Neural Network Compensator-Based Control for Enhancing IPMSM Dynamics and Copper Loss Efficiency for Air Compressor
Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle air conditioning systems using IPMSM compressors. This paper focuses on the neural network compensator-based control in an interior permanen...
Saved in:
Published in | IEEE access Vol. 12; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle air conditioning systems using IPMSM compressors. This paper focuses on the neural network compensator-based control in an interior permanent-magnet synchronous motor (IPMSM) to address the occurrence of reduced power copper loss efficiency and degraded velocity response in the motor system when confronted with periodic dynamic disturbances of step signals. This paper encompasses two main objectives: the first objective is to introduce a neural network (NN) compensator to improve the power copper loss efficiency. The NN compensator is developed using the velocity loop and current loop control model equation of an IPMSM, and trained to implement optimal compensation control based on the back propagation algorithm. The second objective is to optimize the dynamic performance of velocity response compared to the traditional maximum torque per ampere (MTPA) current control method under step disturbance and dynamic control conditions by building an experimental system for validation, incorporating both hardware and simulation. Another significant advantage is the low computational load introduced by the neural network compensator, rendering it well-suited for implementation within low-order DSP systems. The results indicate that the neural network compensator surpasses conventional MTPA control method in both simulation and hardware-based implementations concerning power copper loss and velocity response in an IPMSM control system. |
---|---|
AbstractList | Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle air conditioning systems using IPMSM compressors. This paper focuses on the neural network compensator-based control in an interior permanent-magnet synchronous motor (IPMSM) to address the occurrence of reduced power copper loss efficiency and degraded velocity response in the motor system when confronted with periodic dynamic disturbances of step signals. This paper encompasses two main objectives: the first objective is to introduce a neural network (NN) compensator to improve the power copper loss efficiency. The NN compensator is developed using the velocity loop and current loop control model equation of an IPMSM, and trained to implement optimal compensation control based on the back propagation algorithm. The second objective is to optimize the dynamic performance of velocity response compared to the traditional maximum torque per ampere (MTPA) current control method under step disturbance and dynamic control conditions by building an experimental system for validation, incorporating both hardware and simulation. Another significant advantage is the low computational load introduced by the neural network compensator, rendering it well-suited for implementation within low-order DSP systems. The results indicate that the neural network compensator surpasses conventional MTPA control method in both simulation and hardware-based implementations concerning power copper loss and velocity response in an IPMSM control system. |
Author | Sun, Linfeng Kawaguchi, Takahiro Hashimoto, Seiji Guo, Jiawei |
Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0009-0001-9021-850X surname: Guo fullname: Guo, Jiawei organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan – sequence: 2 givenname: Linfeng orcidid: 0000-0001-6219-6676 surname: Sun fullname: Sun, Linfeng organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan – sequence: 3 givenname: Takahiro orcidid: 0000-0003-4460-8694 surname: Kawaguchi fullname: Kawaguchi, Takahiro organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan – sequence: 4 givenname: Seiji orcidid: 0000-0002-3338-2418 surname: Hashimoto fullname: Hashimoto, Seiji organization: Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan |
BookMark | eNpNkV9r2zAUxc3oYF3XT7A9GPbsVH8syX7MvKwNpO0g27O4ka46Z4nkSQ4j375KXEr1csXhnJ_EPR-LCx88FsVnSmaUkvZm3nWL9XrGCKtnnLeSKvKuuGRUthUXXF68uX8orlPaknyaLAl1WaQHPETYlQ84_g_xb9mF_YA-wRhi9Q0S2qz4MYZd6UIsF_4PeNP7p3L58359X34_etj3JpXgT8ZhwFiuQkrlwrne9OjN8Zyb9_FMjphSiJ-K9w52Ca9f5lXx-8fiV3dXrR5vl918VRku2rGizrRUSlCSCr4Rtm7QGg5qw5kkSEwrUTWNNQKI4yJ7ayuVVcZyVtcOgF8Vy4lrA2z1EPs9xKMO0OuzEOKThjj2Zoe6cULUQGzG1DWiBYOUsc2GWmASucysrxNriOHfAdOot-EQff6-5kQw2grGmuzik8vEvIWI7vVVSvSpLD2VpU9l6ZeycurLlOoR8U1CUCWU4s-7UJKi |
CODEN | IAECCG |
Cites_doi | 10.1109/icems.2019.8921970 10.1016/0005-1098(92)90059-o 10.1109/21.256542 10.1109/iccpct.2014.7055050 10.5370/JEET.2014.9.2.600 10.1109/PSEC.2002.1022554 10.1109/tie.2009.2036029 10.1109/72.655026 10.7551/mitpress/5236.001.0001 10.23919/chicc.2017.8028134 10.1109/icepe57949.2023.10201640 10.1109/TPEL.2014.2323180 10.1109/TEC.2004.841517 10.1109/72.80202 10.1109/tpel.2012.2195203 10.1109/tnnls.2014.2316289 10.1109/IJCNN.2002.1007449 10.1109/TIA.2015.2417128 10.1109/TPEL.2015.2470177 10.1073/pnas.79.8.2554 10.1109/APPEEC.2011.5748543 10.1103/physrevlett.59.2229 10.1109/tte.2020.3004463 10.1109/37.214948 10.1109/tie.2007.910524 10.1109/ISIE.2019.8781197 10.23919/EPE.2019.8915144 10.30941/cestems.2023.00009 10.1109/TIA.2014.2339634 10.1109/IECON.2015.7392470 10.1109/72.279193 10.1109/ICICTA.2010.579 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3396170 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_8f554a0d5c944eedace122bb1da26e36 10_1109_ACCESS_2024_3396170 10517577 |
Genre | orig-research |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION EJD M43 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-1fc9166a76153b5d48edc3a7b3260e0c96e788dc5a0f35c914d67d7cd3244faa3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:05:16 EDT 2024 Thu Oct 10 16:30:58 EDT 2024 Fri Aug 23 01:02:02 EDT 2024 Wed Jun 26 19:38:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-1fc9166a76153b5d48edc3a7b3260e0c96e788dc5a0f35c914d67d7cd3244faa3 |
ORCID | 0009-0001-9021-850X 0000-0001-6219-6676 0000-0002-3338-2418 0000-0003-4460-8694 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10517577 |
PQID | 3052195228 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10517577 crossref_primary_10_1109_ACCESS_2024_3396170 doaj_primary_oai_doaj_org_article_8f554a0d5c944eedace122bb1da26e36 proquest_journals_3052195228 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Willis (ref32) ref24 ref23 ref26 ref25 ref20 ref22 Hagan (ref34) 2002 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref17 doi: 10.1109/icems.2019.8921970 – ident: ref27 doi: 10.1016/0005-1098(92)90059-o – ident: ref33 doi: 10.1109/21.256542 – ident: ref4 doi: 10.1109/iccpct.2014.7055050 – ident: ref7 doi: 10.5370/JEET.2014.9.2.600 – ident: ref9 doi: 10.1109/PSEC.2002.1022554 – ident: ref6 doi: 10.1109/tie.2009.2036029 – ident: ref30 doi: 10.1109/72.655026 – ident: ref21 doi: 10.7551/mitpress/5236.001.0001 – ident: ref16 doi: 10.23919/chicc.2017.8028134 – start-page: 1 volume-title: IEE Colloquium on Neural Networks for Systems: Principles and Applications ident: ref32 article-title: Artificial neural networks and their application in process engineering contributor: fullname: Willis – ident: ref18 doi: 10.1109/icepe57949.2023.10201640 – ident: ref10 doi: 10.1109/TPEL.2014.2323180 – ident: ref11 doi: 10.1109/TEC.2004.841517 – volume-title: Neural Network Design year: 2002 ident: ref34 contributor: fullname: Hagan – ident: ref29 doi: 10.1109/72.80202 – ident: ref8 doi: 10.1109/tpel.2012.2195203 – ident: ref19 doi: 10.1109/tnnls.2014.2316289 – ident: ref26 doi: 10.1109/IJCNN.2002.1007449 – ident: ref13 doi: 10.1109/TIA.2015.2417128 – ident: ref15 doi: 10.1109/TPEL.2015.2470177 – ident: ref20 doi: 10.1073/pnas.79.8.2554 – ident: ref22 doi: 10.1109/APPEEC.2011.5748543 – ident: ref23 doi: 10.1103/physrevlett.59.2229 – ident: ref1 doi: 10.1109/tte.2020.3004463 – ident: ref28 doi: 10.1109/37.214948 – ident: ref3 doi: 10.1109/tie.2007.910524 – ident: ref25 doi: 10.1109/ISIE.2019.8781197 – ident: ref5 doi: 10.23919/EPE.2019.8915144 – ident: ref2 doi: 10.30941/cestems.2023.00009 – ident: ref12 doi: 10.1109/TIA.2014.2339634 – ident: ref14 doi: 10.1109/IECON.2015.7392470 – ident: ref31 doi: 10.1109/72.279193 – ident: ref24 doi: 10.1109/ICICTA.2010.579 |
SSID | ssj0000816957 |
Score | 2.3521483 |
Snippet | Although significant efforts have been made to enhance industrial air conditioning systems, there are still efficiency and transient response issues in vehicle... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">dq axis synthesis current control Air compressors Air conditioning Algorithms Artificial neural networks back propagation (BP) Back propagation networks Backpropagation Compensators Computer simulation Control methods Control systems Copper Copper loss dq axis synthesis current control Dynamic control Efficiency Hardware Heuristic algorithms Interior permanent-magnet synchronous motor (IPMSM) Motors neural network (NN) Neural networks Optimization Permanent magnet motors Permanent magnets Synchronous motors Training Transient response Vectors Velocity |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZmJz0Yf8w4f4WDR6u0QFuOc85M44yJLtmNUKDqpS7b_P99Dzoz48GLV0oLvFd430fge4ScC2WsraVIUu-yRFhZJVVtWOJsJh0gBpeH1Anjx3w0EfdTOV1L9YVnwqI8cDTcVVlDwDPMSauEgAXdWJ9mWVWlzmS551Fsm6k1MhXW4DLNlSxamSF4ftUfDGBEQAgzccm5Qh3yH6EoKPa3KVZ-rcsh2NzukO0WJdJ-7N0u2fDNHtla0w7cJwuU1YA6j_EcN8WJDZQUOXRyDaHJ0UE8hU4BltJh84bCGs0rvXsaP4_pTUxEv6CmwYqzmZ_TB-gkHQZJCbyPGd7rv8_Dl5GUf8y7ZHI7fBmMkjaDQmK5VMskrS3Av9wUCOsq6UTpneWmqAC0Mc-syj1QYGelYTUHC6fC5YUrrAOYJWpj-AHpNB-NPySUAxMEeAbFJSAo5hAYCuYtACRXuUL0yMXKmHoWhTJ0IBhM6Wh7jbbXre175BoN_l0VVa5DAfhet77Xf_m-R7rorrX2JKChouiRk5X_dDslF5rjNWUFcLM8-o-2j8kmjifuxpyQznL-6U8Bnyyrs_ArfgGKeeFl priority: 102 providerName: Directory of Open Access Journals |
Title | Neural Network Compensator-Based Control for Enhancing IPMSM Dynamics and Copper Loss Efficiency for Air Compressor |
URI | https://ieeexplore.ieee.org/document/10517577 https://www.proquest.com/docview/3052195228 https://doaj.org/article/8f554a0d5c944eedace122bb1da26e36 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuDAs4iFUvnAkSxObMfr43bZqiB2hQSVerP8ClRI2dU-Lvx6ZuxsVUBI3CJrnNgZO_ONM_MNwBtpXAidklWdYlPJoHzlO8erGBoVETHENpdOWCzbyyv58VpdD8nqORcmpZSDz9KYLvO__LgKezoqwx2u0NppfQRH2piSrHV7oEIVJIzSA7NQzc276WyGk0AfsJFjIQxRj_9mfTJJ_1BV5a9PcbYvF49geRhZCSv5Md7v_Dj8_IO08b-H_hgeDkiTTcvSeAL3Uv8UHtzhH3wGW6LmQJlliQVn9HFAt5b88OoczVtksxLJzhDasnn_ncg5-m_sw-fFlwV7X4rZb5nrSXC9Thv2CWfN5pmWgnI6c7_pzSbfmRz71eYEri7mX2eX1VCFoQpCmV1VdwEhZOs0QUOvopykGITTHoEfTzyYNqEbHYNyvBMKZWVsddQhIlSTnXPiORz3qz69ACbQm0SIh80TRGE8EriUPAUEWdFHLUfw9qAduy5kGzY7KdzYokxLyrSDMkdwThq8FSWm7NyAb94OG89OOgRMjkccmZQICFxIddN4X0fXtEm0Izghbd15XlHUCE4PC8IO23prBaU6G4Ssk5f_6PYK7tMQyyHNKRzvNvv0GmHLzp9ld_8sL9pfIr_rUQ |
link.rule.ids | 315,783,787,799,867,2109,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeAAeGIMhOgb4YY-kOLGdNI9d6dRBW03aJu3N8lcAIaVVP17463dnp9MGQuItss6JnbNzv3PufgdwImvjXKNklgdfZNIpm9nG8My7QnlEDL6MpRNm83JyLb_eqJsuWT3mwoQQYvBZ6NNl_JfvF25LR2W4wxVau6p6DE8UAYuUrnV3pEI1JGpVddxCOa8_D0cjnAZ6gYXsC1ET-fgD-xNp-ru6Kn99jKOFOduH-W5sKbDkV3-7sX33-w_axv8e_Et40WFNNkyL4wAehfYVPL_HQPga1kTOgTLzFA3O6POAji154tkpGjjPRimWnSG4ZeP2B9FztN_Z-cXscsa-pHL2a2ZaElwuw4pNcdZsHIkpKKsz9hv-XMU7k2u_WB3C9dn4ajTJujoMmROq3mR54xBElqYicGiVl4PgnTCVRejHA3d1GdCR9k4Z3giFstKXla-cR7AmG2PEG9hrF214C0ygP4kgD5sHiMO4J3gpeXAIs7z1lezBp5129DLRbejopvBaJ2VqUqbulNmDU9LgnShxZccGfPO623p60CBkMtzjyKRESGBcyIvC2tybogyi7MEhaeve85KienC8WxC629hrLSjZuUbQOjj6R7eP8HRyNZvq6fn82zt4RsNNRzbHsLdZbcN7BDEb-yEu3VsMG-2p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Compensator-Based+Control+for+Enhancing+IPMSM+Dynamics+and+Copper+Loss+Efficiency+for+Air+Compressor&rft.jtitle=IEEE+access&rft.au=Guo%2C+Jiawei&rft.au=Sun%2C+Linfeng&rft.au=Kawaguchi%2C+Takahiro&rft.au=Hashimoto%2C+Seiji&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=12&rft.spage=62986&rft_id=info:doi/10.1109%2FACCESS.2024.3396170&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |