federated learning, as an emerging distributed AI approach with privacy preservation nature, is particularly attractive for various wireless applications, especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G. In this article, we first introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G. We then describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications.
AbstractList As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML) solutions in heterogeneous and massive-scale networks. However, traditional ML techniques require centralized data collection and processing by a central server, which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns. Federated learning, as an emerging distributed AI approach with privacy preservation nature, is particularly attractive for various wireless applications, especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G. In this article, we first introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G. We then describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications.
As the 5G communication networks are being widely deployed worldwide, both in-dustry and academia have started to move be-yond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML) solutions in heterogeneous and massive-scale networks. However, traditional ML techniques require centralized data collection and pro-cessing by a central server, which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns. Federated learning, as an emerging distributed AI approach with privacy preservation nature, is particularly attractive for various wireless applications, especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G. In this article, we first introduce the integration of 6G and feder-ated learning and provide potential federated learning applications for 6G. We then describe key technical challenges, the corresponding federated learning methods, and open prob-lems for future research on federated learning in the context of 6G communications.
Author Kang, Jiawen
Xiong, Zehui
Wang, Xiaofei
Liu, Yi
Yuan, Xingliang
Niyato, Dusit
AuthorAffiliation School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore
AuthorAffiliation_xml – name: School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore
Author_xml – sequence: 1
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: School of Data Science of Technology, Heilongjiang University, Harbin, China
– sequence: 2
  givenname: Xingliang
  surname: Yuan
  fullname: Yuan, Xingliang
  organization: Faculty of Information Technology, Monash University, Australia
– sequence: 3
  givenname: Zehui
  surname: Xiong
  fullname: Xiong, Zehui
  organization: Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore
– sequence: 4
  givenname: Jiawen
  surname: Kang
  fullname: Kang, Jiawen
  organization: Energy Research Institute, Nanyang Technological University, Singapore
– sequence: 5
  givenname: Xiaofei
  surname: Wang
  fullname: Wang, Xiaofei
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 6
  givenname: Dusit
  surname: Niyato
  fullname: Niyato, Dusit
  organization: School of Computer Science and Engineering, NTU, Singapore
BookMark eNp9kD1PwzAQhj0UiVK6I7FkYSPBsWM3ZkMRLaBKLGW2HPucukoc5CTi49cTGsTAwOmku-F97qTnDM186wGhixQnhIpU3DwVRUIwwQkWCcZihuYpX9GYZdnqFC277oDHyjmnnMzRbg0GgurBRDWo4J2vItuGiG8i3TbN4J1WvWt9dxsVe1XX4CvorqMG-n1rxkV5E9mhHwJExgXQx-w5OrGq7mD5MxfoZX2_Kx7i7fPmsbjbxpoy0cdEQM4wEG6NZppm5Yqb1Ohcg2GCG9C4tDiHLOdWUSixIpYCo2VWMkuYFXSBrqa7b8pb5St5aIfgx4_ys-rfvx1gMfaYw1NOh7brAlj5GlyjwodMsTxKk6M0-Q1ILOSE8D-Idv3RRB-Uq_8DLyfQAcDvH0EwE3lKvwCfuH47
CODEN CCHOBE
CitedBy_id crossref_primary_10_1016_j_aej_2024_02_031
crossref_primary_10_1109_JIOT_2023_3272334
crossref_primary_10_1109_LCOMM_2023_3308334
crossref_primary_10_1109_LWC_2023_3307416
crossref_primary_10_1109_JIOT_2022_3218755
crossref_primary_10_1109_TVT_2021_3055767
crossref_primary_10_3390_info15090550
crossref_primary_10_1088_1755_1315_784_1_012046
crossref_primary_10_1002_ett_4458
crossref_primary_10_1109_JIOT_2024_3397302
crossref_primary_10_1109_JIOT_2022_3152829
crossref_primary_10_1109_TMLCN_2023_3347680
crossref_primary_10_7717_peerj_cs_2360
crossref_primary_10_1109_ACCESS_2022_3161132
crossref_primary_10_1109_TMC_2023_3278668
crossref_primary_10_1002_dac_4996
crossref_primary_10_1109_TCOMM_2022_3175175
crossref_primary_10_3390_s22020450
crossref_primary_10_1016_j_biotechadv_2023_108237
crossref_primary_10_1109_JBHI_2022_3143576
crossref_primary_10_1016_j_vehcom_2022_100455
crossref_primary_10_1016_j_engappai_2024_109233
crossref_primary_10_1016_j_vehcom_2021_100399
crossref_primary_10_1016_j_comnet_2024_110358
crossref_primary_10_1109_TII_2022_3167478
crossref_primary_10_1109_COMST_2021_3108618
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_3390_s23167235
crossref_primary_10_1109_TCE_2023_3321846
crossref_primary_10_1109_TNSE_2024_3508594
crossref_primary_10_3390_electronics12112478
crossref_primary_10_1109_TMC_2021_3123195
crossref_primary_10_1109_LCOMM_2021_3122129
crossref_primary_10_1109_TCYB_2023_3235496
crossref_primary_10_2139_ssrn_4179215
crossref_primary_10_1016_j_seta_2022_102987
crossref_primary_10_1109_TNSE_2022_3178970
crossref_primary_10_3390_app14072720
crossref_primary_10_1109_ACCESS_2023_3284976
crossref_primary_10_1145_3453169
crossref_primary_10_1080_17517575_2022_2101025
crossref_primary_10_1109_ACCESS_2024_3450352
crossref_primary_10_1109_TCOMM_2023_3338738
crossref_primary_10_1109_TCC_2025_3530681
crossref_primary_10_1016_j_comcom_2022_04_024
crossref_primary_10_3390_s23146443
crossref_primary_10_2478_amns_2023_1_00459
crossref_primary_10_1109_TMLCN_2024_3393892
crossref_primary_10_1109_COMST_2023_3329027
crossref_primary_10_1016_j_comnet_2023_109650
crossref_primary_10_1109_JBHI_2022_3185673
crossref_primary_10_1109_JIOT_2022_3151945
crossref_primary_10_1016_j_jksuci_2023_101575
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1109_JIOT_2022_3168885
crossref_primary_10_3390_bdcc5040056
crossref_primary_10_1016_j_comnet_2022_109048
crossref_primary_10_3390_electronics12071533
crossref_primary_10_3390_s21154999
crossref_primary_10_3390_info15110727
crossref_primary_10_1007_s10796_021_10144_6
crossref_primary_10_1109_TVT_2022_3206876
crossref_primary_10_1109_TVT_2023_3318080
crossref_primary_10_1109_JIOT_2022_3231363
crossref_primary_10_1002_wfs2_1496
crossref_primary_10_1088_1742_6596_2466_1_012005
crossref_primary_10_1016_j_iswa_2023_200231
crossref_primary_10_1109_TSP_2024_3408631
crossref_primary_10_1109_ACCESS_2021_3118642
crossref_primary_10_1109_ACCESS_2020_3037474
crossref_primary_10_1109_TVT_2024_3390226
crossref_primary_10_1109_OJCOMS_2021_3071496
crossref_primary_10_1155_2021_5051328
crossref_primary_10_3390_sym12101674
crossref_primary_10_1109_JIOT_2022_3229270
crossref_primary_10_1016_j_dcan_2022_04_005
crossref_primary_10_32604_cmc_2024_049846
crossref_primary_10_1109_JIOT_2023_3285868
crossref_primary_10_1109_TII_2020_3032165
crossref_primary_10_1016_j_jksuci_2022_03_019
crossref_primary_10_3390_s24102968
crossref_primary_10_1145_3526195
crossref_primary_10_4108_eetiot_5910
crossref_primary_10_1016_j_eswa_2023_119896
crossref_primary_10_3390_electronics13183635
crossref_primary_10_1007_s00521_022_07065_z
crossref_primary_10_1109_JIOT_2022_3151193
crossref_primary_10_32604_csse_2023_027216
crossref_primary_10_1007_s10845_024_02529_6
crossref_primary_10_1109_TNSE_2022_3168969
crossref_primary_10_1109_JIOT_2022_3176360
crossref_primary_10_1109_ACCESS_2024_3412192
crossref_primary_10_1109_TVT_2021_3133291
crossref_primary_10_1016_j_comnet_2021_108693
crossref_primary_10_1109_ACCESS_2024_3381611
crossref_primary_10_1016_j_future_2024_05_009
crossref_primary_10_1109_JSYST_2021_3120299
crossref_primary_10_1109_TMC_2021_3070013
crossref_primary_10_1109_ACCESS_2020_3031966
crossref_primary_10_1016_j_aej_2024_02_044
crossref_primary_10_1155_2023_8658278
crossref_primary_10_1109_OJCOMS_2023_3265425
crossref_primary_10_1109_TCOMM_2022_3153068
crossref_primary_10_1109_COMST_2022_3200740
crossref_primary_10_1109_TGCN_2023_3242999
crossref_primary_10_1109_JIOT_2022_3214211
crossref_primary_10_3390_mi15050620
crossref_primary_10_1007_s11277_022_09590_5
crossref_primary_10_1109_TNNLS_2022_3216981
crossref_primary_10_1109_TWC_2022_3226867
crossref_primary_10_1016_j_comnet_2022_109150
crossref_primary_10_1007_s40747_022_00729_2
crossref_primary_10_1109_ACCESS_2024_3399484
crossref_primary_10_3390_sym14020195
crossref_primary_10_1080_23270012_2021_1882350
crossref_primary_10_1145_3678182
crossref_primary_10_1016_j_knosys_2023_110658
crossref_primary_10_1109_COMST_2023_3315374
crossref_primary_10_1049_cmu2_12110
crossref_primary_10_1109_OJCOMS_2022_3222749
crossref_primary_10_3390_electronics12132817
crossref_primary_10_1109_ACCESS_2024_3521579
crossref_primary_10_1109_MWC_2021_9690485
crossref_primary_10_1109_MWC_006_2200407
crossref_primary_10_1109_TWC_2023_3251339
crossref_primary_10_1109_TNSE_2022_3196463
crossref_primary_10_3390_electronics10192372
crossref_primary_10_1109_OJCOMS_2024_3391731
crossref_primary_10_1109_JIOT_2023_3285937
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1109_ACCESS_2024_3470589
crossref_primary_10_1109_JIOT_2022_3224239
crossref_primary_10_1109_TGCN_2022_3187335
crossref_primary_10_1109_TNSE_2022_3140529
crossref_primary_10_1109_LCOMM_2022_3167088
crossref_primary_10_1109_OJCOMS_2023_3243870
crossref_primary_10_1109_TVT_2023_3264202
crossref_primary_10_3390_jsan14010009
crossref_primary_10_1109_TWC_2024_3447833
crossref_primary_10_3390_photonics10111210
crossref_primary_10_1109_TNSM_2022_3208522
crossref_primary_10_1109_JSTSP_2021_3137028
crossref_primary_10_1109_JIOT_2021_3098508
crossref_primary_10_1109_TCOMM_2023_3317300
crossref_primary_10_3390_s21051709
crossref_primary_10_1016_j_rineng_2024_102462
crossref_primary_10_1016_j_eng_2021_12_002
crossref_primary_10_1109_TNSE_2022_3185672
crossref_primary_10_1007_s10586_022_03658_4
crossref_primary_10_1109_LSP_2022_3154653
crossref_primary_10_1109_ACCESS_2023_3269297
crossref_primary_10_1109_JIOT_2023_3237032
crossref_primary_10_1109_TNSE_2022_3218313
crossref_primary_10_1109_JIOT_2020_3021006
crossref_primary_10_1109_JIOT_2021_3056091
crossref_primary_10_1109_COMST_2021_3058573
crossref_primary_10_1109_JSTSP_2022_3156756
crossref_primary_10_1109_TVT_2024_3399011
crossref_primary_10_1109_JIOT_2024_3468443
crossref_primary_10_1109_TVT_2023_3280848
crossref_primary_10_1016_j_future_2023_06_001
crossref_primary_10_1016_j_icte_2022_05_005
crossref_primary_10_1016_j_clscn_2022_100065
crossref_primary_10_1109_TCOMM_2023_3277882
crossref_primary_10_1002_dac_5228
crossref_primary_10_1109_JIOT_2022_3172114
crossref_primary_10_1109_OJCOMS_2023_3323832
crossref_primary_10_1007_s10462_023_10417_3
crossref_primary_10_3390_s24030968
crossref_primary_10_1016_j_jii_2023_100548
crossref_primary_10_1016_j_iot_2024_101251
crossref_primary_10_1109_JIOT_2021_3079104
crossref_primary_10_3390_electronics13112162
crossref_primary_10_1109_JSTSP_2022_3161786
crossref_primary_10_1007_s13369_023_08439_8
crossref_primary_10_1109_JIOT_2022_3204975
crossref_primary_10_3390_s22051969
crossref_primary_10_3390_s22155778
crossref_primary_10_54097_3rgtme97
crossref_primary_10_61186_jsdp_21_3_23
crossref_primary_10_1109_JSAC_2022_3221990
crossref_primary_10_1109_JIOT_2022_3161050
crossref_primary_10_1109_ACCESS_2022_3232440
crossref_primary_10_3390_jsan10040060
crossref_primary_10_1109_MWC_006_2100438
crossref_primary_10_1007_s11276_024_03823_0
crossref_primary_10_1109_TMC_2022_3178949
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1145_3453186
crossref_primary_10_1109_TNSE_2021_3126021
crossref_primary_10_1109_ACCESS_2024_3351600
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1007_s42979_024_02831_3
crossref_primary_10_1016_j_iot_2023_100715
crossref_primary_10_1016_j_jare_2024_02_012
crossref_primary_10_1109_TVT_2022_3161503
crossref_primary_10_2478_jok_2021_0018
crossref_primary_10_1016_j_future_2024_03_041
crossref_primary_10_1109_TWC_2023_3272920
crossref_primary_10_1080_03081079_2024_2302605
crossref_primary_10_1109_TNSE_2022_3190330
crossref_primary_10_1109_TVT_2021_3065084
crossref_primary_10_1016_j_future_2021_06_015
crossref_primary_10_1186_s13677_022_00314_5
crossref_primary_10_1109_JSAC_2021_3126052
crossref_primary_10_1109_JAS_2023_123828
crossref_primary_10_1002_widm_1443
crossref_primary_10_1109_TWC_2022_3221797
crossref_primary_10_1109_COMST_2022_3208196
crossref_primary_10_1016_j_iotcps_2023_04_001
crossref_primary_10_3390_electronics12030647
crossref_primary_10_59324_ejtas_2023_1_4__43
crossref_primary_10_1002_sat_1482
crossref_primary_10_3390_electronics12061472
crossref_primary_10_1016_j_seta_2022_102666
crossref_primary_10_1007_s42979_021_00841_z
crossref_primary_10_1016_j_comcom_2023_04_010
crossref_primary_10_1109_JSAC_2021_3118402
crossref_primary_10_1109_TNSE_2022_3163791
crossref_primary_10_1109_ACCESS_2022_3201876
crossref_primary_10_1109_TVT_2023_3317940
crossref_primary_10_1109_ACCESS_2024_3523327
crossref_primary_10_1109_TGCN_2022_3164574
crossref_primary_10_1016_j_future_2023_05_007
crossref_primary_10_1016_j_comcom_2025_108072
crossref_primary_10_1016_j_comnet_2022_108902
crossref_primary_10_1016_j_future_2022_08_004
crossref_primary_10_1109_TVT_2022_3225087
crossref_primary_10_3390_electronics9091416
crossref_primary_10_1109_JSAC_2022_3213317
crossref_primary_10_1109_LCOMM_2023_3286909
crossref_primary_10_1109_OJCOMS_2022_3215676
crossref_primary_10_1016_j_jfranklin_2022_12_053
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.2020.09.009
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 118
ExternalDocumentID zgtx202009009
10_23919_JCC_2020_09_009
9205981
Genre orig-research
GrantInformation_xml – fundername: This research is supported by the National Research Foundation; Singapore,under Singapore Energy Market Authority; Energy Resilience,NR-F2017EWT-EP003-041; Singapore NRF2015-NRF-ISF001-2277; Singapore NRF National Satellite of Excellence,Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0007; A*STARN-TU-SUTD Joint Research Grant on Artificial Intelligence for the Future of Manufacturing RGANS1906; (Wallenberg AI,Autonomous Systems and Software Program and Nanyang Technological University); (and NTU-WeBank JRI); Alibaba Group through Alibaba Innovative Research(AIR)Program and Alibaba-NTU Singapore Joint Research Institute; NTU,Singapore,and National Key Research and Development Program of China under Grant 2018YFC0809803 and Grant 2019YFB2101901; (Young Innovation Talents Project in Higher Education of Guangdong Province,China under grant ); in part by the National Science Foundation of China under Grant 61702364
  funderid: (NRF); (EMA); Energy Resilience,NR-F2017EWT-EP003-041; Singapore NRF2015-NRF-ISF001-2277; Singapore NRF National Satellite of Excellence,Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0007; A*STARN-TU-SUTD Joint Research Grant on Artificial Intelligence for the Future of Manufacturing RGANS1906; (Wallenberg AI,Autonomous Systems and Software Program and Nanyang Technological University); (and NTU-WeBank JRI); (JRI); NTU,Singapore,and National Key Research and Development Program of China under Grant 2018YFC0809803 and Grant 2019YFB2101901; (Young Innovation Talents Project in Higher Education of Guangdong Province,China under grant ); in part by the National Science Foundation of China under Grant 61702364
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
RIG
2B.
4A8
93N
PSX
ID FETCH-LOGICAL-c359t-29e850e26fdc5c34b76d1dc8ced596dec0bf08e486fa3eb0a2f3e53b4b5f25f93
IEDL.DBID RIE
ISSN 1673-5447
IngestDate Thu May 29 03:54:25 EDT 2025
Sun Jul 27 03:07:11 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Wed Aug 27 02:17:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 6G communication
security and privacy protection
federated learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-29e850e26fdc5c34b76d1dc8ced596dec0bf08e486fa3eb0a2f3e53b4b5f25f93
PageCount 14
ParticipantIDs wanfang_journals_zgtx202009009
crossref_citationtrail_10_23919_JCC_2020_09_009
ieee_primary_9205981
crossref_primary_10_23919_JCC_2020_09_009
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2020
Publisher China Institute of Communications
School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore
Publisher_xml – name: China Institute of Communications
– name: School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore
SSID ssj0000866362
Score 2.6035101
Snippet As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications....
As the 5G communication networks are being widely deployed worldwide, both in-dustry and academia have started to move be-yond 5G and explore 6G...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms 5G mobile communication
6G communication
6G mobile communication
Artificial intelligence
Collaborative work
Communication system security
federated learning
Optimization
security and privacy protection
Wireless communication
Title Federated learning for 6G communications: Challenges, methods, and future directions
URI https://ieeexplore.ieee.org/document/9205981
https://d.wanfangdata.com.cn/periodical/zgtx202009009
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qRS--xfoiBy-C22Y3j914k2IVQU8K3pY8Jj0oq9gtSH-9eWxLERFhDznMQJiZZWYyjw-hc0EpUFXaTBpiMmYdy5TOdSa1Zt6AhJIQG2Qfxd0zu3_hLyvocjELAwCx-Qz64Rhr-fbdTMNT2UAWPhgIc9arPnFLs1qL9xQfmgsa8UNzUYZ6PytTVbKgMpeD--HQJ4MFiUtNQ_fhkheKsCpxaKdxqhkv-ZfRFnqY3yy1lbz2p63um9mPpY3_vfo22uwCTXydLGMHrUCzi9bnc8iTPfQ0CnskfKhpcQcdMcY-gsXiFpvlqZHJFR7OEVcmlzhBTvuDaixOG0lw8ouBdh89j26ehndZh7GQGcplmxUSKk6gEM4abijTpbC5NZUBy6WwYIh2pAJWCacoaKIKR4FTzTR3BXeSHqC15r2BQ4SNg7wUuYZcaMYKIitllSpL5SplnOY9NJjLvDbdAvKAg_FW-0Qkaqn2WqqDlmoia6-lHrpYcHyk5Rt_0O4FqS_oOoH30Fmn1rr7OSf1bNx-BU4i_Xf0O98x2ggkqZvsBK21n1M49eFHq8-i3X0DI77Xlw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEBYhPaSXpmka6rZJdcilkLW1q8euegsmrpvXyYHchB4jHxI2oV5DyK-vHmtjSgiBPegwA2JmlhlJ882H0LGgFKiuXSEtsQVznhXalKaQxrAQQEJLSA2y12J6w85v-e0WOlljYQAgNZ_BMC7TW757sMt4VTaSVSgGIs76Xcj7vMxorfWNSijOBU0MoqWo44s_q_O7ZEVlKUfn43E4DlYkjTWN_YcbeSgRqyTYTut1O9_IMJNddLXaW24suRsuOzO0z_-NbXzr5j-iD32piU9zbOyhLWg_oZ0VEnmxj2aTOEkiFJsO9-QRcxxqWCx-Y7uJG1n8wuMV58riBGfS6bDQrcN5JgnOmTHKfkY3k7PZeFr0LAuFpVx2RSWh4QQq4Z3lljJTC1c621hwXAoHlhhPGmCN8JqCIbryFDg1zHBfcS_pAdpuH1r4grD1UNaiNFAKw1hFZKOd1nWtfaOtN3yARiubK9uPII9MGPcqHEWSl1TwkopeUkSq4KUB-rnWeMzjN16R3Y9WX8v1Bh-go96tqv89F-p53j1FTSLD9_VlvR9oZzq7ulSXf64vvqH3UTz3ln1H293fJRyGYqQzRykG_wGMIdrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+for+6G+communications%3A+Challenges%2C+methods%2C+and+future+directions&rft.jtitle=China+communications&rft.au=Liu%2C+Yi&rft.au=Yuan%2C+Xingliang&rft.au=Xiong%2C+Zehui&rft.au=Kang%2C+Jiawen&rft.date=2020-09-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=17&rft.issue=9&rft.spage=105&rft.epage=118&rft_id=info:doi/10.23919%2FJCC.2020.09.009&rft.externalDocID=9205981
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg