Neural Network Model for Estimation of the Induced Electric Field During Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 58; no. 2; pp. 1 - 5
Main Authors Afuwape, Oluwaponmile F., Olafasakin, Olumide O., Jiles, David C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9464
1941-0069
DOI10.1109/TMAG.2021.3086761

Cover

Loading…
Abstract Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic induction, where generated magnetic fields (<inline-formula> <tex-math notation="LaTeX">H </tex-math></inline-formula>-field) induce electric field (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field) that stimulates the brain's neurons. With TMS studies, accurate estimation of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is usually necessary. However, this requires a lot of processes, including the 3-D head model generation from magnetic resonance imaging (MRI) scans using the SimNIBS software and finite element analysis to calculate the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field. These processes are time-consuming and computationally expensive. In addition, with each head model's uniqueness, outcomes cannot be generalized across a particular population as the intensity of <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is subject-specific. In this research, the authors develop deep convolutional neural network (deep CNN) models to determine the intensity of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field directly from the patient's MRI scan and across different coil types. We trained CNN models from anatomically realistic head models and across 16 coil types to predict the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field in the brain and scalp (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-Max brain and scalp), and the volume of stimulation of the brain and scalp (<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula>-half brain and scalp) from T1-weighted MRI scans. Using a deep CNN model, the processing time for estimating the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is significantly reduced, which is helpful both to clinicians and researchers as the need to create subject-specific anatomical head structures is eliminated. Also, there will be no need for additional stimulation sessions with the different coil types for TMS patients as the deep CNN model can predict the outcome from each coil type. The other advantages of the deep CNN model are that the <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field from the different coil types can be compared simultaneously.
AbstractList Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic induction, where generated magnetic fields ([Formula Omitted]-field) induce electric field ([Formula Omitted]-field) that stimulates the brain’s neurons. With TMS studies, accurate estimation of the induced [Formula Omitted]-field is usually necessary. However, this requires a lot of processes, including the 3-D head model generation from magnetic resonance imaging (MRI) scans using the SimNIBS software and finite element analysis to calculate the induced [Formula Omitted]-field. These processes are time-consuming and computationally expensive. In addition, with each head model’s uniqueness, outcomes cannot be generalized across a particular population as the intensity of [Formula Omitted]-field is subject-specific. In this research, the authors develop deep convolutional neural network (deep CNN) models to determine the intensity of the induced [Formula Omitted]-field directly from the patient’s MRI scan and across different coil types. We trained CNN models from anatomically realistic head models and across 16 coil types to predict the induced [Formula Omitted]-field in the brain and scalp ([Formula Omitted]-Max brain and scalp), and the volume of stimulation of the brain and scalp ([Formula Omitted]-half brain and scalp) from T1-weighted MRI scans. Using a deep CNN model, the processing time for estimating the induced [Formula Omitted]-field is significantly reduced, which is helpful both to clinicians and researchers as the need to create subject-specific anatomical head structures is eliminated. Also, there will be no need for additional stimulation sessions with the different coil types for TMS patients as the deep CNN model can predict the outcome from each coil type. The other advantages of the deep CNN model are that the [Formula Omitted]-field from the different coil types can be compared simultaneously.
Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic induction, where generated magnetic fields (<inline-formula> <tex-math notation="LaTeX">H </tex-math></inline-formula>-field) induce electric field (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field) that stimulates the brain's neurons. With TMS studies, accurate estimation of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is usually necessary. However, this requires a lot of processes, including the 3-D head model generation from magnetic resonance imaging (MRI) scans using the SimNIBS software and finite element analysis to calculate the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field. These processes are time-consuming and computationally expensive. In addition, with each head model's uniqueness, outcomes cannot be generalized across a particular population as the intensity of <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is subject-specific. In this research, the authors develop deep convolutional neural network (deep CNN) models to determine the intensity of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field directly from the patient's MRI scan and across different coil types. We trained CNN models from anatomically realistic head models and across 16 coil types to predict the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field in the brain and scalp (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-Max brain and scalp), and the volume of stimulation of the brain and scalp (<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula>-half brain and scalp) from T1-weighted MRI scans. Using a deep CNN model, the processing time for estimating the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is significantly reduced, which is helpful both to clinicians and researchers as the need to create subject-specific anatomical head structures is eliminated. Also, there will be no need for additional stimulation sessions with the different coil types for TMS patients as the deep CNN model can predict the outcome from each coil type. The other advantages of the deep CNN model are that the <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field from the different coil types can be compared simultaneously.
Author Afuwape, Oluwaponmile F.
Jiles, David C.
Olafasakin, Olumide O.
Author_xml – sequence: 1
  givenname: Oluwaponmile F.
  orcidid: 0000-0003-3124-473X
  surname: Afuwape
  fullname: Afuwape, Oluwaponmile F.
  email: oafuwape@iastate.edu
  organization: Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
– sequence: 2
  givenname: Olumide O.
  surname: Olafasakin
  fullname: Olafasakin, Olumide O.
  organization: Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
– sequence: 3
  givenname: David C.
  orcidid: 0000-0002-1329-5894
  surname: Jiles
  fullname: Jiles, David C.
  organization: Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
BookMark eNp9UMtOwzAQtBBIlMIHIC6WOKfsJs7DR1RaQKJwoJwj11mDS4iL4wjx97gUceDAZUcrzUMzR2y_cx0xdoowQQR5sVxcXk9SSHGSQVWUBe6xEUqBCUAh99kIAKtEikIcsqO-X8dX5Agjtr6nwauW31P4cP6VL1xDLTfO81kf7JsK1nXcGR5eiN92zaCp4bOWdPBW87mltuFXg7fdM1961fU6HhvtFuq5oxApj9FkaL9tjtmBUW1PJz84Zk_z2XJ6k9w9XN9OL-8SneUyJKgNmGalsiY3MoMSBFFZpKWJoKDJoRTNCpUUMlVGrmSeaYMV5kZhpnKtsjE73_luvHsfqA_12g2-i5F1WqRYgajSKrJwx9Le9b0nU2987Os_a4R6O2m9nbTeTlr_TBo15R-NtuG7W_DKtv8qz3ZKS0S_SVKIskTIvgDvBobk
CODEN IEMGAQ
CitedBy_id crossref_primary_10_1038_s41598_024_70367_w
crossref_primary_10_14326_abe_12_225
crossref_primary_10_1109_ACCESS_2021_3112612
crossref_primary_10_1088_1361_6560_ac22dc
Cites_doi 10.1371/journal.pcbi.1007091
10.1063/1.4974981
10.1097/00004691-200208000-00008
10.1007/978-3-319-54918-7_1
10.1103/revmodphys.90.031003
10.1016/j.neuroimage.2012.02.018
10.1109/TMAG.2020.3008554
10.1109/TMAG.2012.2219878
10.1002/hbm.21479
10.1016/j.brs.2010.05.001
10.1016/j.brs.2019.06.015
10.1109/TMAG.2014.2326819
10.1109/TMAG.2015.2514158
10.1002/hbm.24307
10.1016/j.brs.2012.02.005
10.1063/1.3563076
10.1063/1.4973604
10.1016/j.zemedi.2018.11.002
10.1109/IEMBS.2006.260877
10.1155/2018/7061420
10.1088/0031-9155/59/18/5287
10.1109/TMAG.2020.3006459
10.1016/j.neuroimage.2013.04.067
10.1016/j.cortex.2008.10.012
10.1088/1741-2552/aac967
10.1016/j.euroneuro.2019.06.009
10.1016/j.brs.2017.11.016
10.1038/35018000
10.1109/IEMBS.2007.4352640
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TMAG.2021.3086761
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 5
ExternalDocumentID 10_1109_TMAG_2021_3086761
9447710
Genre orig-research
GrantInformation_xml – fundername: Barbara and James Palmer Foundation
– fundername: Stanley Chair in Interdisciplinary Engineering at Iowa State University
  funderid: 10.13039/100009227
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
XXG
AAYXX
CITATION
RIG
7SP
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c359t-1cf0fdba3d5f930704ee7627fee7a0d5074db1a9492af9b953cf1815fa13a5ca3
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Mon Jun 30 10:18:33 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Tue Jul 01 04:30:06 EDT 2025
Wed Aug 27 03:02:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1cf0fdba3d5f930704ee7627fee7a0d5074db1a9492af9b953cf1815fa13a5ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3124-473X
0000-0002-1329-5894
PQID 2621804828
PQPubID 85461
PageCount 5
ParticipantIDs ieee_primary_9447710
proquest_journals_2621804828
crossref_primary_10_1109_TMAG_2021_3086761
crossref_citationtrail_10_1109_TMAG_2021_3086761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
(ref28) 2021
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
(ref27) 2020
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Neufeld (ref32)
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Abadi (ref33)
ref5
References_xml – ident: ref21
  doi: 10.1371/journal.pcbi.1007091
– ident: ref8
  doi: 10.1063/1.4974981
– ident: ref15
  doi: 10.1097/00004691-200208000-00008
– start-page: 265
  volume-title: Proc. 12th USENIX Symp. Operating Syst. Design Implement. (OSDI)
  ident: ref33
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref10
  doi: 10.1007/978-3-319-54918-7_1
– ident: ref5
  doi: 10.1103/revmodphys.90.031003
– ident: ref24
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: ref1
  doi: 10.1109/TMAG.2020.3008554
– ident: ref20
  doi: 10.1109/TMAG.2012.2219878
– ident: ref18
  doi: 10.1002/hbm.21479
– ident: ref16
  doi: 10.1016/j.brs.2010.05.001
– ident: ref22
  doi: 10.1016/j.brs.2019.06.015
– ident: ref7
  doi: 10.1109/TMAG.2014.2326819
– ident: ref25
  doi: 10.1109/TMAG.2015.2514158
– ident: ref4
  doi: 10.1002/hbm.24307
– ident: ref31
  doi: 10.1016/j.brs.2012.02.005
– ident: ref29
  doi: 10.1063/1.3563076
– ident: ref30
  doi: 10.1063/1.4973604
– volume-title: Proc. VPH Congr.
  ident: ref32
  article-title: Sim4Life: A medical image data based multiphysics simulation platform for computational life sciences
– ident: ref23
  doi: 10.1016/j.zemedi.2018.11.002
– ident: ref14
  doi: 10.1109/IEMBS.2006.260877
– ident: ref17
  doi: 10.1155/2018/7061420
– ident: ref26
  doi: 10.1088/0031-9155/59/18/5287
– volume-title: Hs6bbeD6SsaHvLeg3403_501-0626 Magnetic Stimulation Accessories Catalogue UK-Edition Rev 6.5.pdf
  year: 2020
  ident: ref27
– ident: ref6
  doi: 10.1109/TMAG.2020.3006459
– ident: ref19
  doi: 10.1016/j.neuroimage.2013.04.067
– ident: ref12
  doi: 10.1016/j.cortex.2008.10.012
– ident: ref2
  doi: 10.1088/1741-2552/aac967
– ident: ref13
  doi: 10.1016/j.euroneuro.2019.06.009
– volume-title: Magstim Coils Archives
  year: 2021
  ident: ref28
– ident: ref11
  doi: 10.1016/j.brs.2017.11.016
– ident: ref3
  doi: 10.1038/35018000
– ident: ref9
  doi: 10.1109/IEMBS.2007.4352640
SSID ssj0014510
Score 2.4120102
Snippet Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Brain
Brain modeling
Coils
Computational modeling
Deep convolutional neural network (deep CNN)
Electric fields
Electromagnetic induction
Estimation
Finite element method
induced electric field (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">E -field)
Magnetic heads
Magnetic induction
Magnetic resonance imaging
Magnetism
Mathematical analysis
MRI scans
Neural networks
Neurons
Scalp
Solid modeling
Three dimensional models
Transcranial magnetic stimulation
transcranial magnetic stimulation (TMS)
Title Neural Network Model for Estimation of the Induced Electric Field During Transcranial Magnetic Stimulation
URI https://ieeexplore.ieee.org/document/9447710
https://www.proquest.com/docview/2621804828
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0FpErlAC0pIkArH3pC3WS9trPxEdGkUaVwKZFyW_ljjPhQgiC58OsZezcRFFT1srsHe2VpvOM3O_PmAXzPS62sUSbzOmAmUZpsYHWZSad8booBYl3le9EfT-XvmZq14MeGC4OIqfgMu_Ex5fL9wq3ir7KelrIsI59qiwK3mqu1yRhIxWu6CR9E2XjZZDB5rnuXk7NfFAkWvCsIwJd9_uoMSqIqbzxxOl5GezBZL6yuKrntrpa2657-6tn4vyv_BLsNzmRn9cb4DC2c78POi-6D-_AhVX-6xzbcxBYdNPqirglnUSDtjhGcZUPyADW5kS0CI7DIotaHQ8-GST_n2rFRrIFjPxPdkaWjz9GFtjWbmKt55EiyP_SSRibsC0xHw8vzcdaIMGROKL3MuAt58NYIr4KODkIikgMtA91M7glOSm-50VIXJmirlXCBUIMKhgujnBEHsD1fzPEQWFAWrbXe-WCkQ21RC6GCDUoYTmFLB_K1WSrXdCiPQhl3VYpUcl1FS1bRklVjyQ6cbqbc1-05_jW4HS2zGdgYpQMna9tXzQf8WBV9wj7k3YrB0fuzjuFjEZkQqYD7BLaXDyv8Svhkab-ljfkMr9jjZw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0hKlQ4tDSAmkKpDz1VbFiv7Wx8RG1CCiSXJhK3lT_GCIoSVJJLf33H3k1EP4R62d2DvbI03pnnnXnzAD7mpVbWKJN5HTCTKE3Ws7rMpFM-N0UPsa7yHXeHU3lxra434GTNhUHEVHyGnfiYcvl-7pbxV9mplrIsI5_qBcV9xWu21jpnIBWvCSe8F4XjZZPD5Lk-nYzOzuksWPCOIAhfdvlvUSjJqvzli1OAGbyG0WppdV3J985yYTvu5x9dG_937bvwqkGa7KzeGm9gA2ct2HnSf7AFW6n-0z3uwV1s0kGjx3VVOIsSafeMAC3rkw-o6Y1sHhjBRRbVPhx61k8KOreODWIVHPuSCI8sBT9HF9rYbGRuZpElyb7RSxqhsH2YDvqTz8OskWHInFB6kXEX8uCtEV4FHV2ERCQXWga6mdwToJTecqOlLkzQVivhAuEGFQwXRjkjDmBzNp_hW2BBWbTWeueDkQ61RS2ECjYoYTgdXNqQr8xSuaZHeZTKuK_SWSXXVbRkFS1ZNZZsw6f1lIe6Qcdzg_eiZdYDG6O04Whl-6r5hB-rokvoh_xb0Xv371kf4OVwMrqqrr6OLw9hu4i8iFTOfQSbix9LfE9oZWGP0yb9BbKL5rA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Model+for+Estimation+of+the+Induced+Electric+Field+During+Transcranial+Magnetic+Stimulation&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Afuwape%2C+Oluwaponmile+F.&rft.au=Olafasakin%2C+Olumide+O.&rft.au=Jiles%2C+David+C.&rft.date=2022-02-01&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=58&rft.issue=2&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FTMAG.2021.3086761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMAG_2021_3086761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon