Federated learning for 6G communications: Challenges, methods, and future directions
As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML)...
Saved in:
Published in | China communications Vol. 17; no. 9; pp. 105 - 118 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
China Institute of Communications
01.09.2020
School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1673-5447 |
DOI | 10.23919/JCC.2020.09.009 |
Cover
Loading…
Abstract | As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML) solutions in heterogeneous and massive-scale networks. However, traditional ML techniques require centralized data collection and processing by a central server, which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns. Federated learning, as an emerging distributed AI approach with privacy preservation nature, is particularly attractive for various wireless applications, especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G. In this article, we first introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G. We then describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications. |
---|---|
AbstractList | As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML) solutions in heterogeneous and massive-scale networks. However, traditional ML techniques require centralized data collection and processing by a central server, which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns. Federated learning, as an emerging distributed AI approach with privacy preservation nature, is particularly attractive for various wireless applications, especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G. In this article, we first introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G. We then describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications. As the 5G communication networks are being widely deployed worldwide, both in-dustry and academia have started to move be-yond 5G and explore 6G communications. It is generally believed that 6G will be established on ubiquitous Artificial Intelligence (AI) to achieve data-driven Machine Learning (ML) solutions in heterogeneous and massive-scale networks. However, traditional ML techniques require centralized data collection and pro-cessing by a central server, which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns. Federated learning, as an emerging distributed AI approach with privacy preservation nature, is particularly attractive for various wireless applications, especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G. In this article, we first introduce the integration of 6G and feder-ated learning and provide potential federated learning applications for 6G. We then describe key technical challenges, the corresponding federated learning methods, and open prob-lems for future research on federated learning in the context of 6G communications. |
Author | Kang, Jiawen Xiong, Zehui Wang, Xiaofei Liu, Yi Yuan, Xingliang Niyato, Dusit |
AuthorAffiliation | School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore |
AuthorAffiliation_xml | – name: School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore |
Author_xml | – sequence: 1 givenname: Yi surname: Liu fullname: Liu, Yi organization: School of Data Science of Technology, Heilongjiang University, Harbin, China – sequence: 2 givenname: Xingliang surname: Yuan fullname: Yuan, Xingliang organization: Faculty of Information Technology, Monash University, Australia – sequence: 3 givenname: Zehui surname: Xiong fullname: Xiong, Zehui organization: Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore – sequence: 4 givenname: Jiawen surname: Kang fullname: Kang, Jiawen organization: Energy Research Institute, Nanyang Technological University, Singapore – sequence: 5 givenname: Xiaofei surname: Wang fullname: Wang, Xiaofei organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 6 givenname: Dusit surname: Niyato fullname: Niyato, Dusit organization: School of Computer Science and Engineering, NTU, Singapore |
BookMark | eNp9kD1PwzAQhj0UiVK6I7FkYSPBsWM3ZkMRLaBKLGW2HPucukoc5CTi49cTGsTAwOmku-F97qTnDM186wGhixQnhIpU3DwVRUIwwQkWCcZihuYpX9GYZdnqFC277oDHyjmnnMzRbg0GgurBRDWo4J2vItuGiG8i3TbN4J1WvWt9dxsVe1XX4CvorqMG-n1rxkV5E9mhHwJExgXQx-w5OrGq7mD5MxfoZX2_Kx7i7fPmsbjbxpoy0cdEQM4wEG6NZppm5Yqb1Ohcg2GCG9C4tDiHLOdWUSixIpYCo2VWMkuYFXSBrqa7b8pb5St5aIfgx4_ys-rfvx1gMfaYw1NOh7brAlj5GlyjwodMsTxKk6M0-Q1ILOSE8D-Idv3RRB-Uq_8DLyfQAcDvH0EwE3lKvwCfuH47 |
CODEN | CCHOBE |
CitedBy_id | crossref_primary_10_1016_j_aej_2024_02_031 crossref_primary_10_1109_JIOT_2023_3272334 crossref_primary_10_1109_LCOMM_2023_3308334 crossref_primary_10_1109_LWC_2023_3307416 crossref_primary_10_1109_JIOT_2022_3218755 crossref_primary_10_1109_TVT_2021_3055767 crossref_primary_10_3390_info15090550 crossref_primary_10_1088_1755_1315_784_1_012046 crossref_primary_10_1002_ett_4458 crossref_primary_10_1109_JIOT_2024_3397302 crossref_primary_10_1109_JIOT_2022_3152829 crossref_primary_10_1109_TMLCN_2023_3347680 crossref_primary_10_7717_peerj_cs_2360 crossref_primary_10_1109_ACCESS_2022_3161132 crossref_primary_10_1109_TMC_2023_3278668 crossref_primary_10_1002_dac_4996 crossref_primary_10_1109_TCOMM_2022_3175175 crossref_primary_10_3390_s22020450 crossref_primary_10_1016_j_biotechadv_2023_108237 crossref_primary_10_1109_JBHI_2022_3143576 crossref_primary_10_1016_j_vehcom_2022_100455 crossref_primary_10_1016_j_engappai_2024_109233 crossref_primary_10_1016_j_vehcom_2021_100399 crossref_primary_10_1016_j_comnet_2024_110358 crossref_primary_10_1109_TII_2022_3167478 crossref_primary_10_1109_COMST_2021_3108618 crossref_primary_10_1109_COMST_2023_3316615 crossref_primary_10_3390_s23167235 crossref_primary_10_1109_TCE_2023_3321846 crossref_primary_10_1109_TNSE_2024_3508594 crossref_primary_10_3390_electronics12112478 crossref_primary_10_1109_TMC_2021_3123195 crossref_primary_10_1109_LCOMM_2021_3122129 crossref_primary_10_1109_TCYB_2023_3235496 crossref_primary_10_2139_ssrn_4179215 crossref_primary_10_1016_j_seta_2022_102987 crossref_primary_10_1109_TNSE_2022_3178970 crossref_primary_10_3390_app14072720 crossref_primary_10_1109_ACCESS_2023_3284976 crossref_primary_10_1145_3453169 crossref_primary_10_1080_17517575_2022_2101025 crossref_primary_10_1109_ACCESS_2024_3450352 crossref_primary_10_1109_TCOMM_2023_3338738 crossref_primary_10_1109_TCC_2025_3530681 crossref_primary_10_1016_j_comcom_2022_04_024 crossref_primary_10_3390_s23146443 crossref_primary_10_2478_amns_2023_1_00459 crossref_primary_10_1109_TMLCN_2024_3393892 crossref_primary_10_1109_COMST_2023_3329027 crossref_primary_10_1016_j_comnet_2023_109650 crossref_primary_10_1109_JBHI_2022_3185673 crossref_primary_10_1109_JIOT_2022_3151945 crossref_primary_10_1016_j_jksuci_2023_101575 crossref_primary_10_1109_COMST_2024_3352910 crossref_primary_10_1109_JIOT_2022_3168885 crossref_primary_10_3390_bdcc5040056 crossref_primary_10_1016_j_comnet_2022_109048 crossref_primary_10_3390_electronics12071533 crossref_primary_10_3390_s21154999 crossref_primary_10_3390_info15110727 crossref_primary_10_1007_s10796_021_10144_6 crossref_primary_10_1109_TVT_2022_3206876 crossref_primary_10_1109_TVT_2023_3318080 crossref_primary_10_1109_JIOT_2022_3231363 crossref_primary_10_1002_wfs2_1496 crossref_primary_10_1088_1742_6596_2466_1_012005 crossref_primary_10_1016_j_iswa_2023_200231 crossref_primary_10_1109_TSP_2024_3408631 crossref_primary_10_1109_ACCESS_2021_3118642 crossref_primary_10_1109_ACCESS_2020_3037474 crossref_primary_10_1109_TVT_2024_3390226 crossref_primary_10_1109_OJCOMS_2021_3071496 crossref_primary_10_1155_2021_5051328 crossref_primary_10_3390_sym12101674 crossref_primary_10_1109_JIOT_2022_3229270 crossref_primary_10_1016_j_dcan_2022_04_005 crossref_primary_10_32604_cmc_2024_049846 crossref_primary_10_1109_JIOT_2023_3285868 crossref_primary_10_1109_TII_2020_3032165 crossref_primary_10_1016_j_jksuci_2022_03_019 crossref_primary_10_3390_s24102968 crossref_primary_10_1145_3526195 crossref_primary_10_4108_eetiot_5910 crossref_primary_10_1016_j_eswa_2023_119896 crossref_primary_10_3390_electronics13183635 crossref_primary_10_1007_s00521_022_07065_z crossref_primary_10_1109_JIOT_2022_3151193 crossref_primary_10_32604_csse_2023_027216 crossref_primary_10_1007_s10845_024_02529_6 crossref_primary_10_1109_TNSE_2022_3168969 crossref_primary_10_1109_JIOT_2022_3176360 crossref_primary_10_1109_ACCESS_2024_3412192 crossref_primary_10_1109_TVT_2021_3133291 crossref_primary_10_1016_j_comnet_2021_108693 crossref_primary_10_1109_ACCESS_2024_3381611 crossref_primary_10_1016_j_future_2024_05_009 crossref_primary_10_1109_JSYST_2021_3120299 crossref_primary_10_1109_TMC_2021_3070013 crossref_primary_10_1109_ACCESS_2020_3031966 crossref_primary_10_1016_j_aej_2024_02_044 crossref_primary_10_1155_2023_8658278 crossref_primary_10_1109_OJCOMS_2023_3265425 crossref_primary_10_1109_TCOMM_2022_3153068 crossref_primary_10_1109_COMST_2022_3200740 crossref_primary_10_1109_TGCN_2023_3242999 crossref_primary_10_1109_JIOT_2022_3214211 crossref_primary_10_3390_mi15050620 crossref_primary_10_1007_s11277_022_09590_5 crossref_primary_10_1109_TNNLS_2022_3216981 crossref_primary_10_1109_TWC_2022_3226867 crossref_primary_10_1016_j_comnet_2022_109150 crossref_primary_10_1007_s40747_022_00729_2 crossref_primary_10_1109_ACCESS_2024_3399484 crossref_primary_10_3390_sym14020195 crossref_primary_10_1080_23270012_2021_1882350 crossref_primary_10_1145_3678182 crossref_primary_10_1016_j_knosys_2023_110658 crossref_primary_10_1109_COMST_2023_3315374 crossref_primary_10_1049_cmu2_12110 crossref_primary_10_1109_OJCOMS_2022_3222749 crossref_primary_10_3390_electronics12132817 crossref_primary_10_1109_ACCESS_2024_3521579 crossref_primary_10_1109_MWC_2021_9690485 crossref_primary_10_1109_MWC_006_2200407 crossref_primary_10_1109_TWC_2023_3251339 crossref_primary_10_1109_TNSE_2022_3196463 crossref_primary_10_3390_electronics10192372 crossref_primary_10_1109_OJCOMS_2024_3391731 crossref_primary_10_1109_JIOT_2023_3285937 crossref_primary_10_1109_JSAC_2021_3118346 crossref_primary_10_1109_ACCESS_2024_3470589 crossref_primary_10_1109_JIOT_2022_3224239 crossref_primary_10_1109_TGCN_2022_3187335 crossref_primary_10_1109_TNSE_2022_3140529 crossref_primary_10_1109_LCOMM_2022_3167088 crossref_primary_10_1109_OJCOMS_2023_3243870 crossref_primary_10_1109_TVT_2023_3264202 crossref_primary_10_3390_jsan14010009 crossref_primary_10_1109_TWC_2024_3447833 crossref_primary_10_3390_photonics10111210 crossref_primary_10_1109_TNSM_2022_3208522 crossref_primary_10_1109_JSTSP_2021_3137028 crossref_primary_10_1109_JIOT_2021_3098508 crossref_primary_10_1109_TCOMM_2023_3317300 crossref_primary_10_3390_s21051709 crossref_primary_10_1016_j_rineng_2024_102462 crossref_primary_10_1016_j_eng_2021_12_002 crossref_primary_10_1109_TNSE_2022_3185672 crossref_primary_10_1007_s10586_022_03658_4 crossref_primary_10_1109_LSP_2022_3154653 crossref_primary_10_1109_ACCESS_2023_3269297 crossref_primary_10_1109_JIOT_2023_3237032 crossref_primary_10_1109_TNSE_2022_3218313 crossref_primary_10_1109_JIOT_2020_3021006 crossref_primary_10_1109_JIOT_2021_3056091 crossref_primary_10_1109_COMST_2021_3058573 crossref_primary_10_1109_JSTSP_2022_3156756 crossref_primary_10_1109_TVT_2024_3399011 crossref_primary_10_1109_JIOT_2024_3468443 crossref_primary_10_1109_TVT_2023_3280848 crossref_primary_10_1016_j_future_2023_06_001 crossref_primary_10_1016_j_icte_2022_05_005 crossref_primary_10_1016_j_clscn_2022_100065 crossref_primary_10_1109_TCOMM_2023_3277882 crossref_primary_10_1002_dac_5228 crossref_primary_10_1109_JIOT_2022_3172114 crossref_primary_10_1109_OJCOMS_2023_3323832 crossref_primary_10_1007_s10462_023_10417_3 crossref_primary_10_3390_s24030968 crossref_primary_10_1016_j_jii_2023_100548 crossref_primary_10_1016_j_iot_2024_101251 crossref_primary_10_1109_JIOT_2021_3079104 crossref_primary_10_3390_electronics13112162 crossref_primary_10_1109_JSTSP_2022_3161786 crossref_primary_10_1007_s13369_023_08439_8 crossref_primary_10_1109_JIOT_2022_3204975 crossref_primary_10_3390_s22051969 crossref_primary_10_3390_s22155778 crossref_primary_10_54097_3rgtme97 crossref_primary_10_61186_jsdp_21_3_23 crossref_primary_10_1109_JSAC_2022_3221990 crossref_primary_10_1109_JIOT_2022_3161050 crossref_primary_10_1109_ACCESS_2022_3232440 crossref_primary_10_3390_jsan10040060 crossref_primary_10_1109_MWC_006_2100438 crossref_primary_10_1007_s11276_024_03823_0 crossref_primary_10_1109_TMC_2022_3178949 crossref_primary_10_1109_JSTSP_2023_3239189 crossref_primary_10_1145_3453186 crossref_primary_10_1109_TNSE_2021_3126021 crossref_primary_10_1109_ACCESS_2024_3351600 crossref_primary_10_1109_COMST_2022_3175453 crossref_primary_10_1007_s42979_024_02831_3 crossref_primary_10_1016_j_iot_2023_100715 crossref_primary_10_1016_j_jare_2024_02_012 crossref_primary_10_1109_TVT_2022_3161503 crossref_primary_10_2478_jok_2021_0018 crossref_primary_10_1016_j_future_2024_03_041 crossref_primary_10_1109_TWC_2023_3272920 crossref_primary_10_1080_03081079_2024_2302605 crossref_primary_10_1109_TNSE_2022_3190330 crossref_primary_10_1109_TVT_2021_3065084 crossref_primary_10_1016_j_future_2021_06_015 crossref_primary_10_1186_s13677_022_00314_5 crossref_primary_10_1109_JSAC_2021_3126052 crossref_primary_10_1109_JAS_2023_123828 crossref_primary_10_1002_widm_1443 crossref_primary_10_1109_TWC_2022_3221797 crossref_primary_10_1109_COMST_2022_3208196 crossref_primary_10_1016_j_iotcps_2023_04_001 crossref_primary_10_3390_electronics12030647 crossref_primary_10_59324_ejtas_2023_1_4__43 crossref_primary_10_1002_sat_1482 crossref_primary_10_3390_electronics12061472 crossref_primary_10_1016_j_seta_2022_102666 crossref_primary_10_1007_s42979_021_00841_z crossref_primary_10_1016_j_comcom_2023_04_010 crossref_primary_10_1109_JSAC_2021_3118402 crossref_primary_10_1109_TNSE_2022_3163791 crossref_primary_10_1109_ACCESS_2022_3201876 crossref_primary_10_1109_TVT_2023_3317940 crossref_primary_10_1109_ACCESS_2024_3523327 crossref_primary_10_1109_TGCN_2022_3164574 crossref_primary_10_1016_j_future_2023_05_007 crossref_primary_10_1016_j_comcom_2025_108072 crossref_primary_10_1016_j_comnet_2022_108902 crossref_primary_10_1016_j_future_2022_08_004 crossref_primary_10_1109_TVT_2022_3225087 crossref_primary_10_3390_electronics9091416 crossref_primary_10_1109_JSAC_2022_3213317 crossref_primary_10_1109_LCOMM_2023_3286909 crossref_primary_10_1109_OJCOMS_2022_3215676 crossref_primary_10_1016_j_jfranklin_2022_12_053 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 97E RIA RIE AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.23919/JCC.2020.09.009 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EndPage | 118 |
ExternalDocumentID | zgtx202009009 10_23919_JCC_2020_09_009 9205981 |
Genre | orig-research |
GrantInformation_xml | – fundername: This research is supported by the National Research Foundation; Singapore,under Singapore Energy Market Authority; Energy Resilience,NR-F2017EWT-EP003-041; Singapore NRF2015-NRF-ISF001-2277; Singapore NRF National Satellite of Excellence,Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0007; A*STARN-TU-SUTD Joint Research Grant on Artificial Intelligence for the Future of Manufacturing RGANS1906; (Wallenberg AI,Autonomous Systems and Software Program and Nanyang Technological University); (and NTU-WeBank JRI); Alibaba Group through Alibaba Innovative Research(AIR)Program and Alibaba-NTU Singapore Joint Research Institute; NTU,Singapore,and National Key Research and Development Program of China under Grant 2018YFC0809803 and Grant 2019YFB2101901; (Young Innovation Talents Project in Higher Education of Guangdong Province,China under grant ); in part by the National Science Foundation of China under Grant 61702364 funderid: (NRF); (EMA); Energy Resilience,NR-F2017EWT-EP003-041; Singapore NRF2015-NRF-ISF001-2277; Singapore NRF National Satellite of Excellence,Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0007; A*STARN-TU-SUTD Joint Research Grant on Artificial Intelligence for the Future of Manufacturing RGANS1906; (Wallenberg AI,Autonomous Systems and Software Program and Nanyang Technological University); (and NTU-WeBank JRI); (JRI); NTU,Singapore,and National Key Research and Development Program of China under Grant 2018YFC0809803 and Grant 2019YFB2101901; (Young Innovation Talents Project in Higher Education of Guangdong Province,China under grant ); in part by the National Science Foundation of China under Grant 61702364 |
GroupedDBID | -SI -SJ -S~ 0R~ 29B 4.4 5GY 6IK 92H 92I 97E AAHTB AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABPEJ ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI CAJEJ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL Q-- Q-9 RIA RIE RNS TCJ TGT U1G U5S U5T AAYXX CITATION RIG 2B. 4A8 93N PSX |
ID | FETCH-LOGICAL-c359t-29e850e26fdc5c34b76d1dc8ced596dec0bf08e486fa3eb0a2f3e53b4b5f25f93 |
IEDL.DBID | RIE |
ISSN | 1673-5447 |
IngestDate | Thu May 29 03:54:25 EDT 2025 Sun Jul 27 03:07:11 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Wed Aug 27 02:17:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | 6G communication security and privacy protection federated learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-29e850e26fdc5c34b76d1dc8ced596dec0bf08e486fa3eb0a2f3e53b4b5f25f93 |
PageCount | 14 |
ParticipantIDs | wanfang_journals_zgtx202009009 crossref_citationtrail_10_23919_JCC_2020_09_009 ieee_primary_9205981 crossref_primary_10_23919_JCC_2020_09_009 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | China communications |
PublicationTitleAbbrev | ChinaComm |
PublicationTitle_FL | China Communications |
PublicationYear | 2020 |
Publisher | China Institute of Communications School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore |
Publisher_xml | – name: China Institute of Communications – name: School of Data Science of Technology, Heilongjiang University, Harbin, China%Faculty of Information Technology, Monash University, Australia%Alibaba-NTU Joint Research Institute and also School of Computer Science and Engineering, NTU, Singapore%Energy Research Institute, Nanyang Technological University, Singapore%College of Intelligence and Computing, Tianjin University, Tianjin, China%School of Computer Science and Engineering, NTU, Singapore |
SSID | ssj0000866362 |
Score | 2.6035101 |
Snippet | As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications.... As the 5G communication networks are being widely deployed worldwide, both in-dustry and academia have started to move be-yond 5G and explore 6G... |
SourceID | wanfang crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105 |
SubjectTerms | 5G mobile communication 6G communication 6G mobile communication Artificial intelligence Collaborative work Communication system security federated learning Optimization security and privacy protection Wireless communication |
Title | Federated learning for 6G communications: Challenges, methods, and future directions |
URI | https://ieeexplore.ieee.org/document/9205981 https://d.wanfangdata.com.cn/periodical/zgtx202009009 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qRS--xfoiBy-C22Y3j914k2IVQU8K3pY8Jj0oq9gtSH-9eWxLERFhDznMQJiZZWYyjw-hc0EpUFXaTBpiMmYdy5TOdSa1Zt6AhJIQG2Qfxd0zu3_hLyvocjELAwCx-Qz64Rhr-fbdTMNT2UAWPhgIc9arPnFLs1qL9xQfmgsa8UNzUYZ6PytTVbKgMpeD--HQJ4MFiUtNQ_fhkheKsCpxaKdxqhkv-ZfRFnqY3yy1lbz2p63um9mPpY3_vfo22uwCTXydLGMHrUCzi9bnc8iTPfQ0CnskfKhpcQcdMcY-gsXiFpvlqZHJFR7OEVcmlzhBTvuDaixOG0lw8ouBdh89j26ehndZh7GQGcplmxUSKk6gEM4abijTpbC5NZUBy6WwYIh2pAJWCacoaKIKR4FTzTR3BXeSHqC15r2BQ4SNg7wUuYZcaMYKIitllSpL5SplnOY9NJjLvDbdAvKAg_FW-0Qkaqn2WqqDlmoia6-lHrpYcHyk5Rt_0O4FqS_oOoH30Fmn1rr7OSf1bNx-BU4i_Xf0O98x2ggkqZvsBK21n1M49eFHq8-i3X0DI77Xlw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEBYhPaSXpmka6rZJdcilkLW1q8euegsmrpvXyYHchB4jHxI2oV5DyK-vHmtjSgiBPegwA2JmlhlJ882H0LGgFKiuXSEtsQVznhXalKaQxrAQQEJLSA2y12J6w85v-e0WOlljYQAgNZ_BMC7TW757sMt4VTaSVSgGIs76Xcj7vMxorfWNSijOBU0MoqWo44s_q_O7ZEVlKUfn43E4DlYkjTWN_YcbeSgRqyTYTut1O9_IMJNddLXaW24suRsuOzO0z_-NbXzr5j-iD32piU9zbOyhLWg_oZ0VEnmxj2aTOEkiFJsO9-QRcxxqWCx-Y7uJG1n8wuMV58riBGfS6bDQrcN5JgnOmTHKfkY3k7PZeFr0LAuFpVx2RSWh4QQq4Z3lljJTC1c621hwXAoHlhhPGmCN8JqCIbryFDg1zHBfcS_pAdpuH1r4grD1UNaiNFAKw1hFZKOd1nWtfaOtN3yARiubK9uPII9MGPcqHEWSl1TwkopeUkSq4KUB-rnWeMzjN16R3Y9WX8v1Bh-go96tqv89F-p53j1FTSLD9_VlvR9oZzq7ulSXf64vvqH3UTz3ln1H293fJRyGYqQzRykG_wGMIdrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+for+6G+communications%3A+Challenges%2C+methods%2C+and+future+directions&rft.jtitle=China+communications&rft.au=Liu%2C+Yi&rft.au=Yuan%2C+Xingliang&rft.au=Xiong%2C+Zehui&rft.au=Kang%2C+Jiawen&rft.date=2020-09-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=17&rft.issue=9&rft.spage=105&rft.epage=118&rft_id=info:doi/10.23919%2FJCC.2020.09.009&rft.externalDocID=9205981 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg |