Fast and Robust Matching for Multimodal Remote Sensing Image Registration
While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR), synthetic aperture radar (SAR), and map] remains a challenging problem because of significant nonlinear intensity differences between such data...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 57; no. 11; pp. 9059 - 9070 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR), synthetic aperture radar (SAR), and map] remains a challenging problem because of significant nonlinear intensity differences between such data. To address this problem, we present a novel fast and robust template matching framework integrating local descriptors for multimodal images. First, a local descriptor [such as histogram of oriented gradient (HOG) and local self-similarity (LSS) or speeded-up robust feature (SURF)] is extracted at each pixel to form a pixelwise feature representation of an image. Then, we define a fast similarity measure based on the feature representation using the fast Fourier transform (FFT) in the frequency domain. A template matching strategy is employed to detect correspondences between images. In this procedure, we also propose a novel pixelwise feature representation using orientated gradients of images, which is named channel features of orientated gradients (CFOG). This novel feature is an extension of the pixelwise HOG descriptor with superior performance in image matching and computational efficiency. The major advantages of the proposed matching framework include: 1) structural similarity representation using the pixelwise feature description and 2) high computational efficiency due to the use of FFT. The proposed matching framework has been evaluated using many different types of multimodal images, and the results demonstrate its superior matching performance with respect to the state-of-the-art methods. |
---|---|
AbstractList | While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR), synthetic aperture radar (SAR), and map] remains a challenging problem because of significant nonlinear intensity differences between such data. To address this problem, we present a novel fast and robust template matching framework integrating local descriptors for multimodal images. First, a local descriptor [such as histogram of oriented gradient (HOG) and local self-similarity (LSS) or speeded-up robust feature (SURF)] is extracted at each pixel to form a pixelwise feature representation of an image. Then, we define a fast similarity measure based on the feature representation using the fast Fourier transform (FFT) in the frequency domain. A template matching strategy is employed to detect correspondences between images. In this procedure, we also propose a novel pixelwise feature representation using orientated gradients of images, which is named channel features of orientated gradients (CFOG). This novel feature is an extension of the pixelwise HOG descriptor with superior performance in image matching and computational efficiency. The major advantages of the proposed matching framework include: 1) structural similarity representation using the pixelwise feature description and 2) high computational efficiency due to the use of FFT. The proposed matching framework has been evaluated using many different types of multimodal images, and the results demonstrate its superior matching performance with respect to the state-of-the-art methods. |
Author | Bruzzone, Lorenzo Bovolo, Francesca Ye, Yuanxin Zhu, Qing Shan, Jie |
Author_xml | – sequence: 1 givenname: Yuanxin orcidid: 0000-0001-6843-6722 surname: Ye fullname: Ye, Yuanxin email: yeyuanxin@home.swjtu.edu.cn organization: Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China – sequence: 2 givenname: Lorenzo orcidid: 0000-0002-6036-459X surname: Bruzzone fullname: Bruzzone, Lorenzo organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy – sequence: 3 givenname: Jie orcidid: 0000-0002-1948-9657 surname: Shan fullname: Shan, Jie organization: School of Civil Engineering, Purdue University, West Lafayette, IN, USA – sequence: 4 givenname: Francesca orcidid: 0000-0003-3104-7656 surname: Bovolo fullname: Bovolo, Francesca organization: Center for Information and Communication Technology, Fondazione Bruno Kessler, Trento, Italy – sequence: 5 givenname: Qing surname: Zhu fullname: Zhu, Qing organization: Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China |
BookMark | eNp9kDFPwzAQhS1UJNrCD0AskZhTfI7j2COqaKnUCqntbjmpU1wlcbGdgX-PQxEDA9Od7t670_smaNTZTiN0D3gGgMXTfrndzQgGMSOCUMbpFRpDnvMUM0pHaBw3LCVckBs08f6EMdAcijFaLZQPieoOydaWfWw3KlTvpjsmtXXJpm-Cae1BNclWtzboZKc7P2xXrTrqODwaH5wKxna36LpWjdd3P3WK9ouX_fw1Xb8tV_PndVpluQgpKVihgWlKspznXIv8oIhQDFMFWuui1KSCEpd1lMSR0LQoq0xQzKCs6zqbosfL2bOzH732QZ5s77r4UZIMIgtGBY8quKgqZ713upZnZ1rlPiVgOQCTAzA5AJM_wKKn-OOpTPiOFhOa5l_nw8VpYoLfT7xgDIBnX7q2elc |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3447219 crossref_primary_10_1109_TGRS_2022_3193109 crossref_primary_10_3390_rs15174128 crossref_primary_10_1016_j_inffus_2024_102599 crossref_primary_10_3390_drones9010014 crossref_primary_10_1109_LGRS_2021_3105567 crossref_primary_10_3390_rs13173535 crossref_primary_10_3390_s22031231 crossref_primary_10_1007_s00500_023_09088_7 crossref_primary_10_3390_s20154338 crossref_primary_10_1109_JSTARS_2024_3405020 crossref_primary_10_1109_LGRS_2022_3171265 crossref_primary_10_1109_MGRS_2020_3005597 crossref_primary_10_3390_rs14041051 crossref_primary_10_1016_j_inffus_2021_02_012 crossref_primary_10_1109_TGRS_2025_3540258 crossref_primary_10_1016_j_inffus_2024_102246 crossref_primary_10_3390_s21186035 crossref_primary_10_1016_j_jag_2022_102964 crossref_primary_10_3390_rs13050928 crossref_primary_10_1016_j_isprsjprs_2022_08_018 crossref_primary_10_1049_ell2_12516 crossref_primary_10_1016_j_isprsjprs_2023_03_023 crossref_primary_10_3390_rs14030722 crossref_primary_10_1016_j_array_2021_100102 crossref_primary_10_1109_JSEN_2023_3241330 crossref_primary_10_1364_OE_523531 crossref_primary_10_3390_electronics12071635 crossref_primary_10_3390_rs13245128 crossref_primary_10_1109_LGRS_2023_3309404 crossref_primary_10_3390_rs15205051 crossref_primary_10_1016_j_inffus_2023_02_004 crossref_primary_10_1038_s41893_024_01352_4 crossref_primary_10_3390_rs14174178 crossref_primary_10_1109_JSTARS_2021_3119923 crossref_primary_10_1109_TGRS_2023_3286858 crossref_primary_10_1080_01431161_2023_2193300 crossref_primary_10_1016_j_cja_2023_10_003 crossref_primary_10_1109_JSTARS_2023_3321387 crossref_primary_10_3390_rs15184510 crossref_primary_10_1007_s13131_024_2359_y crossref_primary_10_1109_ACCESS_2021_3079327 crossref_primary_10_1109_TGRS_2024_3511538 crossref_primary_10_3390_rs14030630 crossref_primary_10_3390_rs15153879 crossref_primary_10_1109_JSTARS_2023_3281029 crossref_primary_10_1007_s11263_024_02023_9 crossref_primary_10_3390_rs15194682 crossref_primary_10_1109_JSTARS_2023_3326959 crossref_primary_10_1016_j_jag_2021_102403 crossref_primary_10_1016_j_jag_2024_104241 crossref_primary_10_1109_TGRS_2021_3131496 crossref_primary_10_3390_app13105887 crossref_primary_10_1109_TVT_2022_3151729 crossref_primary_10_1016_j_future_2024_07_054 crossref_primary_10_3390_rs15030850 crossref_primary_10_3390_rs13163062 crossref_primary_10_1109_JSTARS_2024_3411706 crossref_primary_10_1109_TGRS_2024_3366247 crossref_primary_10_3390_rs13132628 crossref_primary_10_1109_JSTARS_2021_3052472 crossref_primary_10_1007_s00138_022_01343_5 crossref_primary_10_1007_s12518_024_00553_y crossref_primary_10_1109_TGRS_2024_3459416 crossref_primary_10_1109_LGRS_2023_3298687 crossref_primary_10_1142_S0218126622502851 crossref_primary_10_1109_LGRS_2022_3225965 crossref_primary_10_1080_15481603_2022_2083791 crossref_primary_10_1109_LGRS_2020_3027096 crossref_primary_10_1007_s10489_024_05330_3 crossref_primary_10_1109_TGRS_2024_3514305 crossref_primary_10_1109_TGRS_2023_3288531 crossref_primary_10_3390_rs15184492 crossref_primary_10_1080_01431161_2023_2287562 crossref_primary_10_3390_rs14163907 crossref_primary_10_1016_j_isprsjprs_2024_09_016 crossref_primary_10_1109_TGRS_2022_3197357 crossref_primary_10_3390_rs14061442 crossref_primary_10_1016_j_isprsjprs_2022_12_018 crossref_primary_10_1109_LGRS_2020_3032439 crossref_primary_10_1016_j_eswa_2024_124291 crossref_primary_10_3390_electronics12244977 crossref_primary_10_3390_s24248217 crossref_primary_10_3390_rs16173289 crossref_primary_10_1016_j_inffus_2024_102252 crossref_primary_10_3390_rs14153599 crossref_primary_10_1049_sil2_12176 crossref_primary_10_1007_s11432_022_3588_0 crossref_primary_10_3390_app13063396 crossref_primary_10_1109_LGRS_2021_3100531 crossref_primary_10_1080_01431161_2021_1906985 crossref_primary_10_52547_jgit_10_2_63 crossref_primary_10_3390_rs13081491 crossref_primary_10_1080_10095020_2024_2354226 crossref_primary_10_3390_s23094285 crossref_primary_10_1109_TGRS_2024_3502356 crossref_primary_10_3390_rs16020214 crossref_primary_10_3390_rs17050749 crossref_primary_10_1109_JSTARS_2024_3355969 crossref_primary_10_1109_TGRS_2021_3126939 crossref_primary_10_3390_rs14195060 crossref_primary_10_3390_electronics12132889 crossref_primary_10_1109_JSTARS_2022_3172449 crossref_primary_10_1016_j_isprsjprs_2023_08_010 crossref_primary_10_1109_TGRS_2022_3213546 crossref_primary_10_1109_JSTARS_2024_3434448 crossref_primary_10_1515_jisys_2023_0147 crossref_primary_10_1109_JSTARS_2023_3235535 crossref_primary_10_3390_opt5040029 crossref_primary_10_1016_j_isprsjprs_2021_09_010 crossref_primary_10_1049_ipr2_12453 crossref_primary_10_1109_LGRS_2022_3194892 crossref_primary_10_1109_JSTARS_2020_3026162 crossref_primary_10_1109_TGRS_2023_3278257 crossref_primary_10_1109_JSEN_2025_3525491 crossref_primary_10_1109_LGRS_2024_3402982 crossref_primary_10_1109_LGRS_2021_3071870 crossref_primary_10_1080_2150704X_2023_2201382 crossref_primary_10_3390_rs14061507 crossref_primary_10_3390_app12094159 crossref_primary_10_1109_TGRS_2023_3247642 crossref_primary_10_1109_TGRS_2022_3148383 crossref_primary_10_3390_rs13183605 crossref_primary_10_3390_s23020967 crossref_primary_10_1109_JPROC_2022_3219376 crossref_primary_10_3390_rs16040689 crossref_primary_10_3390_ijgi9070424 crossref_primary_10_1016_j_patcog_2024_110386 crossref_primary_10_1109_JSTARS_2020_3047656 crossref_primary_10_1109_LGRS_2021_3088856 crossref_primary_10_1109_TGRS_2022_3165940 crossref_primary_10_1109_JPHOT_2022_3144227 crossref_primary_10_3390_rs15184458 crossref_primary_10_1016_j_infrared_2023_104711 crossref_primary_10_1016_j_jag_2024_104186 crossref_primary_10_3390_s23239479 crossref_primary_10_1109_ACCESS_2022_3217788 crossref_primary_10_1109_TGRS_2021_3135430 crossref_primary_10_1007_s11227_024_06128_3 crossref_primary_10_1080_01431161_2024_2358543 crossref_primary_10_1016_j_cageo_2021_104988 crossref_primary_10_1109_TGRS_2024_3379370 crossref_primary_10_1109_LGRS_2023_3256186 crossref_primary_10_1109_TAES_2022_3159320 crossref_primary_10_1109_JSTARS_2022_3208577 crossref_primary_10_1109_LGRS_2022_3191364 crossref_primary_10_1109_LGRS_2021_3062334 crossref_primary_10_1109_TGRS_2022_3206804 crossref_primary_10_1109_JMASS_2023_3244848 crossref_primary_10_1109_JSTARS_2021_3124552 crossref_primary_10_1109_LGRS_2023_3279141 crossref_primary_10_32604_cmc_2023_039582 crossref_primary_10_1016_j_bspc_2024_106825 crossref_primary_10_1080_10106049_2024_2359481 crossref_primary_10_3390_rs13122328 crossref_primary_10_1109_TGRS_2022_3173476 crossref_primary_10_1109_LGRS_2021_3099307 crossref_primary_10_1109_TIP_2022_3157450 crossref_primary_10_3390_rs14030478 crossref_primary_10_3788_AOS231728 crossref_primary_10_1016_j_cja_2024_06_024 crossref_primary_10_1109_TGRS_2024_3366519 crossref_primary_10_1360_SST_2021_0193 crossref_primary_10_1109_LGRS_2024_3403855 crossref_primary_10_3390_rs16193589 crossref_primary_10_1016_j_inffus_2022_10_030 crossref_primary_10_1109_TGRS_2023_3309855 crossref_primary_10_1109_JSTARS_2024_3430847 crossref_primary_10_3390_rs14174228 crossref_primary_10_3390_rs16163039 crossref_primary_10_1016_j_infrared_2023_104970 crossref_primary_10_1109_LGRS_2020_2980620 crossref_primary_10_1109_TCSVT_2020_3020970 crossref_primary_10_1109_TGRS_2020_2976865 crossref_primary_10_3390_rs13091657 crossref_primary_10_3390_info12110454 crossref_primary_10_1109_JSTARS_2023_3276409 crossref_primary_10_3390_s21072407 crossref_primary_10_1109_JSTARS_2024_3422310 crossref_primary_10_1016_j_ijleo_2022_170158 crossref_primary_10_1109_LGRS_2020_3039473 crossref_primary_10_34133_remotesensing_0040 crossref_primary_10_1109_JSTARS_2023_3277550 crossref_primary_10_1080_01431161_2021_1976873 crossref_primary_10_1109_JSTARS_2024_3390432 crossref_primary_10_3390_rs12040703 crossref_primary_10_3390_rs15215116 crossref_primary_10_1109_TGRS_2024_3409750 crossref_primary_10_1109_TIM_2025_3533658 crossref_primary_10_1016_j_optlaseng_2024_108526 crossref_primary_10_1016_j_rsase_2024_101198 crossref_primary_10_3390_s25051607 crossref_primary_10_3390_rs16244696 crossref_primary_10_1016_j_isprsjprs_2022_09_008 crossref_primary_10_1088_1742_6596_2650_1_012046 crossref_primary_10_1109_TGRS_2022_3211858 crossref_primary_10_3390_rs16214003 crossref_primary_10_1109_TGRS_2019_2961245 crossref_primary_10_1134_S1061830923600685 crossref_primary_10_1109_LGRS_2022_3156622 crossref_primary_10_1109_TIP_2024_3472491 crossref_primary_10_1109_LGRS_2022_3171587 crossref_primary_10_3390_rs14143297 crossref_primary_10_3390_rs15235514 crossref_primary_10_3390_rs14030516 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_3390_rs15010163 crossref_primary_10_1016_j_inffus_2023_102027 crossref_primary_10_1109_LGRS_2021_3093502 crossref_primary_10_1109_TGRS_2022_3167644 crossref_primary_10_11834_jig_230737 crossref_primary_10_1016_j_infrared_2024_105381 crossref_primary_10_3390_rs14133012 crossref_primary_10_1016_j_jag_2024_104266 crossref_primary_10_1109_ACCESS_2019_2958658 crossref_primary_10_1109_JSTARS_2023_3325577 crossref_primary_10_1111_phor_12402 crossref_primary_10_1109_TGRS_2023_3264610 crossref_primary_10_3390_app13137701 crossref_primary_10_1007_s11554_020_01043_1 crossref_primary_10_1109_TGRS_2023_3306558 crossref_primary_10_1007_s13735_021_00224_3 crossref_primary_10_1080_01431161_2024_2347529 crossref_primary_10_1109_ACCESS_2020_3042213 crossref_primary_10_3390_rs14235976 crossref_primary_10_3390_rs16163065 crossref_primary_10_1109_TMM_2022_3217410 crossref_primary_10_1360_SSI_2023_0055 crossref_primary_10_1016_j_cja_2020_02_002 crossref_primary_10_1038_s41598_022_09952_w crossref_primary_10_1109_JSTARS_2021_3079103 crossref_primary_10_1080_01431161_2023_2255352 crossref_primary_10_3390_rs14215360 crossref_primary_10_1007_s00371_022_02435_z crossref_primary_10_1109_LGRS_2022_3207592 crossref_primary_10_1109_TGRS_2022_3187015 crossref_primary_10_1016_j_isprsjprs_2022_04_011 crossref_primary_10_1002_sta4_664 crossref_primary_10_1109_TGRS_2023_3330856 crossref_primary_10_1016_j_jag_2023_103574 crossref_primary_10_1109_JSTARS_2020_2987305 crossref_primary_10_1109_LGRS_2022_3211271 crossref_primary_10_1109_TGRS_2021_3133863 crossref_primary_10_1109_TGRS_2024_3417217 crossref_primary_10_1080_01431161_2022_2142487 crossref_primary_10_3390_s23125693 crossref_primary_10_1109_LGRS_2021_3091592 crossref_primary_10_3390_rs15245764 |
Cites_doi | 10.1016/j.media.2012.05.008 10.5194/isprs-archives-XLII-2-W7-1009-2017 10.1109/83.506761 10.1080/0143116031000117047 10.1080/01431161.2012.701345 10.1016/j.isprsjprs.2014.01.009 10.1109/TIP.2003.819237 10.1016/j.cageo.2007.10.005 10.1109/CVPR.2005.177 10.1109/TGRS.2015.2420659 10.1109/TGRS.2009.2038274 10.1109/TGRS.2015.2429740 10.1109/IGARSS.2017.8128160 10.1080/01431161003621585 10.1109/TPAMI.2013.138 10.1016/j.isprsjprs.2017.11.019 10.7763/IJCTE.2013.V5.653 10.1109/TGRS.2010.2040390 10.1109/TGRS.2010.2042813 10.1109/JPROC.2012.2197169 10.1109/LGRS.2017.2660067 10.1016/j.isprsjprs.2016.05.016 10.1109/34.993558 10.5244/C.16.11 10.1109/TGRS.2008.2001685 10.1016/j.cviu.2007.09.014 10.1109/CVPR.2007.383198 10.1109/TGRS.2009.2034842 10.1016/j.isprsjprs.2018.06.010 10.5194/isprsannals-III-1-9-2016 10.1109/TGRS.2011.2109389 10.1109/TGRS.2017.2656380 10.1109/83.366480 10.1109/42.876307 10.1109/TPAMI.2009.77 10.1023/B:VISI.0000029664.99615.94 10.1016/S0262-8856(03)00137-9 10.1016/j.isprsjprs.2017.05.007 10.1109/TGRS.2016.2587321 10.14358/PERS.79.8.753 10.1016/j.imavis.2009.12.005 10.1109/CVPR.2007.383426 10.1016/j.isprsjprs.2016.07.004 10.1109/TGRS.2015.2441954 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2019.2924684 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 9070 |
ExternalDocumentID | 10_1109_TGRS_2019_2924684 8766118 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41631174; 41771451 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c359t-2767e16e4235858e95da29a604a1eee7be2c1b0bf6e44a19e47bc394061bfff3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:34:32 EDT 2025 Tue Jul 01 01:34:15 EDT 2025 Thu Apr 24 22:54:53 EDT 2025 Wed Aug 27 02:40:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-2767e16e4235858e95da29a604a1eee7be2c1b0bf6e44a19e47bc394061bfff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1948-9657 0000-0003-3104-7656 0000-0001-6843-6722 0000-0002-6036-459X |
PQID | 2311106498 |
PQPubID | 85465 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8766118 crossref_citationtrail_10_1109_TGRS_2019_2924684 proquest_journals_2311106498 crossref_primary_10_1109_TGRS_2019_2924684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 kovesi (ref44) 1999; 1 ref32 ref10 zhang (ref3) 2004; 70 ref2 ref1 ma (ref24) 2010; 48 ref39 ref17 ref38 ref16 ref19 ref18 bracewell (ref29) 1965 zitová (ref5) 2003; 21 ref46 ref45 ref23 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref21 ref43 fan (ref28) 2010; 48 ref27 ref8 ref7 ref9 ref4 ref6 ref40 |
References_xml | – ident: ref37 doi: 10.1016/j.media.2012.05.008 – ident: ref41 doi: 10.5194/isprs-archives-XLII-2-W7-1009-2017 – ident: ref30 doi: 10.1109/83.506761 – ident: ref26 doi: 10.1080/0143116031000117047 – ident: ref6 doi: 10.1080/01431161.2012.701345 – ident: ref45 doi: 10.1016/j.isprsjprs.2014.01.009 – ident: ref25 doi: 10.1109/TIP.2003.819237 – ident: ref9 doi: 10.1016/j.cageo.2007.10.005 – ident: ref39 doi: 10.1109/CVPR.2005.177 – ident: ref16 doi: 10.1109/TGRS.2015.2420659 – ident: ref4 doi: 10.1109/TGRS.2009.2038274 – ident: ref32 doi: 10.1109/TGRS.2015.2429740 – ident: ref40 doi: 10.1109/IGARSS.2017.8128160 – ident: ref19 doi: 10.1080/01431161003621585 – ident: ref46 doi: 10.1109/TPAMI.2013.138 – ident: ref17 doi: 10.1016/j.isprsjprs.2017.11.019 – ident: ref18 doi: 10.7763/IJCTE.2013.V5.653 – volume: 48 start-page: 2580 year: 2010 ident: ref28 article-title: A spatial-feature-enhanced MMI algorithm for multimodal airborne image registration publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2010.2040390 – volume: 48 start-page: 2829 year: 2010 ident: ref24 article-title: Fully automatic subpixel image registration of multiangle CHRIS/Proba data publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2010.2042813 – ident: ref2 doi: 10.1109/JPROC.2012.2197169 – ident: ref35 doi: 10.1109/LGRS.2017.2660067 – ident: ref31 doi: 10.1016/j.isprsjprs.2016.05.016 – ident: ref13 doi: 10.1109/34.993558 – ident: ref47 doi: 10.5244/C.16.11 – ident: ref33 doi: 10.1109/TGRS.2008.2001685 – ident: ref14 doi: 10.1016/j.cviu.2007.09.014 – ident: ref38 doi: 10.1109/CVPR.2007.383198 – ident: ref27 doi: 10.1109/TGRS.2009.2034842 – ident: ref22 doi: 10.1016/j.isprsjprs.2018.06.010 – ident: ref36 doi: 10.5194/isprsannals-III-1-9-2016 – ident: ref12 doi: 10.1109/TGRS.2011.2109389 – ident: ref34 doi: 10.1109/TGRS.2017.2656380 – ident: ref11 doi: 10.1109/83.366480 – year: 1965 ident: ref29 publication-title: The Fourier Transform and Its Applications – ident: ref43 doi: 10.1109/42.876307 – ident: ref42 doi: 10.1109/TPAMI.2009.77 – volume: 1 start-page: 1 year: 1999 ident: ref44 article-title: Image features from phase congruency publication-title: J Comput Vis Res – ident: ref15 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 21 start-page: 977 year: 2003 ident: ref5 article-title: Image registration methods: A survey publication-title: Image Vis Comput doi: 10.1016/S0262-8856(03)00137-9 – ident: ref20 doi: 10.1016/j.isprsjprs.2017.05.007 – ident: ref8 doi: 10.1109/TGRS.2016.2587321 – ident: ref10 doi: 10.14358/PERS.79.8.753 – ident: ref7 doi: 10.1016/j.imavis.2009.12.005 – ident: ref21 doi: 10.1109/CVPR.2007.383426 – ident: ref1 doi: 10.1016/j.isprsjprs.2016.07.004 – ident: ref23 doi: 10.1109/TGRS.2015.2441954 – volume: 70 start-page: 657 year: 2004 ident: ref3 article-title: Understanding image fusion publication-title: Photogram Eng Remote Sens |
SSID | ssj0014517 |
Score | 2.6868355 |
Snippet | While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR),... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9059 |
SubjectTerms | Computational efficiency Computer applications Computing time Fast Fourier transform (FFT) Fast Fourier transformations Feature extraction Fourier transforms Frameworks Frequency-domain analysis Gradients Histograms Image detection Image matching Image registration Lidar multimodal remote sensing images pixelwise feature representation Remote sensing Representations Robustness SAR (radar) Self-similarity Shape Synthetic aperture radar Template matching |
Title | Fast and Robust Matching for Multimodal Remote Sensing Image Registration |
URI | https://ieeexplore.ieee.org/document/8766118 https://www.proquest.com/docview/2311106498 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR27TsMw8NRWQoKBRwuiUFAGJkTSPBwnHhGitEhlaIvULYodhwGaIJosfD1nJ414CbE5jm3ZPvsevhfAhWQBUtLUQyGHxSbxbG7GRCkcfaHildleonMDTh_o-JHcL_1lC64aXxgppTY-k5Yqal1-kotSPZUN8eZSZIjb0EbBrfLVajQGxHdq12hqohDh1hpMx2bDxd1sroy4mOWitEFD8oUG6aQqPzCxJi-jPZhuJlZZlTxbZcEt8f4tZuN_Z74PuzWfaVxXB-MAWjLrws6n6INd2NLWn2Ldg8koXhdGnCXGLOclFqeIoNXTlIEsraF9dFd5gsPNJEJWGnNl9Y5_JyvERlj51ETfPYTF6HZxMzbrHAum8HxWmG5AA-lQSZTLrB9K5icxQo3aJHZwFQGXrnC4zVNsglVMkoALlU2dOjxNU-8IOlmeyWMwXKSHjhCIFBJJYiZC_E6ZlyL_xVnqOn2wN5seiTr-uEqD8RJpOcRmkYJTpOAU1XDqw2XT5bUKvvFX457a96ZhveV9GGwgG9XXcx0hU4uDUMLCk997ncK2GrtyOhxAp3gr5RlyHwU_18fuA0f909o |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NT8Iw9AUxRj34ARpR1B08GQfr1nX0aIwIChwAE27L2nUeFDAyLv56X7ux-BXjrevarutr30ffF8CF4gFS0sRDIYdHNvUcYUdUKxx9qeOVOV5scgP2B6zzSO8n_qQEV4UvjFLKGJ-phi4aXX48l0t9VdbEk8uQIV6DdaT7Psm8tQqdAfVJ7hzNbBQj3FyHSRzeHN8NR9qMizdclDdYi36hQiatyg9cbAhMexf6q6lldiXPjWUqGvL9W9TG_859D3ZyTtO6zrbGPpTUrALbn-IPVmDD2H_KRRW67WiRWtEstoZzscRiH1G0vpyykKm1jJfudB7jcEOFsFXWSNu949vuFPERVj4V8XcPYNy-Hd907DzLgi09n6e2G7BAEaaodpr1W4r7cYRwYw6NCP5FIJQriXBEgk2wiisaCKnzqTMikiTxDqE8m8_UEVguUkQiJaKFWNGIyxY-J9xLkAMTPHFJDZzVoocyj0CuE2G8hEYScXio4RRqOIU5nGpwWXR5zcJv_NW4qte9aJgveQ3qK8iG-QFdhMjW4iCM8tbx773OYbMz7vfCXnfwcAJb-juZC2IdyunbUp0iL5KKM7MFPwCAb9cj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Robust+Matching+for+Multimodal+Remote+Sensing+Image+Registration&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Ye%2C+Yuanxin&rft.au=Bruzzone%2C+Lorenzo&rft.au=Shan%2C+Jie&rft.au=Bovolo%2C+Francesca&rft.date=2019-11-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=11&rft.spage=9059&rft.epage=9070&rft_id=info:doi/10.1109%2FTGRS.2019.2924684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2019_2924684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |