Neural Network Compensator-Based Control for Enhancing IPMSM Dynamics and Copper Loss Efficiency for Air Compressor

Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle air conditioning systems using IPMSM compressors. This paper focuses on the neural network compensator-based control in an interior permanen...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; p. 1
Main Authors Guo, Jiawei, Sun, Linfeng, Kawaguchi, Takahiro, Hashimoto, Seiji
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle air conditioning systems using IPMSM compressors. This paper focuses on the neural network compensator-based control in an interior permanent-magnet synchronous motor (IPMSM) to address the occurrence of reduced power copper loss efficiency and degraded velocity response in the motor system when confronted with periodic dynamic disturbances of step signals. This paper encompasses two main objectives: the first objective is to introduce a neural network (NN) compensator to improve the power copper loss efficiency. The NN compensator is developed using the velocity loop and current loop control model equation of an IPMSM, and trained to implement optimal compensation control based on the back propagation algorithm. The second objective is to optimize the dynamic performance of velocity response compared to the traditional maximum torque per ampere (MTPA) current control method under step disturbance and dynamic control conditions by building an experimental system for validation, incorporating both hardware and simulation. Another significant advantage is the low computational load introduced by the neural network compensator, rendering it well-suited for implementation within low-order DSP systems. The results indicate that the neural network compensator surpasses conventional MTPA control method in both simulation and hardware-based implementations concerning power copper loss and velocity response in an IPMSM control system.
AbstractList Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle air conditioning systems using IPMSM compressors. This paper focuses on the neural network compensator-based control in an interior permanent-magnet synchronous motor (IPMSM) to address the occurrence of reduced power copper loss efficiency and degraded velocity response in the motor system when confronted with periodic dynamic disturbances of step signals. This paper encompasses two main objectives: the first objective is to introduce a neural network (NN) compensator to improve the power copper loss efficiency. The NN compensator is developed using the velocity loop and current loop control model equation of an IPMSM, and trained to implement optimal compensation control based on the back propagation algorithm. The second objective is to optimize the dynamic performance of velocity response compared to the traditional maximum torque per ampere (MTPA) current control method under step disturbance and dynamic control conditions by building an experimental system for validation, incorporating both hardware and simulation. Another significant advantage is the low computational load introduced by the neural network compensator, rendering it well-suited for implementation within low-order DSP systems. The results indicate that the neural network compensator surpasses conventional MTPA control method in both simulation and hardware-based implementations concerning power copper loss and velocity response in an IPMSM control system.
Author Sun, Linfeng
Kawaguchi, Takahiro
Hashimoto, Seiji
Guo, Jiawei
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0009-0001-9021-850X
  surname: Guo
  fullname: Guo, Jiawei
  organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan
– sequence: 2
  givenname: Linfeng
  orcidid: 0000-0001-6219-6676
  surname: Sun
  fullname: Sun, Linfeng
  organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan
– sequence: 3
  givenname: Takahiro
  orcidid: 0000-0003-4460-8694
  surname: Kawaguchi
  fullname: Kawaguchi, Takahiro
  organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan
– sequence: 4
  givenname: Seiji
  orcidid: 0000-0002-3338-2418
  surname: Hashimoto
  fullname: Hashimoto, Seiji
  organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan
BookMark eNpNkV9r2zAUxc3oYF3XT7A9GPbsVH8syX7MvKwNpO0g27O4ka46Z4nkSQ4j375KXEr1csXhnJ_EPR-LCx88FsVnSmaUkvZm3nWL9XrGCKtnnLeSKvKuuGRUthUXXF68uX8orlPaknyaLAl1WaQHPETYlQ84_g_xb9mF_YA-wRhi9Q0S2qz4MYZd6UIsF_4PeNP7p3L58359X34_etj3JpXgT8ZhwFiuQkrlwrne9OjN8Zyb9_FMjphSiJ-K9w52Ca9f5lXx-8fiV3dXrR5vl918VRku2rGizrRUSlCSCr4Rtm7QGg5qw5kkSEwrUTWNNQKI4yJ7ayuVVcZyVtcOgF8Vy4lrA2z1EPs9xKMO0OuzEOKThjj2Zoe6cULUQGzG1DWiBYOUsc2GWmASucysrxNriOHfAdOot-EQff6-5kQw2grGmuzik8vEvIWI7vVVSvSpLD2VpU9l6ZeycurLlOoR8U1CUCWU4s-7UJKi
CODEN IAECCG
Cites_doi 10.1109/icems.2019.8921970
10.1016/0005-1098(92)90059-o
10.1109/21.256542
10.1109/iccpct.2014.7055050
10.5370/JEET.2014.9.2.600
10.1109/PSEC.2002.1022554
10.1109/tie.2009.2036029
10.1109/72.655026
10.7551/mitpress/5236.001.0001
10.23919/chicc.2017.8028134
10.1109/icepe57949.2023.10201640
10.1109/TPEL.2014.2323180
10.1109/TEC.2004.841517
10.1109/72.80202
10.1109/tpel.2012.2195203
10.1109/tnnls.2014.2316289
10.1109/IJCNN.2002.1007449
10.1109/TIA.2015.2417128
10.1109/TPEL.2015.2470177
10.1073/pnas.79.8.2554
10.1109/APPEEC.2011.5748543
10.1103/physrevlett.59.2229
10.1109/tte.2020.3004463
10.1109/37.214948
10.1109/tie.2007.910524
10.1109/ISIE.2019.8781197
10.23919/EPE.2019.8915144
10.30941/cestems.2023.00009
10.1109/TIA.2014.2339634
10.1109/IECON.2015.7392470
10.1109/72.279193
10.1109/ICICTA.2010.579
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3396170
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_8f554a0d5c944eedace122bb1da26e36
10_1109_ACCESS_2024_3396170
10517577
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
4.4
AAYXX
CITATION
EJD
M43
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-1fc9166a76153b5d48edc3a7b3260e0c96e788dc5a0f35c914d67d7cd3244faa3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:05:16 EDT 2024
Thu Oct 10 16:30:58 EDT 2024
Fri Aug 23 01:02:02 EDT 2024
Wed Jun 26 19:38:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1fc9166a76153b5d48edc3a7b3260e0c96e788dc5a0f35c914d67d7cd3244faa3
ORCID 0009-0001-9021-850X
0000-0001-6219-6676
0000-0002-3338-2418
0000-0003-4460-8694
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10517577
PQID 3052195228
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_10517577
crossref_primary_10_1109_ACCESS_2024_3396170
doaj_primary_oai_doaj_org_article_8f554a0d5c944eedace122bb1da26e36
proquest_journals_3052195228
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Willis (ref32)
ref24
ref23
ref26
ref25
ref20
ref22
Hagan (ref34) 2002
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/icems.2019.8921970
– ident: ref27
  doi: 10.1016/0005-1098(92)90059-o
– ident: ref33
  doi: 10.1109/21.256542
– ident: ref4
  doi: 10.1109/iccpct.2014.7055050
– ident: ref7
  doi: 10.5370/JEET.2014.9.2.600
– ident: ref9
  doi: 10.1109/PSEC.2002.1022554
– ident: ref6
  doi: 10.1109/tie.2009.2036029
– ident: ref30
  doi: 10.1109/72.655026
– ident: ref21
  doi: 10.7551/mitpress/5236.001.0001
– ident: ref16
  doi: 10.23919/chicc.2017.8028134
– start-page: 1
  volume-title: IEE Colloquium on Neural Networks for Systems: Principles and Applications
  ident: ref32
  article-title: Artificial neural networks and their application in process engineering
  contributor:
    fullname: Willis
– ident: ref18
  doi: 10.1109/icepe57949.2023.10201640
– ident: ref10
  doi: 10.1109/TPEL.2014.2323180
– ident: ref11
  doi: 10.1109/TEC.2004.841517
– volume-title: Neural Network Design
  year: 2002
  ident: ref34
  contributor:
    fullname: Hagan
– ident: ref29
  doi: 10.1109/72.80202
– ident: ref8
  doi: 10.1109/tpel.2012.2195203
– ident: ref19
  doi: 10.1109/tnnls.2014.2316289
– ident: ref26
  doi: 10.1109/IJCNN.2002.1007449
– ident: ref13
  doi: 10.1109/TIA.2015.2417128
– ident: ref15
  doi: 10.1109/TPEL.2015.2470177
– ident: ref20
  doi: 10.1073/pnas.79.8.2554
– ident: ref22
  doi: 10.1109/APPEEC.2011.5748543
– ident: ref23
  doi: 10.1103/physrevlett.59.2229
– ident: ref1
  doi: 10.1109/tte.2020.3004463
– ident: ref28
  doi: 10.1109/37.214948
– ident: ref3
  doi: 10.1109/tie.2007.910524
– ident: ref25
  doi: 10.1109/ISIE.2019.8781197
– ident: ref5
  doi: 10.23919/EPE.2019.8915144
– ident: ref2
  doi: 10.30941/cestems.2023.00009
– ident: ref12
  doi: 10.1109/TIA.2014.2339634
– ident: ref14
  doi: 10.1109/IECON.2015.7392470
– ident: ref31
  doi: 10.1109/72.279193
– ident: ref24
  doi: 10.1109/ICICTA.2010.579
SSID ssj0000816957
Score 2.3521483
Snippet Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">dq axis synthesis current control
Air compressors
Air conditioning
Algorithms
Artificial neural networks
back propagation (BP)
Back propagation networks
Backpropagation
Compensators
Computer simulation
Control methods
Control systems
Copper
Copper loss
dq axis synthesis current control
Dynamic control
Efficiency
Hardware
Heuristic algorithms
Interior permanent-magnet synchronous motor (IPMSM)
Motors
neural network (NN)
Neural networks
Optimization
Permanent magnet motors
Permanent magnets
Synchronous motors
Training
Transient response
Vectors
Velocity
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZmJz0Yf8w4f4WDR6u0QFuOc85M44yJLtmNUKDqpS7b_P99Dzoz48GLV0oLvFd430fge4ScC2WsraVIUu-yRFhZJVVtWOJsJh0gBpeH1Anjx3w0EfdTOV1L9YVnwqI8cDTcVVlDwDPMSauEgAXdWJ9mWVWlzmS551Fsm6k1MhXW4DLNlSxamSF4ftUfDGBEQAgzccm5Qh3yH6EoKPa3KVZ-rcsh2NzukO0WJdJ-7N0u2fDNHtla0w7cJwuU1YA6j_EcN8WJDZQUOXRyDaHJ0UE8hU4BltJh84bCGs0rvXsaP4_pTUxEv6CmwYqzmZ_TB-gkHQZJCbyPGd7rv8_Dl5GUf8y7ZHI7fBmMkjaDQmK5VMskrS3Av9wUCOsq6UTpneWmqAC0Mc-syj1QYGelYTUHC6fC5YUrrAOYJWpj-AHpNB-NPySUAxMEeAbFJSAo5hAYCuYtACRXuUL0yMXKmHoWhTJ0IBhM6Wh7jbbXre175BoN_l0VVa5DAfhet77Xf_m-R7rorrX2JKChouiRk5X_dDslF5rjNWUFcLM8-o-2j8kmjifuxpyQznL-6U8Bnyyrs_ArfgGKeeFl
  priority: 102
  providerName: Directory of Open Access Journals
Title Neural Network Compensator-Based Control for Enhancing IPMSM Dynamics and Copper Loss Efficiency for Air Compressor
URI https://ieeexplore.ieee.org/document/10517577
https://www.proquest.com/docview/3052195228
https://doaj.org/article/8f554a0d5c944eedace122bb1da26e36
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuDAs4iFUvnAkSxObMfr43bZqiB2hQSVerP8ClRI2dU-Lvx6ZuxsVUBI3CJrnNgZO_ONM_MNwBtpXAidklWdYlPJoHzlO8erGBoVETHENpdOWCzbyyv58VpdD8nqORcmpZSDz9KYLvO__LgKezoqwx2u0NppfQRH2piSrHV7oEIVJIzSA7NQzc276WyGk0AfsJFjIQxRj_9mfTJJ_1BV5a9PcbYvF49geRhZCSv5Md7v_Dj8_IO08b-H_hgeDkiTTcvSeAL3Uv8UHtzhH3wGW6LmQJlliQVn9HFAt5b88OoczVtksxLJzhDasnn_ncg5-m_sw-fFlwV7X4rZb5nrSXC9Thv2CWfN5pmWgnI6c7_pzSbfmRz71eYEri7mX2eX1VCFoQpCmV1VdwEhZOs0QUOvopykGITTHoEfTzyYNqEbHYNyvBMKZWVsddQhIlSTnXPiORz3qz69ACbQm0SIh80TRGE8EriUPAUEWdFHLUfw9qAduy5kGzY7KdzYokxLyrSDMkdwThq8FSWm7NyAb94OG89OOgRMjkccmZQICFxIddN4X0fXtEm0Izghbd15XlHUCE4PC8IO23prBaU6G4Ssk5f_6PYK7tMQyyHNKRzvNvv0GmHLzp9ld_8sL9pfIr_rUQ
link.rule.ids 315,783,787,799,867,2109,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeAAeGIMhOgb4YY-kOLGdNI9d6dRBW03aJu3N8lcAIaVVP17463dnp9MGQuItss6JnbNzv3PufgdwImvjXKNklgdfZNIpm9nG8My7QnlEDL6MpRNm83JyLb_eqJsuWT3mwoQQYvBZ6NNl_JfvF25LR2W4wxVau6p6DE8UAYuUrnV3pEI1JGpVddxCOa8_D0cjnAZ6gYXsC1ET-fgD-xNp-ru6Kn99jKOFOduH-W5sKbDkV3-7sX33-w_axv8e_Et40WFNNkyL4wAehfYVPL_HQPga1kTOgTLzFA3O6POAji154tkpGjjPRimWnSG4ZeP2B9FztN_Z-cXscsa-pHL2a2ZaElwuw4pNcdZsHIkpKKsz9hv-XMU7k2u_WB3C9dn4ajTJujoMmROq3mR54xBElqYicGiVl4PgnTCVRejHA3d1GdCR9k4Z3giFstKXla-cR7AmG2PEG9hrF214C0ygP4kgD5sHiMO4J3gpeXAIs7z1lezBp5129DLRbejopvBaJ2VqUqbulNmDU9LgnShxZccGfPO623p60CBkMtzjyKRESGBcyIvC2tybogyi7MEhaeve85KienC8WxC629hrLSjZuUbQOjj6R7eP8HRyNZvq6fn82zt4RsNNRzbHsLdZbcN7BDEb-yEu3VsMG-2p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Compensator-Based+Control+for+Enhancing+IPMSM+Dynamics+and+Copper+Loss+Efficiency+for+Air+Compressor&rft.jtitle=IEEE+access&rft.au=Guo%2C+Jiawei&rft.au=Sun%2C+Linfeng&rft.au=Kawaguchi%2C+Takahiro&rft.au=Hashimoto%2C+Seiji&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=12&rft.spage=62986&rft_id=info:doi/10.1109%2FACCESS.2024.3396170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon