Neural Network Model for Estimation of the Induced Electric Field During Transcranial Magnetic Stimulation
Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic...
Saved in:
Published in | IEEE transactions on magnetics Vol. 58; no. 2; pp. 1 - 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9464 1941-0069 |
DOI | 10.1109/TMAG.2021.3086761 |
Cover
Loading…
Abstract | Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic induction, where generated magnetic fields (<inline-formula> <tex-math notation="LaTeX">H </tex-math></inline-formula>-field) induce electric field (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field) that stimulates the brain's neurons. With TMS studies, accurate estimation of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is usually necessary. However, this requires a lot of processes, including the 3-D head model generation from magnetic resonance imaging (MRI) scans using the SimNIBS software and finite element analysis to calculate the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field. These processes are time-consuming and computationally expensive. In addition, with each head model's uniqueness, outcomes cannot be generalized across a particular population as the intensity of <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is subject-specific. In this research, the authors develop deep convolutional neural network (deep CNN) models to determine the intensity of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field directly from the patient's MRI scan and across different coil types. We trained CNN models from anatomically realistic head models and across 16 coil types to predict the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field in the brain and scalp (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-Max brain and scalp), and the volume of stimulation of the brain and scalp (<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula>-half brain and scalp) from T1-weighted MRI scans. Using a deep CNN model, the processing time for estimating the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is significantly reduced, which is helpful both to clinicians and researchers as the need to create subject-specific anatomical head structures is eliminated. Also, there will be no need for additional stimulation sessions with the different coil types for TMS patients as the deep CNN model can predict the outcome from each coil type. The other advantages of the deep CNN model are that the <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field from the different coil types can be compared simultaneously. |
---|---|
AbstractList | Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic induction, where generated magnetic fields ([Formula Omitted]-field) induce electric field ([Formula Omitted]-field) that stimulates the brain’s neurons. With TMS studies, accurate estimation of the induced [Formula Omitted]-field is usually necessary. However, this requires a lot of processes, including the 3-D head model generation from magnetic resonance imaging (MRI) scans using the SimNIBS software and finite element analysis to calculate the induced [Formula Omitted]-field. These processes are time-consuming and computationally expensive. In addition, with each head model’s uniqueness, outcomes cannot be generalized across a particular population as the intensity of [Formula Omitted]-field is subject-specific. In this research, the authors develop deep convolutional neural network (deep CNN) models to determine the intensity of the induced [Formula Omitted]-field directly from the patient’s MRI scan and across different coil types. We trained CNN models from anatomically realistic head models and across 16 coil types to predict the induced [Formula Omitted]-field in the brain and scalp ([Formula Omitted]-Max brain and scalp), and the volume of stimulation of the brain and scalp ([Formula Omitted]-half brain and scalp) from T1-weighted MRI scans. Using a deep CNN model, the processing time for estimating the induced [Formula Omitted]-field is significantly reduced, which is helpful both to clinicians and researchers as the need to create subject-specific anatomical head structures is eliminated. Also, there will be no need for additional stimulation sessions with the different coil types for TMS patients as the deep CNN model can predict the outcome from each coil type. The other advantages of the deep CNN model are that the [Formula Omitted]-field from the different coil types can be compared simultaneously. Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In its repetitive mode, it is used for the treatment of neurological and psychiatric disorders. It functions on the principle of electromagnetic induction, where generated magnetic fields (<inline-formula> <tex-math notation="LaTeX">H </tex-math></inline-formula>-field) induce electric field (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field) that stimulates the brain's neurons. With TMS studies, accurate estimation of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is usually necessary. However, this requires a lot of processes, including the 3-D head model generation from magnetic resonance imaging (MRI) scans using the SimNIBS software and finite element analysis to calculate the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field. These processes are time-consuming and computationally expensive. In addition, with each head model's uniqueness, outcomes cannot be generalized across a particular population as the intensity of <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is subject-specific. In this research, the authors develop deep convolutional neural network (deep CNN) models to determine the intensity of the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field directly from the patient's MRI scan and across different coil types. We trained CNN models from anatomically realistic head models and across 16 coil types to predict the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field in the brain and scalp (<inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-Max brain and scalp), and the volume of stimulation of the brain and scalp (<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula>-half brain and scalp) from T1-weighted MRI scans. Using a deep CNN model, the processing time for estimating the induced <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field is significantly reduced, which is helpful both to clinicians and researchers as the need to create subject-specific anatomical head structures is eliminated. Also, there will be no need for additional stimulation sessions with the different coil types for TMS patients as the deep CNN model can predict the outcome from each coil type. The other advantages of the deep CNN model are that the <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula>-field from the different coil types can be compared simultaneously. |
Author | Afuwape, Oluwaponmile F. Jiles, David C. Olafasakin, Olumide O. |
Author_xml | – sequence: 1 givenname: Oluwaponmile F. orcidid: 0000-0003-3124-473X surname: Afuwape fullname: Afuwape, Oluwaponmile F. email: oafuwape@iastate.edu organization: Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA – sequence: 2 givenname: Olumide O. surname: Olafasakin fullname: Olafasakin, Olumide O. organization: Department of Mechanical Engineering, Iowa State University, Ames, IA, USA – sequence: 3 givenname: David C. orcidid: 0000-0002-1329-5894 surname: Jiles fullname: Jiles, David C. organization: Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA |
BookMark | eNp9UMtOwzAQtBBIlMIHIC6WOKfsJs7DR1RaQKJwoJwj11mDS4iL4wjx97gUceDAZUcrzUMzR2y_cx0xdoowQQR5sVxcXk9SSHGSQVWUBe6xEUqBCUAh99kIAKtEikIcsqO-X8dX5Agjtr6nwauW31P4cP6VL1xDLTfO81kf7JsK1nXcGR5eiN92zaCp4bOWdPBW87mltuFXg7fdM1961fU6HhvtFuq5oxApj9FkaL9tjtmBUW1PJz84Zk_z2XJ6k9w9XN9OL-8SneUyJKgNmGalsiY3MoMSBFFZpKWJoKDJoRTNCpUUMlVGrmSeaYMV5kZhpnKtsjE73_luvHsfqA_12g2-i5F1WqRYgajSKrJwx9Le9b0nU2987Os_a4R6O2m9nbTeTlr_TBo15R-NtuG7W_DKtv8qz3ZKS0S_SVKIskTIvgDvBobk |
CODEN | IEMGAQ |
CitedBy_id | crossref_primary_10_1038_s41598_024_70367_w crossref_primary_10_14326_abe_12_225 crossref_primary_10_1109_ACCESS_2021_3112612 crossref_primary_10_1088_1361_6560_ac22dc |
Cites_doi | 10.1371/journal.pcbi.1007091 10.1063/1.4974981 10.1097/00004691-200208000-00008 10.1007/978-3-319-54918-7_1 10.1103/revmodphys.90.031003 10.1016/j.neuroimage.2012.02.018 10.1109/TMAG.2020.3008554 10.1109/TMAG.2012.2219878 10.1002/hbm.21479 10.1016/j.brs.2010.05.001 10.1016/j.brs.2019.06.015 10.1109/TMAG.2014.2326819 10.1109/TMAG.2015.2514158 10.1002/hbm.24307 10.1016/j.brs.2012.02.005 10.1063/1.3563076 10.1063/1.4973604 10.1016/j.zemedi.2018.11.002 10.1109/IEMBS.2006.260877 10.1155/2018/7061420 10.1088/0031-9155/59/18/5287 10.1109/TMAG.2020.3006459 10.1016/j.neuroimage.2013.04.067 10.1016/j.cortex.2008.10.012 10.1088/1741-2552/aac967 10.1016/j.euroneuro.2019.06.009 10.1016/j.brs.2017.11.016 10.1038/35018000 10.1109/IEMBS.2007.4352640 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1109/TMAG.2021.3086761 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0069 |
EndPage | 5 |
ExternalDocumentID | 10_1109_TMAG_2021_3086761 9447710 |
Genre | orig-research |
GrantInformation_xml | – fundername: Barbara and James Palmer Foundation – fundername: Stanley Chair in Interdisciplinary Engineering at Iowa State University funderid: 10.13039/100009227 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK XXG AAYXX CITATION RIG 7SP 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c359t-1cf0fdba3d5f930704ee7627fee7a0d5074db1a9492af9b953cf1815fa13a5ca3 |
IEDL.DBID | RIE |
ISSN | 0018-9464 |
IngestDate | Mon Jun 30 10:18:33 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Tue Jul 01 04:30:06 EDT 2025 Wed Aug 27 03:02:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-1cf0fdba3d5f930704ee7627fee7a0d5074db1a9492af9b953cf1815fa13a5ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3124-473X 0000-0002-1329-5894 |
PQID | 2621804828 |
PQPubID | 85461 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9447710 proquest_journals_2621804828 crossref_primary_10_1109_TMAG_2021_3086761 crossref_citationtrail_10_1109_TMAG_2021_3086761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on magnetics |
PublicationTitleAbbrev | TMAG |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 (ref28) 2021 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 (ref27) 2020 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Neufeld (ref32) ref29 ref8 ref7 ref9 ref4 ref3 ref6 Abadi (ref33) ref5 |
References_xml | – ident: ref21 doi: 10.1371/journal.pcbi.1007091 – ident: ref8 doi: 10.1063/1.4974981 – ident: ref15 doi: 10.1097/00004691-200208000-00008 – start-page: 265 volume-title: Proc. 12th USENIX Symp. Operating Syst. Design Implement. (OSDI) ident: ref33 article-title: TensorFlow: A system for large-scale machine learning – ident: ref10 doi: 10.1007/978-3-319-54918-7_1 – ident: ref5 doi: 10.1103/revmodphys.90.031003 – ident: ref24 doi: 10.1016/j.neuroimage.2012.02.018 – ident: ref1 doi: 10.1109/TMAG.2020.3008554 – ident: ref20 doi: 10.1109/TMAG.2012.2219878 – ident: ref18 doi: 10.1002/hbm.21479 – ident: ref16 doi: 10.1016/j.brs.2010.05.001 – ident: ref22 doi: 10.1016/j.brs.2019.06.015 – ident: ref7 doi: 10.1109/TMAG.2014.2326819 – ident: ref25 doi: 10.1109/TMAG.2015.2514158 – ident: ref4 doi: 10.1002/hbm.24307 – ident: ref31 doi: 10.1016/j.brs.2012.02.005 – ident: ref29 doi: 10.1063/1.3563076 – ident: ref30 doi: 10.1063/1.4973604 – volume-title: Proc. VPH Congr. ident: ref32 article-title: Sim4Life: A medical image data based multiphysics simulation platform for computational life sciences – ident: ref23 doi: 10.1016/j.zemedi.2018.11.002 – ident: ref14 doi: 10.1109/IEMBS.2006.260877 – ident: ref17 doi: 10.1155/2018/7061420 – ident: ref26 doi: 10.1088/0031-9155/59/18/5287 – volume-title: Hs6bbeD6SsaHvLeg3403_501-0626 Magnetic Stimulation Accessories Catalogue UK-Edition Rev 6.5.pdf year: 2020 ident: ref27 – ident: ref6 doi: 10.1109/TMAG.2020.3006459 – ident: ref19 doi: 10.1016/j.neuroimage.2013.04.067 – ident: ref12 doi: 10.1016/j.cortex.2008.10.012 – ident: ref2 doi: 10.1088/1741-2552/aac967 – ident: ref13 doi: 10.1016/j.euroneuro.2019.06.009 – volume-title: Magstim Coils Archives year: 2021 ident: ref28 – ident: ref11 doi: 10.1016/j.brs.2017.11.016 – ident: ref3 doi: 10.1038/35018000 – ident: ref9 doi: 10.1109/IEMBS.2007.4352640 |
SSID | ssj0014510 |
Score | 2.4120102 |
Snippet | Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique with applications in brain mapping and effective neuronal connectivity. In... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Brain Brain modeling Coils Computational modeling Deep convolutional neural network (deep CNN) Electric fields Electromagnetic induction Estimation Finite element method induced electric field (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">E -field) Magnetic heads Magnetic induction Magnetic resonance imaging Magnetism Mathematical analysis MRI scans Neural networks Neurons Scalp Solid modeling Three dimensional models Transcranial magnetic stimulation transcranial magnetic stimulation (TMS) |
Title | Neural Network Model for Estimation of the Induced Electric Field During Transcranial Magnetic Stimulation |
URI | https://ieeexplore.ieee.org/document/9447710 https://www.proquest.com/docview/2621804828 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0FpErlAC0pIkArH3pC3WS9trPxEdGkUaVwKZFyW_ljjPhQgiC58OsZezcRFFT1srsHe2VpvOM3O_PmAXzPS62sUSbzOmAmUZpsYHWZSad8booBYl3le9EfT-XvmZq14MeGC4OIqfgMu_Ex5fL9wq3ir7KelrIsI59qiwK3mqu1yRhIxWu6CR9E2XjZZDB5rnuXk7NfFAkWvCsIwJd9_uoMSqIqbzxxOl5GezBZL6yuKrntrpa2657-6tn4vyv_BLsNzmRn9cb4DC2c78POi-6D-_AhVX-6xzbcxBYdNPqirglnUSDtjhGcZUPyADW5kS0CI7DIotaHQ8-GST_n2rFRrIFjPxPdkaWjz9GFtjWbmKt55EiyP_SSRibsC0xHw8vzcdaIMGROKL3MuAt58NYIr4KODkIikgMtA91M7glOSm-50VIXJmirlXCBUIMKhgujnBEHsD1fzPEQWFAWrbXe-WCkQ21RC6GCDUoYTmFLB_K1WSrXdCiPQhl3VYpUcl1FS1bRklVjyQ6cbqbc1-05_jW4HS2zGdgYpQMna9tXzQf8WBV9wj7k3YrB0fuzjuFjEZkQqYD7BLaXDyv8Svhkab-ljfkMr9jjZw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0hKlQ4tDSAmkKpDz1VbFiv7Wx8RG1CCiSXJhK3lT_GCIoSVJJLf33H3k1EP4R62d2DvbI03pnnnXnzAD7mpVbWKJN5HTCTKE3Ws7rMpFM-N0UPsa7yHXeHU3lxra434GTNhUHEVHyGnfiYcvl-7pbxV9mplrIsI5_qBcV9xWu21jpnIBWvCSe8F4XjZZPD5Lk-nYzOzuksWPCOIAhfdvlvUSjJqvzli1OAGbyG0WppdV3J985yYTvu5x9dG_937bvwqkGa7KzeGm9gA2ct2HnSf7AFW6n-0z3uwV1s0kGjx3VVOIsSafeMAC3rkw-o6Y1sHhjBRRbVPhx61k8KOreODWIVHPuSCI8sBT9HF9rYbGRuZpElyb7RSxqhsH2YDvqTz8OskWHInFB6kXEX8uCtEV4FHV2ERCQXWga6mdwToJTecqOlLkzQVivhAuEGFQwXRjkjDmBzNp_hW2BBWbTWeueDkQ61RS2ECjYoYTgdXNqQr8xSuaZHeZTKuK_SWSXXVbRkFS1ZNZZsw6f1lIe6Qcdzg_eiZdYDG6O04Whl-6r5hB-rokvoh_xb0Xv371kf4OVwMrqqrr6OLw9hu4i8iFTOfQSbix9LfE9oZWGP0yb9BbKL5rA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Model+for+Estimation+of+the+Induced+Electric+Field+During+Transcranial+Magnetic+Stimulation&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Afuwape%2C+Oluwaponmile+F.&rft.au=Olafasakin%2C+Olumide+O.&rft.au=Jiles%2C+David+C.&rft.date=2022-02-01&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=58&rft.issue=2&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FTMAG.2021.3086761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMAG_2021_3086761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |