Fast and Robust Matching for Multimodal Remote Sensing Image Registration

While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR), synthetic aperture radar (SAR), and map] remains a challenging problem because of significant nonlinear intensity differences between such data...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 57; no. 11; pp. 9059 - 9070
Main Authors Ye, Yuanxin, Bruzzone, Lorenzo, Shan, Jie, Bovolo, Francesca, Zhu, Qing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR), synthetic aperture radar (SAR), and map] remains a challenging problem because of significant nonlinear intensity differences between such data. To address this problem, we present a novel fast and robust template matching framework integrating local descriptors for multimodal images. First, a local descriptor [such as histogram of oriented gradient (HOG) and local self-similarity (LSS) or speeded-up robust feature (SURF)] is extracted at each pixel to form a pixelwise feature representation of an image. Then, we define a fast similarity measure based on the feature representation using the fast Fourier transform (FFT) in the frequency domain. A template matching strategy is employed to detect correspondences between images. In this procedure, we also propose a novel pixelwise feature representation using orientated gradients of images, which is named channel features of orientated gradients (CFOG). This novel feature is an extension of the pixelwise HOG descriptor with superior performance in image matching and computational efficiency. The major advantages of the proposed matching framework include: 1) structural similarity representation using the pixelwise feature description and 2) high computational efficiency due to the use of FFT. The proposed matching framework has been evaluated using many different types of multimodal images, and the results demonstrate its superior matching performance with respect to the state-of-the-art methods.
AbstractList While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR), synthetic aperture radar (SAR), and map] remains a challenging problem because of significant nonlinear intensity differences between such data. To address this problem, we present a novel fast and robust template matching framework integrating local descriptors for multimodal images. First, a local descriptor [such as histogram of oriented gradient (HOG) and local self-similarity (LSS) or speeded-up robust feature (SURF)] is extracted at each pixel to form a pixelwise feature representation of an image. Then, we define a fast similarity measure based on the feature representation using the fast Fourier transform (FFT) in the frequency domain. A template matching strategy is employed to detect correspondences between images. In this procedure, we also propose a novel pixelwise feature representation using orientated gradients of images, which is named channel features of orientated gradients (CFOG). This novel feature is an extension of the pixelwise HOG descriptor with superior performance in image matching and computational efficiency. The major advantages of the proposed matching framework include: 1) structural similarity representation using the pixelwise feature description and 2) high computational efficiency due to the use of FFT. The proposed matching framework has been evaluated using many different types of multimodal images, and the results demonstrate its superior matching performance with respect to the state-of-the-art methods.
Author Bruzzone, Lorenzo
Bovolo, Francesca
Ye, Yuanxin
Zhu, Qing
Shan, Jie
Author_xml – sequence: 1
  givenname: Yuanxin
  orcidid: 0000-0001-6843-6722
  surname: Ye
  fullname: Ye, Yuanxin
  email: yeyuanxin@home.swjtu.edu.cn
  organization: Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
– sequence: 2
  givenname: Lorenzo
  orcidid: 0000-0002-6036-459X
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-1948-9657
  surname: Shan
  fullname: Shan, Jie
  organization: School of Civil Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 4
  givenname: Francesca
  orcidid: 0000-0003-3104-7656
  surname: Bovolo
  fullname: Bovolo, Francesca
  organization: Center for Information and Communication Technology, Fondazione Bruno Kessler, Trento, Italy
– sequence: 5
  givenname: Qing
  surname: Zhu
  fullname: Zhu, Qing
  organization: Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
BookMark eNp9kDFPwzAQhS1UJNrCD0AskZhTfI7j2COqaKnUCqntbjmpU1wlcbGdgX-PQxEDA9Od7t670_smaNTZTiN0D3gGgMXTfrndzQgGMSOCUMbpFRpDnvMUM0pHaBw3LCVckBs08f6EMdAcijFaLZQPieoOydaWfWw3KlTvpjsmtXXJpm-Cae1BNclWtzboZKc7P2xXrTrqODwaH5wKxna36LpWjdd3P3WK9ouX_fw1Xb8tV_PndVpluQgpKVihgWlKspznXIv8oIhQDFMFWuui1KSCEpd1lMSR0LQoq0xQzKCs6zqbosfL2bOzH732QZ5s77r4UZIMIgtGBY8quKgqZ713upZnZ1rlPiVgOQCTAzA5AJM_wKKn-OOpTPiOFhOa5l_nw8VpYoLfT7xgDIBnX7q2elc
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3447219
crossref_primary_10_1109_TGRS_2022_3193109
crossref_primary_10_3390_rs15174128
crossref_primary_10_1016_j_inffus_2024_102599
crossref_primary_10_3390_drones9010014
crossref_primary_10_1109_LGRS_2021_3105567
crossref_primary_10_3390_rs13173535
crossref_primary_10_3390_s22031231
crossref_primary_10_1007_s00500_023_09088_7
crossref_primary_10_3390_s20154338
crossref_primary_10_1109_JSTARS_2024_3405020
crossref_primary_10_1109_LGRS_2022_3171265
crossref_primary_10_1109_MGRS_2020_3005597
crossref_primary_10_3390_rs14041051
crossref_primary_10_1016_j_inffus_2021_02_012
crossref_primary_10_1109_TGRS_2025_3540258
crossref_primary_10_1016_j_inffus_2024_102246
crossref_primary_10_3390_s21186035
crossref_primary_10_1016_j_jag_2022_102964
crossref_primary_10_3390_rs13050928
crossref_primary_10_1016_j_isprsjprs_2022_08_018
crossref_primary_10_1049_ell2_12516
crossref_primary_10_1016_j_isprsjprs_2023_03_023
crossref_primary_10_3390_rs14030722
crossref_primary_10_1016_j_array_2021_100102
crossref_primary_10_1109_JSEN_2023_3241330
crossref_primary_10_1364_OE_523531
crossref_primary_10_3390_electronics12071635
crossref_primary_10_3390_rs13245128
crossref_primary_10_1109_LGRS_2023_3309404
crossref_primary_10_3390_rs15205051
crossref_primary_10_1016_j_inffus_2023_02_004
crossref_primary_10_1038_s41893_024_01352_4
crossref_primary_10_3390_rs14174178
crossref_primary_10_1109_JSTARS_2021_3119923
crossref_primary_10_1109_TGRS_2023_3286858
crossref_primary_10_1080_01431161_2023_2193300
crossref_primary_10_1016_j_cja_2023_10_003
crossref_primary_10_1109_JSTARS_2023_3321387
crossref_primary_10_3390_rs15184510
crossref_primary_10_1007_s13131_024_2359_y
crossref_primary_10_1109_ACCESS_2021_3079327
crossref_primary_10_1109_TGRS_2024_3511538
crossref_primary_10_3390_rs14030630
crossref_primary_10_3390_rs15153879
crossref_primary_10_1109_JSTARS_2023_3281029
crossref_primary_10_1007_s11263_024_02023_9
crossref_primary_10_3390_rs15194682
crossref_primary_10_1109_JSTARS_2023_3326959
crossref_primary_10_1016_j_jag_2021_102403
crossref_primary_10_1016_j_jag_2024_104241
crossref_primary_10_1109_TGRS_2021_3131496
crossref_primary_10_3390_app13105887
crossref_primary_10_1109_TVT_2022_3151729
crossref_primary_10_1016_j_future_2024_07_054
crossref_primary_10_3390_rs15030850
crossref_primary_10_3390_rs13163062
crossref_primary_10_1109_JSTARS_2024_3411706
crossref_primary_10_1109_TGRS_2024_3366247
crossref_primary_10_3390_rs13132628
crossref_primary_10_1109_JSTARS_2021_3052472
crossref_primary_10_1007_s00138_022_01343_5
crossref_primary_10_1007_s12518_024_00553_y
crossref_primary_10_1109_TGRS_2024_3459416
crossref_primary_10_1109_LGRS_2023_3298687
crossref_primary_10_1142_S0218126622502851
crossref_primary_10_1109_LGRS_2022_3225965
crossref_primary_10_1080_15481603_2022_2083791
crossref_primary_10_1109_LGRS_2020_3027096
crossref_primary_10_1007_s10489_024_05330_3
crossref_primary_10_1109_TGRS_2024_3514305
crossref_primary_10_1109_TGRS_2023_3288531
crossref_primary_10_3390_rs15184492
crossref_primary_10_1080_01431161_2023_2287562
crossref_primary_10_3390_rs14163907
crossref_primary_10_1016_j_isprsjprs_2024_09_016
crossref_primary_10_1109_TGRS_2022_3197357
crossref_primary_10_3390_rs14061442
crossref_primary_10_1016_j_isprsjprs_2022_12_018
crossref_primary_10_1109_LGRS_2020_3032439
crossref_primary_10_1016_j_eswa_2024_124291
crossref_primary_10_3390_electronics12244977
crossref_primary_10_3390_s24248217
crossref_primary_10_3390_rs16173289
crossref_primary_10_1016_j_inffus_2024_102252
crossref_primary_10_3390_rs14153599
crossref_primary_10_1049_sil2_12176
crossref_primary_10_1007_s11432_022_3588_0
crossref_primary_10_3390_app13063396
crossref_primary_10_1109_LGRS_2021_3100531
crossref_primary_10_1080_01431161_2021_1906985
crossref_primary_10_52547_jgit_10_2_63
crossref_primary_10_3390_rs13081491
crossref_primary_10_1080_10095020_2024_2354226
crossref_primary_10_3390_s23094285
crossref_primary_10_1109_TGRS_2024_3502356
crossref_primary_10_3390_rs16020214
crossref_primary_10_3390_rs17050749
crossref_primary_10_1109_JSTARS_2024_3355969
crossref_primary_10_1109_TGRS_2021_3126939
crossref_primary_10_3390_rs14195060
crossref_primary_10_3390_electronics12132889
crossref_primary_10_1109_JSTARS_2022_3172449
crossref_primary_10_1016_j_isprsjprs_2023_08_010
crossref_primary_10_1109_TGRS_2022_3213546
crossref_primary_10_1109_JSTARS_2024_3434448
crossref_primary_10_1515_jisys_2023_0147
crossref_primary_10_1109_JSTARS_2023_3235535
crossref_primary_10_3390_opt5040029
crossref_primary_10_1016_j_isprsjprs_2021_09_010
crossref_primary_10_1049_ipr2_12453
crossref_primary_10_1109_LGRS_2022_3194892
crossref_primary_10_1109_JSTARS_2020_3026162
crossref_primary_10_1109_TGRS_2023_3278257
crossref_primary_10_1109_JSEN_2025_3525491
crossref_primary_10_1109_LGRS_2024_3402982
crossref_primary_10_1109_LGRS_2021_3071870
crossref_primary_10_1080_2150704X_2023_2201382
crossref_primary_10_3390_rs14061507
crossref_primary_10_3390_app12094159
crossref_primary_10_1109_TGRS_2023_3247642
crossref_primary_10_1109_TGRS_2022_3148383
crossref_primary_10_3390_rs13183605
crossref_primary_10_3390_s23020967
crossref_primary_10_1109_JPROC_2022_3219376
crossref_primary_10_3390_rs16040689
crossref_primary_10_3390_ijgi9070424
crossref_primary_10_1016_j_patcog_2024_110386
crossref_primary_10_1109_JSTARS_2020_3047656
crossref_primary_10_1109_LGRS_2021_3088856
crossref_primary_10_1109_TGRS_2022_3165940
crossref_primary_10_1109_JPHOT_2022_3144227
crossref_primary_10_3390_rs15184458
crossref_primary_10_1016_j_infrared_2023_104711
crossref_primary_10_1016_j_jag_2024_104186
crossref_primary_10_3390_s23239479
crossref_primary_10_1109_ACCESS_2022_3217788
crossref_primary_10_1109_TGRS_2021_3135430
crossref_primary_10_1007_s11227_024_06128_3
crossref_primary_10_1080_01431161_2024_2358543
crossref_primary_10_1016_j_cageo_2021_104988
crossref_primary_10_1109_TGRS_2024_3379370
crossref_primary_10_1109_LGRS_2023_3256186
crossref_primary_10_1109_TAES_2022_3159320
crossref_primary_10_1109_JSTARS_2022_3208577
crossref_primary_10_1109_LGRS_2022_3191364
crossref_primary_10_1109_LGRS_2021_3062334
crossref_primary_10_1109_TGRS_2022_3206804
crossref_primary_10_1109_JMASS_2023_3244848
crossref_primary_10_1109_JSTARS_2021_3124552
crossref_primary_10_1109_LGRS_2023_3279141
crossref_primary_10_32604_cmc_2023_039582
crossref_primary_10_1016_j_bspc_2024_106825
crossref_primary_10_1080_10106049_2024_2359481
crossref_primary_10_3390_rs13122328
crossref_primary_10_1109_TGRS_2022_3173476
crossref_primary_10_1109_LGRS_2021_3099307
crossref_primary_10_1109_TIP_2022_3157450
crossref_primary_10_3390_rs14030478
crossref_primary_10_3788_AOS231728
crossref_primary_10_1016_j_cja_2024_06_024
crossref_primary_10_1109_TGRS_2024_3366519
crossref_primary_10_1360_SST_2021_0193
crossref_primary_10_1109_LGRS_2024_3403855
crossref_primary_10_3390_rs16193589
crossref_primary_10_1016_j_inffus_2022_10_030
crossref_primary_10_1109_TGRS_2023_3309855
crossref_primary_10_1109_JSTARS_2024_3430847
crossref_primary_10_3390_rs14174228
crossref_primary_10_3390_rs16163039
crossref_primary_10_1016_j_infrared_2023_104970
crossref_primary_10_1109_LGRS_2020_2980620
crossref_primary_10_1109_TCSVT_2020_3020970
crossref_primary_10_1109_TGRS_2020_2976865
crossref_primary_10_3390_rs13091657
crossref_primary_10_3390_info12110454
crossref_primary_10_1109_JSTARS_2023_3276409
crossref_primary_10_3390_s21072407
crossref_primary_10_1109_JSTARS_2024_3422310
crossref_primary_10_1016_j_ijleo_2022_170158
crossref_primary_10_1109_LGRS_2020_3039473
crossref_primary_10_34133_remotesensing_0040
crossref_primary_10_1109_JSTARS_2023_3277550
crossref_primary_10_1080_01431161_2021_1976873
crossref_primary_10_1109_JSTARS_2024_3390432
crossref_primary_10_3390_rs12040703
crossref_primary_10_3390_rs15215116
crossref_primary_10_1109_TGRS_2024_3409750
crossref_primary_10_1109_TIM_2025_3533658
crossref_primary_10_1016_j_optlaseng_2024_108526
crossref_primary_10_1016_j_rsase_2024_101198
crossref_primary_10_3390_s25051607
crossref_primary_10_3390_rs16244696
crossref_primary_10_1016_j_isprsjprs_2022_09_008
crossref_primary_10_1088_1742_6596_2650_1_012046
crossref_primary_10_1109_TGRS_2022_3211858
crossref_primary_10_3390_rs16214003
crossref_primary_10_1109_TGRS_2019_2961245
crossref_primary_10_1134_S1061830923600685
crossref_primary_10_1109_LGRS_2022_3156622
crossref_primary_10_1109_TIP_2024_3472491
crossref_primary_10_1109_LGRS_2022_3171587
crossref_primary_10_3390_rs14143297
crossref_primary_10_3390_rs15235514
crossref_primary_10_3390_rs14030516
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_3390_rs15010163
crossref_primary_10_1016_j_inffus_2023_102027
crossref_primary_10_1109_LGRS_2021_3093502
crossref_primary_10_1109_TGRS_2022_3167644
crossref_primary_10_11834_jig_230737
crossref_primary_10_1016_j_infrared_2024_105381
crossref_primary_10_3390_rs14133012
crossref_primary_10_1016_j_jag_2024_104266
crossref_primary_10_1109_ACCESS_2019_2958658
crossref_primary_10_1109_JSTARS_2023_3325577
crossref_primary_10_1111_phor_12402
crossref_primary_10_1109_TGRS_2023_3264610
crossref_primary_10_3390_app13137701
crossref_primary_10_1007_s11554_020_01043_1
crossref_primary_10_1109_TGRS_2023_3306558
crossref_primary_10_1007_s13735_021_00224_3
crossref_primary_10_1080_01431161_2024_2347529
crossref_primary_10_1109_ACCESS_2020_3042213
crossref_primary_10_3390_rs14235976
crossref_primary_10_3390_rs16163065
crossref_primary_10_1109_TMM_2022_3217410
crossref_primary_10_1360_SSI_2023_0055
crossref_primary_10_1016_j_cja_2020_02_002
crossref_primary_10_1038_s41598_022_09952_w
crossref_primary_10_1109_JSTARS_2021_3079103
crossref_primary_10_1080_01431161_2023_2255352
crossref_primary_10_3390_rs14215360
crossref_primary_10_1007_s00371_022_02435_z
crossref_primary_10_1109_LGRS_2022_3207592
crossref_primary_10_1109_TGRS_2022_3187015
crossref_primary_10_1016_j_isprsjprs_2022_04_011
crossref_primary_10_1002_sta4_664
crossref_primary_10_1109_TGRS_2023_3330856
crossref_primary_10_1016_j_jag_2023_103574
crossref_primary_10_1109_JSTARS_2020_2987305
crossref_primary_10_1109_LGRS_2022_3211271
crossref_primary_10_1109_TGRS_2021_3133863
crossref_primary_10_1109_TGRS_2024_3417217
crossref_primary_10_1080_01431161_2022_2142487
crossref_primary_10_3390_s23125693
crossref_primary_10_1109_LGRS_2021_3091592
crossref_primary_10_3390_rs15245764
Cites_doi 10.1016/j.media.2012.05.008
10.5194/isprs-archives-XLII-2-W7-1009-2017
10.1109/83.506761
10.1080/0143116031000117047
10.1080/01431161.2012.701345
10.1016/j.isprsjprs.2014.01.009
10.1109/TIP.2003.819237
10.1016/j.cageo.2007.10.005
10.1109/CVPR.2005.177
10.1109/TGRS.2015.2420659
10.1109/TGRS.2009.2038274
10.1109/TGRS.2015.2429740
10.1109/IGARSS.2017.8128160
10.1080/01431161003621585
10.1109/TPAMI.2013.138
10.1016/j.isprsjprs.2017.11.019
10.7763/IJCTE.2013.V5.653
10.1109/TGRS.2010.2040390
10.1109/TGRS.2010.2042813
10.1109/JPROC.2012.2197169
10.1109/LGRS.2017.2660067
10.1016/j.isprsjprs.2016.05.016
10.1109/34.993558
10.5244/C.16.11
10.1109/TGRS.2008.2001685
10.1016/j.cviu.2007.09.014
10.1109/CVPR.2007.383198
10.1109/TGRS.2009.2034842
10.1016/j.isprsjprs.2018.06.010
10.5194/isprsannals-III-1-9-2016
10.1109/TGRS.2011.2109389
10.1109/TGRS.2017.2656380
10.1109/83.366480
10.1109/42.876307
10.1109/TPAMI.2009.77
10.1023/B:VISI.0000029664.99615.94
10.1016/S0262-8856(03)00137-9
10.1016/j.isprsjprs.2017.05.007
10.1109/TGRS.2016.2587321
10.14358/PERS.79.8.753
10.1016/j.imavis.2009.12.005
10.1109/CVPR.2007.383426
10.1016/j.isprsjprs.2016.07.004
10.1109/TGRS.2015.2441954
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2924684
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 9070
ExternalDocumentID 10_1109_TGRS_2019_2924684
8766118
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41631174; 41771451
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-2767e16e4235858e95da29a604a1eee7be2c1b0bf6e44a19e47bc394061bfff3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:34:32 EDT 2025
Tue Jul 01 01:34:15 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Wed Aug 27 02:40:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-2767e16e4235858e95da29a604a1eee7be2c1b0bf6e44a19e47bc394061bfff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1948-9657
0000-0003-3104-7656
0000-0001-6843-6722
0000-0002-6036-459X
PQID 2311106498
PQPubID 85465
PageCount 12
ParticipantIDs ieee_primary_8766118
crossref_citationtrail_10_1109_TGRS_2019_2924684
proquest_journals_2311106498
crossref_primary_10_1109_TGRS_2019_2924684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
kovesi (ref44) 1999; 1
ref32
ref10
zhang (ref3) 2004; 70
ref2
ref1
ma (ref24) 2010; 48
ref39
ref17
ref38
ref16
ref19
ref18
bracewell (ref29) 1965
zitová (ref5) 2003; 21
ref46
ref45
ref23
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref21
ref43
fan (ref28) 2010; 48
ref27
ref8
ref7
ref9
ref4
ref6
ref40
References_xml – ident: ref37
  doi: 10.1016/j.media.2012.05.008
– ident: ref41
  doi: 10.5194/isprs-archives-XLII-2-W7-1009-2017
– ident: ref30
  doi: 10.1109/83.506761
– ident: ref26
  doi: 10.1080/0143116031000117047
– ident: ref6
  doi: 10.1080/01431161.2012.701345
– ident: ref45
  doi: 10.1016/j.isprsjprs.2014.01.009
– ident: ref25
  doi: 10.1109/TIP.2003.819237
– ident: ref9
  doi: 10.1016/j.cageo.2007.10.005
– ident: ref39
  doi: 10.1109/CVPR.2005.177
– ident: ref16
  doi: 10.1109/TGRS.2015.2420659
– ident: ref4
  doi: 10.1109/TGRS.2009.2038274
– ident: ref32
  doi: 10.1109/TGRS.2015.2429740
– ident: ref40
  doi: 10.1109/IGARSS.2017.8128160
– ident: ref19
  doi: 10.1080/01431161003621585
– ident: ref46
  doi: 10.1109/TPAMI.2013.138
– ident: ref17
  doi: 10.1016/j.isprsjprs.2017.11.019
– ident: ref18
  doi: 10.7763/IJCTE.2013.V5.653
– volume: 48
  start-page: 2580
  year: 2010
  ident: ref28
  article-title: A spatial-feature-enhanced MMI algorithm for multimodal airborne image registration
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2010.2040390
– volume: 48
  start-page: 2829
  year: 2010
  ident: ref24
  article-title: Fully automatic subpixel image registration of multiangle CHRIS/Proba data
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2010.2042813
– ident: ref2
  doi: 10.1109/JPROC.2012.2197169
– ident: ref35
  doi: 10.1109/LGRS.2017.2660067
– ident: ref31
  doi: 10.1016/j.isprsjprs.2016.05.016
– ident: ref13
  doi: 10.1109/34.993558
– ident: ref47
  doi: 10.5244/C.16.11
– ident: ref33
  doi: 10.1109/TGRS.2008.2001685
– ident: ref14
  doi: 10.1016/j.cviu.2007.09.014
– ident: ref38
  doi: 10.1109/CVPR.2007.383198
– ident: ref27
  doi: 10.1109/TGRS.2009.2034842
– ident: ref22
  doi: 10.1016/j.isprsjprs.2018.06.010
– ident: ref36
  doi: 10.5194/isprsannals-III-1-9-2016
– ident: ref12
  doi: 10.1109/TGRS.2011.2109389
– ident: ref34
  doi: 10.1109/TGRS.2017.2656380
– ident: ref11
  doi: 10.1109/83.366480
– year: 1965
  ident: ref29
  publication-title: The Fourier Transform and Its Applications
– ident: ref43
  doi: 10.1109/42.876307
– ident: ref42
  doi: 10.1109/TPAMI.2009.77
– volume: 1
  start-page: 1
  year: 1999
  ident: ref44
  article-title: Image features from phase congruency
  publication-title: J Comput Vis Res
– ident: ref15
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 21
  start-page: 977
  year: 2003
  ident: ref5
  article-title: Image registration methods: A survey
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(03)00137-9
– ident: ref20
  doi: 10.1016/j.isprsjprs.2017.05.007
– ident: ref8
  doi: 10.1109/TGRS.2016.2587321
– ident: ref10
  doi: 10.14358/PERS.79.8.753
– ident: ref7
  doi: 10.1016/j.imavis.2009.12.005
– ident: ref21
  doi: 10.1109/CVPR.2007.383426
– ident: ref1
  doi: 10.1016/j.isprsjprs.2016.07.004
– ident: ref23
  doi: 10.1109/TGRS.2015.2441954
– volume: 70
  start-page: 657
  year: 2004
  ident: ref3
  article-title: Understanding image fusion
  publication-title: Photogram Eng Remote Sens
SSID ssj0014517
Score 2.6868355
Snippet While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR),...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9059
SubjectTerms Computational efficiency
Computer applications
Computing time
Fast Fourier transform (FFT)
Fast Fourier transformations
Feature extraction
Fourier transforms
Frameworks
Frequency-domain analysis
Gradients
Histograms
Image detection
Image matching
Image registration
Lidar
multimodal remote sensing images
pixelwise feature representation
Remote sensing
Representations
Robustness
SAR (radar)
Self-similarity
Shape
Synthetic aperture radar
Template matching
Title Fast and Robust Matching for Multimodal Remote Sensing Image Registration
URI https://ieeexplore.ieee.org/document/8766118
https://www.proquest.com/docview/2311106498
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR27TsMw8NRWQoKBRwuiUFAGJkTSPBwnHhGitEhlaIvULYodhwGaIJosfD1nJ414CbE5jm3ZPvsevhfAhWQBUtLUQyGHxSbxbG7GRCkcfaHildleonMDTh_o-JHcL_1lC64aXxgppTY-k5Yqal1-kotSPZUN8eZSZIjb0EbBrfLVajQGxHdq12hqohDh1hpMx2bDxd1sroy4mOWitEFD8oUG6aQqPzCxJi-jPZhuJlZZlTxbZcEt8f4tZuN_Z74PuzWfaVxXB-MAWjLrws6n6INd2NLWn2Ldg8koXhdGnCXGLOclFqeIoNXTlIEsraF9dFd5gsPNJEJWGnNl9Y5_JyvERlj51ETfPYTF6HZxMzbrHAum8HxWmG5AA-lQSZTLrB9K5icxQo3aJHZwFQGXrnC4zVNsglVMkoALlU2dOjxNU-8IOlmeyWMwXKSHjhCIFBJJYiZC_E6ZlyL_xVnqOn2wN5seiTr-uEqD8RJpOcRmkYJTpOAU1XDqw2XT5bUKvvFX457a96ZhveV9GGwgG9XXcx0hU4uDUMLCk997ncK2GrtyOhxAp3gr5RlyHwU_18fuA0f909o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NT8Iw9AUxRj34ARpR1B08GQfr1nX0aIwIChwAE27L2nUeFDAyLv56X7ux-BXjrevarutr30ffF8CF4gFS0sRDIYdHNvUcYUdUKxx9qeOVOV5scgP2B6zzSO8n_qQEV4UvjFLKGJ-phi4aXX48l0t9VdbEk8uQIV6DdaT7Psm8tQqdAfVJ7hzNbBQj3FyHSRzeHN8NR9qMizdclDdYi36hQiatyg9cbAhMexf6q6lldiXPjWUqGvL9W9TG_859D3ZyTtO6zrbGPpTUrALbn-IPVmDD2H_KRRW67WiRWtEstoZzscRiH1G0vpyykKm1jJfudB7jcEOFsFXWSNu949vuFPERVj4V8XcPYNy-Hd907DzLgi09n6e2G7BAEaaodpr1W4r7cYRwYw6NCP5FIJQriXBEgk2wiisaCKnzqTMikiTxDqE8m8_UEVguUkQiJaKFWNGIyxY-J9xLkAMTPHFJDZzVoocyj0CuE2G8hEYScXio4RRqOIU5nGpwWXR5zcJv_NW4qte9aJgveQ3qK8iG-QFdhMjW4iCM8tbx773OYbMz7vfCXnfwcAJb-juZC2IdyunbUp0iL5KKM7MFPwCAb9cj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Robust+Matching+for+Multimodal+Remote+Sensing+Image+Registration&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Ye%2C+Yuanxin&rft.au=Bruzzone%2C+Lorenzo&rft.au=Shan%2C+Jie&rft.au=Bovolo%2C+Francesca&rft.date=2019-11-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=11&rft.spage=9059&rft.epage=9070&rft_id=info:doi/10.1109%2FTGRS.2019.2924684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2019_2924684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon