Wagner liquid–vapour pressure equation constants from a simple methodology
► Simple methodology to estimate Wagner vapor pressure equation constants. ► Full range liquid-vapor pressure predictions from limited data. ► Constants satisfy the Waring criterion. A methodology to determine the A, B, C, and D constants from the Wagner equation is presented. The constants for 274...
Saved in:
Published in | The Journal of chemical thermodynamics Vol. 43; no. 8; pp. 1235 - 1251 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Simple methodology to estimate Wagner vapor pressure equation constants. ► Full range liquid-vapor pressure predictions from limited data. ► Constants satisfy the Waring criterion.
A methodology to determine the
A,
B,
C, and
D constants from the Wagner equation is presented. The constants for 274 pure substances were determined by minimization in the sum of the squares of the relative deviation in liquid vapour pressure. For 69 chemical compounds, vapour pressures exist over the range from 1
kPa to the critical pressure and an average absolute deviation in vapour pressure of 0.039% was calculated. Using Antoine equation coefficients and initial guesses for a correlation in terms of the acentric factor, Wagner constants were estimated for substances with limited data within the range from (1 to 200)
kPa. To validate the proposed methodology, vapour pressure predictions from 1
kPa to the critical pressure were made for 52 substances using Wagner parameters estimated from limited data. A value of 0.27% in average absolute deviation results for those substances. Finally the Waring criterion was applied to check the constants presented in this paper. |
---|---|
AbstractList | ► Simple methodology to estimate Wagner vapor pressure equation constants. ► Full range liquid-vapor pressure predictions from limited data. ► Constants satisfy the Waring criterion.
A methodology to determine the
A,
B,
C, and
D constants from the Wagner equation is presented. The constants for 274 pure substances were determined by minimization in the sum of the squares of the relative deviation in liquid vapour pressure. For 69 chemical compounds, vapour pressures exist over the range from 1
kPa to the critical pressure and an average absolute deviation in vapour pressure of 0.039% was calculated. Using Antoine equation coefficients and initial guesses for a correlation in terms of the acentric factor, Wagner constants were estimated for substances with limited data within the range from (1 to 200)
kPa. To validate the proposed methodology, vapour pressure predictions from 1
kPa to the critical pressure were made for 52 substances using Wagner parameters estimated from limited data. A value of 0.27% in average absolute deviation results for those substances. Finally the Waring criterion was applied to check the constants presented in this paper. A methodology to determine the A, B, C, and D constants from the Wagner equation is presented. The constants for 274 pure substances were determined by minimization in the sum of the squares of the relative deviation in liquid vapour pressure. For 69 chemical compounds, vapour pressures exist over the range from 1 kPa to the critical pressure and an average absolute deviation in vapour pressure of 0.039% was calculated. Using Antoine equation coefficients and initial guesses for a correlation in terms of the acentric factor, Wagner constants were estimated for substances with limited data within the range from (1 to 200) kPa. To validate the proposed methodology, vapour pressure predictions from 1 kPa to the critical pressure were made for 52 substances using Wagner parameters estimated from limited data. A value of 0.27% in average absolute deviation results for those substances. Finally the Waring criterion was applied to check the constants presented in this paper. |
Author | Forero G., Luis A. Velásquez J., Jorge A. |
Author_xml | – sequence: 1 givenname: Luis A surname: FORERO G fullname: FORERO G, Luis A organization: Pulp and Paper Research Group, Faculty of Chemical Engineering, Universidad Pontificia Bolivariana, Circular 1 – sequence: 2 givenname: Jorge A surname: VELASQUEZ J fullname: VELASQUEZ J, Jorge A organization: Pulp and Paper Research Group, Faculty of Chemical Engineering, Universidad Pontificia Bolivariana, Circular 1 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24198806$$DView record in Pascal Francis |
BookMark | eNp9kLtOxDAQRS0EEsvCB9ClQVQJY2c3D1EhxEtaiQZEaXknE_AqsbO2g0THP_CHfAleFlFQMM1tzpkZ3QO2a6whxo45ZBx4cbbKVhgyAZxnkGcxdtiEQ12keSGKXTYBEDytCz7bZwferwCgzmuYsMWTejbkkk6vR918vn-8qsGOLhkceT86Smg9qqCtSdAaH5QJPmmd7ROVeN0PHSU9hRfb2M4-vx2yvVZ1no5-csoer68eLm_Txf3N3eXFIsV8XoeUL1XVKA4tz-dt_F60AvNKiBkXnEgVFVbQzpfLpkbCWROnxDiirJfY4KzKp-x0u3dwdj2SD7LXHqnrlCE7ellVUMxFCWUkT35I5VF1rVMGtZeD071ybzKerDdw5PiWQ2e9d9T-IhzkpmC5krFguSlYQi5jRKf846AO310Fp3T3r3m-NSmW9KrJSY-aDFKjHUW2sfof-wtNmZo- |
CODEN | JCTDAF |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c02255 crossref_primary_10_1021_acs_iecr_9b02912 crossref_primary_10_1016_j_fluid_2017_12_022 crossref_primary_10_1021_acs_iecr_2c03598 crossref_primary_10_1080_00986445_2024_2409171 crossref_primary_10_1016_j_fluid_2018_04_009 crossref_primary_10_1021_acs_jced_0c00914 crossref_primary_10_1021_acs_iecr_3c03107 crossref_primary_10_1007_s10953_020_00983_3 crossref_primary_10_1016_j_jcp_2020_109455 crossref_primary_10_1016_j_applthermaleng_2025_125548 crossref_primary_10_1016_j_jece_2021_107065 crossref_primary_10_1016_j_fuel_2020_119074 crossref_primary_10_1016_j_ijrefrig_2013_01_007 crossref_primary_10_1016_j_tca_2013_03_002 crossref_primary_10_1002_ceat_202100535 crossref_primary_10_1080_17597269_2016_1187542 crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_074 crossref_primary_10_1016_j_jct_2019_06_026 crossref_primary_10_1021_acs_jced_5b00537 crossref_primary_10_1016_j_fluid_2016_01_040 crossref_primary_10_1080_00102202_2014_971950 crossref_primary_10_1590_0104_6632_20190364s20190112 crossref_primary_10_1088_1681_7575_aaa6dd crossref_primary_10_1007_s10953_018_0821_1 crossref_primary_10_1016_j_fpsl_2018_07_005 crossref_primary_10_1155_2023_5302260 crossref_primary_10_1016_j_compchemeng_2022_107698 crossref_primary_10_1016_j_jct_2013_07_018 crossref_primary_10_1021_acs_iecr_7b01539 crossref_primary_10_1016_j_ces_2020_116324 crossref_primary_10_1016_j_ijft_2025_101093 crossref_primary_10_1016_j_compchemeng_2024_108629 crossref_primary_10_1016_j_fluid_2013_10_017 crossref_primary_10_1080_00986445_2015_1135428 |
Cites_doi | 10.1021/je0001680 10.1021/je800375t 10.1016/j.fluid.2007.04.012 10.1021/i200021a023 10.1021/je00019a002 10.1016/0009-2509(72)80096-4 10.1021/je700336g 10.1021/je9501999 10.1021/i200031a023 10.1007/s10765-005-5576-4 10.1016/0011-2275(73)90003-9 10.1021/je000210r 10.1006/jcht.1995.0012 10.1021/je100656d 10.1021/je9501548 10.1016/0009-2509(82)80099-7 10.1021/je050221q 10.1016/0021-9614(74)90119-0 10.1016/0021-9614(78)90078-2 10.1021/ie9708687 10.1016/0021-9614(86)90042-X 10.1080/00986440302156 10.1021/je00021a001 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.jct.2011.03.011 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-3626 |
EndPage | 1251 |
ExternalDocumentID | 24198806 10_1016_j_jct_2011_03_011 S0021961411000905 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN 9M8 A6W AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ H~9 IHE J1W JARJE KOM LG5 M35 M41 MAGPM MO0 N9A NCXOZ O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSR SSZ T5K UPT VOH WH7 WUQ XJT XOL XPP YQT ZCG ZU3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c359t-1ba8da10f135f1012f2c38224121eea68c80f5bbd9cec4dddd7cccc279bcdc483 |
IEDL.DBID | .~1 |
ISSN | 0021-9614 |
IngestDate | Fri Jul 11 12:29:27 EDT 2025 Mon Jul 21 09:17:25 EDT 2025 Tue Jul 01 01:07:12 EDT 2025 Thu Apr 24 22:59:12 EDT 2025 Fri Feb 23 02:12:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Enthalpy of vaporization Wagner equation Liquid–vapour pressure Waring’s criteria Liquid-vapour pressure Vapor pressure Chemical compound Waring's criteria Heat of vaporization Thermodynamic properties |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-1ba8da10f135f1012f2c38224121eea68c80f5bbd9cec4dddd7cccc279bcdc483 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 880652707 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_880652707 pascalfrancis_primary_24198806 crossref_primary_10_1016_j_jct_2011_03_011 crossref_citationtrail_10_1016_j_jct_2011_03_011 elsevier_sciencedirect_doi_10_1016_j_jct_2011_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | The Journal of chemical thermodynamics |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Soave (b0010) 1972; 27 Wu, Liu (b0040) 2005; 26 Tsonopoulos, Ambrose (b0065) 1995; 40 Daubert (b0070) 1996; 41 Reid, Prausnitz, Poling (b0035) 1987 Wagner (b0045) 1973; 13 Patel, Teja (b0155) 1982; 37 C.A. Henao, Simulación y evaluación de procesos químicos, UPB, Medellín, 2006. NIST, Standard Reference Database Number 69, 2005. Poling, Prausnitz, O’Conell (b0030) 2001 Boublik, Fried, Hála (b0055) 1973 Kudchadker, Ambrose, Tsonopoulos (b0080) 2001; 46 Ambrose, Sprake, Townsend (b0115) 1974; 6 Forero, Velásquez (b0020) 2010; 55 Daubert (b0005) 1998; 37 TRC Thermodynamic Tables-Nonhydrocarbons, Thermodynamics Research Centre, The Texas A&M University System, College Station, TX, 1987. Ambrose (b0050) 1986; 18 Anderko, Sengers, White (b0150) 2000 Gude, Teja (b0060) 1995; 40 Perry, Green (b0120) 1999 Marsh, Abramson, Ambrose, Morton, Nikitin, Tsonopoulos, Young (b0095) 2007; 52 Willman, Teja (b0145) 1985; 24 Vapour Pressures and Critical Points of Liquids, XIX. Phenol and Derivatives, Item 81025, Engineering Sciences Data London, 1981. Tsonopoulos, Ambrose (b0085) 2001; 46 McGarry (b0100) 1983; 22 Marsh, Young, Morton, Ambrose, Tsonopoulos (b0090) 2006; 51 Ambrose, Counsell, Lawrenson, Lewis (b0110) 1978; 10 Steele (b0160) 1995; 27 Aznar, Silva-Telles, Valderrama (b0025) 2003; 190 Figueira, Lugo, Olivera-Fuentes (b0015) 2007; 259 Tsonopoulos, Ambrose (b0075) 1996; 41 Wu, Yin (b0125) 2008; 53 Kudchadker (10.1016/j.jct.2011.03.011_b0080) 2001; 46 Gude (10.1016/j.jct.2011.03.011_b0060) 1995; 40 Marsh (10.1016/j.jct.2011.03.011_b0095) 2007; 52 10.1016/j.jct.2011.03.011_b0140 Marsh (10.1016/j.jct.2011.03.011_b0090) 2006; 51 Perry (10.1016/j.jct.2011.03.011_b0120) 1999 Wu (10.1016/j.jct.2011.03.011_b0125) 2008; 53 Tsonopoulos (10.1016/j.jct.2011.03.011_b0075) 1996; 41 10.1016/j.jct.2011.03.011_b0105 Poling (10.1016/j.jct.2011.03.011_b0030) 2001 Forero (10.1016/j.jct.2011.03.011_b0020) 2010; 55 Ambrose (10.1016/j.jct.2011.03.011_b0110) 1978; 10 Daubert (10.1016/j.jct.2011.03.011_b0070) 1996; 41 Wu (10.1016/j.jct.2011.03.011_b0040) 2005; 26 Daubert (10.1016/j.jct.2011.03.011_b0005) 1998; 37 Ambrose (10.1016/j.jct.2011.03.011_b0050) 1986; 18 Reid (10.1016/j.jct.2011.03.011_b0035) 1987 Figueira (10.1016/j.jct.2011.03.011_b0015) 2007; 259 Boublik (10.1016/j.jct.2011.03.011_b0055) 1973 Aznar (10.1016/j.jct.2011.03.011_b0025) 2003; 190 Wagner (10.1016/j.jct.2011.03.011_b0045) 1973; 13 10.1016/j.jct.2011.03.011_b0130 Tsonopoulos (10.1016/j.jct.2011.03.011_b0065) 1995; 40 Anderko (10.1016/j.jct.2011.03.011_b0150) 2000 Ambrose (10.1016/j.jct.2011.03.011_b0115) 1974; 6 10.1016/j.jct.2011.03.011_b0135 Willman (10.1016/j.jct.2011.03.011_b0145) 1985; 24 Tsonopoulos (10.1016/j.jct.2011.03.011_b0085) 2001; 46 Soave (10.1016/j.jct.2011.03.011_b0010) 1972; 27 McGarry (10.1016/j.jct.2011.03.011_b0100) 1983; 22 Steele (10.1016/j.jct.2011.03.011_b0160) 1995; 27 Patel (10.1016/j.jct.2011.03.011_b0155) 1982; 37 |
References_xml | – volume: 259 start-page: 105 year: 2007 end-page: 115 ident: b0015 publication-title: Fluid Phase Equilib. – year: 2001 ident: b0030 article-title: The Properties of Gases and Liquids – volume: 27 start-page: 1197 year: 1972 end-page: 1203 ident: b0010 publication-title: Chem. Eng. Sci. – volume: 18 start-page: 45 year: 1986 end-page: 51 ident: b0050 publication-title: J. Chem. Thermodyn. – volume: 13 start-page: 470 year: 1973 end-page: 482 ident: b0045 publication-title: Cryogenics – volume: 55 start-page: 5094 year: 2010 end-page: 5100 ident: b0020 publication-title: J. Chem. Eng. Data – volume: 10 start-page: 1033 year: 1978 end-page: 1043 ident: b0110 publication-title: J. Chem. Thermodyn. – reference: Vapour Pressures and Critical Points of Liquids, XIX. Phenol and Derivatives, Item 81025, Engineering Sciences Data London, 1981. – reference: NIST, Standard Reference Database Number 69, 2005. – year: 2000 ident: b0150 publication-title: 4 Cubic and Generalized Van der Waals Equations – volume: 52 start-page: 1509 year: 2007 end-page: 1538 ident: b0095 publication-title: J. Chem. Eng. Data – volume: 24 start-page: 1033 year: 1985 end-page: 1036 ident: b0145 publication-title: Ind. Eng. Chem. Process Des. Develop. – volume: 41 start-page: 365 year: 1996 end-page: 372 ident: b0070 publication-title: J. Chem. Eng. Data – year: 1973 ident: b0055 article-title: The Vapour Pressure of Pure Substances – reference: C.A. Henao, Simulación y evaluación de procesos químicos, UPB, Medellín, 2006. – volume: 26 start-page: 767 year: 2005 end-page: 784 ident: b0040 publication-title: Int. J. Thermophys. – year: 1999 ident: b0120 article-title: Perry’s Chemical Engineers’ Handbook – volume: 190 start-page: 1411 year: 2003 end-page: 1426 ident: b0025 publication-title: Chem. Eng. Commun. – volume: 37 start-page: 3260 year: 1998 end-page: 3267 ident: b0005 publication-title: Ind. Eng. Chem. Res. – volume: 41 start-page: 645 year: 1996 end-page: 656 ident: b0075 publication-title: J. Chem. Eng. Data – volume: 37 start-page: 463 year: 1982 end-page: 473 ident: b0155 publication-title: Chem. Eng. Sci. – volume: 46 start-page: 457 year: 2001 end-page: 479 ident: b0080 publication-title: J. Chem. Eng. Data – volume: 40 start-page: 1025 year: 1995 end-page: 1036 ident: b0060 publication-title: J. Chem. Eng. Data – volume: 22 start-page: 313 year: 1983 end-page: 322 ident: b0100 publication-title: Ind. Eng. Chem. Process Des. Develop. – volume: 6 start-page: 693 year: 1974 end-page: 700 ident: b0115 publication-title: J. Chem. Thermodyn. – volume: 51 start-page: 305 year: 2006 end-page: 314 ident: b0090 publication-title: J. Chem. Eng. Data – volume: 27 start-page: 135 year: 1995 end-page: 162 ident: b0160 publication-title: J. Chem. Thermodyn. – volume: 46 start-page: 480 year: 2001 end-page: 485 ident: b0085 publication-title: J. Chem. Eng. Data – reference: TRC Thermodynamic Tables-Nonhydrocarbons, Thermodynamics Research Centre, The Texas A&M University System, College Station, TX, 1987. – volume: 40 start-page: 547 year: 1995 end-page: 558 ident: b0065 publication-title: J. Chem. Eng. Data – year: 1987 ident: b0035 article-title: The Properties of Gases and Liquids – volume: 53 start-page: 2247 year: 2008 end-page: 2249 ident: b0125 publication-title: J. Chem. Eng. Data – volume: 46 start-page: 457 year: 2001 ident: 10.1016/j.jct.2011.03.011_b0080 publication-title: J. Chem. Eng. Data doi: 10.1021/je0001680 – ident: 10.1016/j.jct.2011.03.011_b0105 – volume: 53 start-page: 2247 year: 2008 ident: 10.1016/j.jct.2011.03.011_b0125 publication-title: J. Chem. Eng. Data doi: 10.1021/je800375t – ident: 10.1016/j.jct.2011.03.011_b0130 – volume: 259 start-page: 105 year: 2007 ident: 10.1016/j.jct.2011.03.011_b0015 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2007.04.012 – year: 1973 ident: 10.1016/j.jct.2011.03.011_b0055 – volume: 22 start-page: 313 year: 1983 ident: 10.1016/j.jct.2011.03.011_b0100 publication-title: Ind. Eng. Chem. Process Des. Develop. doi: 10.1021/i200021a023 – volume: 40 start-page: 547 year: 1995 ident: 10.1016/j.jct.2011.03.011_b0065 publication-title: J. Chem. Eng. Data doi: 10.1021/je00019a002 – ident: 10.1016/j.jct.2011.03.011_b0140 – volume: 27 start-page: 1197 year: 1972 ident: 10.1016/j.jct.2011.03.011_b0010 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(72)80096-4 – volume: 52 start-page: 1509 year: 2007 ident: 10.1016/j.jct.2011.03.011_b0095 publication-title: J. Chem. Eng. Data doi: 10.1021/je700336g – volume: 41 start-page: 645 year: 1996 ident: 10.1016/j.jct.2011.03.011_b0075 publication-title: J. Chem. Eng. Data doi: 10.1021/je9501999 – volume: 24 start-page: 1033 year: 1985 ident: 10.1016/j.jct.2011.03.011_b0145 publication-title: Ind. Eng. Chem. Process Des. Develop. doi: 10.1021/i200031a023 – volume: 26 start-page: 767 year: 2005 ident: 10.1016/j.jct.2011.03.011_b0040 publication-title: Int. J. Thermophys. doi: 10.1007/s10765-005-5576-4 – volume: 13 start-page: 470 year: 1973 ident: 10.1016/j.jct.2011.03.011_b0045 publication-title: Cryogenics doi: 10.1016/0011-2275(73)90003-9 – year: 1987 ident: 10.1016/j.jct.2011.03.011_b0035 – volume: 46 start-page: 480 year: 2001 ident: 10.1016/j.jct.2011.03.011_b0085 publication-title: J. Chem. Eng. Data doi: 10.1021/je000210r – year: 2000 ident: 10.1016/j.jct.2011.03.011_b0150 – volume: 27 start-page: 135 year: 1995 ident: 10.1016/j.jct.2011.03.011_b0160 publication-title: J. Chem. Thermodyn. doi: 10.1006/jcht.1995.0012 – volume: 55 start-page: 5094 year: 2010 ident: 10.1016/j.jct.2011.03.011_b0020 publication-title: J. Chem. Eng. Data doi: 10.1021/je100656d – volume: 41 start-page: 365 year: 1996 ident: 10.1016/j.jct.2011.03.011_b0070 publication-title: J. Chem. Eng. Data doi: 10.1021/je9501548 – volume: 37 start-page: 463 year: 1982 ident: 10.1016/j.jct.2011.03.011_b0155 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(82)80099-7 – volume: 51 start-page: 305 year: 2006 ident: 10.1016/j.jct.2011.03.011_b0090 publication-title: J. Chem. Eng. Data doi: 10.1021/je050221q – volume: 6 start-page: 693 year: 1974 ident: 10.1016/j.jct.2011.03.011_b0115 publication-title: J. Chem. Thermodyn. doi: 10.1016/0021-9614(74)90119-0 – year: 2001 ident: 10.1016/j.jct.2011.03.011_b0030 – volume: 10 start-page: 1033 year: 1978 ident: 10.1016/j.jct.2011.03.011_b0110 publication-title: J. Chem. Thermodyn. doi: 10.1016/0021-9614(78)90078-2 – year: 1999 ident: 10.1016/j.jct.2011.03.011_b0120 – volume: 37 start-page: 3260 year: 1998 ident: 10.1016/j.jct.2011.03.011_b0005 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9708687 – volume: 18 start-page: 45 year: 1986 ident: 10.1016/j.jct.2011.03.011_b0050 publication-title: J. Chem. Thermodyn. doi: 10.1016/0021-9614(86)90042-X – ident: 10.1016/j.jct.2011.03.011_b0135 – volume: 190 start-page: 1411 year: 2003 ident: 10.1016/j.jct.2011.03.011_b0025 publication-title: Chem. Eng. Commun. doi: 10.1080/00986440302156 – volume: 40 start-page: 1025 year: 1995 ident: 10.1016/j.jct.2011.03.011_b0060 publication-title: J. Chem. Eng. Data doi: 10.1021/je00021a001 |
SSID | ssj0009390 |
Score | 2.1670446 |
Snippet | ► Simple methodology to estimate Wagner vapor pressure equation constants. ► Full range liquid-vapor pressure predictions from limited data. ► Constants... A methodology to determine the A, B, C, and D constants from the Wagner equation is presented. The constants for 274 pure substances were determined by... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1235 |
SubjectTerms | Chemical thermodynamics Chemistry Constants Critical pressure Deviation Enthalpy of vaporization Exact sciences and technology General and physical chemistry General. Theory Liquids Liquid–vapour pressure Mathematical analysis Methodology Vapor pressure Vapour pressure Wagner equation Waring’s criteria |
Title | Wagner liquid–vapour pressure equation constants from a simple methodology |
URI | https://dx.doi.org/10.1016/j.jct.2011.03.011 https://www.proquest.com/docview/880652707 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHhREfOL6WHLwJFSTpt20x2VxWZ8nRW8hSVPpIt1X16P4H_yH_hInabuyiHswl0KbIWUmmUySL98gdMqUVMrX2gtJYlOYBYGnKEs9xXVoKEu479j27-7b_cfg-jl8XkHd-i6MhVVWvr_06c5bV28uKm1ejLLM3vGF0QaziyU9I7HjMQ0Cbnv5-fsPzCNm5T6LgyJA7fpk02G8BrqoWDzZOaH0r7lpYySnoLG0THXxy2u7qai3hTarGBJ3yt_cRism30Fr3Tp12y66fZIvuZng12w8y5Kvj883OQIh7ECvs4nBZlwyfGNdhofFFNt7JljiaWbpgnGZWNptue-hx97lQ7fvVWkTPM3CuPCoklEiKUkpC1NL35X6mlmwKPWpMbId6YikoVJJrI0OEihcQ_F5rHSig4jto0Y-zM0BwiDJJUS0qYGFYMxDyZjxWUopMzCSI91EpFaY0BWnuE1t8Spq8NhAgI6F1bEgTMCjic7mIqOSUGNZ5aC2gljoFQIc_jKx1oLF5g2BDmJwWO0mwrUJBZjGnpHI3AxnU2G_hj4n_PB_TR-h9XrXmdBj1CgmM3MCYUuhWq5fttBq5-qmf_8N8GrupQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7R7YFKVUX5UbcF6gO9IAX8k2ySQw9oKVpg4QQqN9d2HBSEwrLJtuql6jv0UXgjnoRxElOhqhyQ8CVSEsfRjD0ztj9_A7AhtNKaGxNENHMpzMIw0EzkgY5NZJnIYt6w7R8dD0an4cFZdDYHN_4sjINVdra_temNte7ubHfS3J4UhTvji6MNvYsjPaMp9cjKQ_vzB87bqs_7u6jkT5zvfTkZjoIutUBgRJTWAdMqyRSjORNR7iiucm6EA1QyzqxVg8QkNI-0zlJjTZhhiQ0WHqfaZCZMBH73BbwM0Vy4tAlbv_7iSlLRLuw02Af8Pb-V2oDKLkzd0YaKLcrY_5zh64mqUEV5m1vjHzfR-L69BXjTBa1kp5XLW5iz5SLMD32uuCUYf1XnpZ2Sy-J6VmS3v_98VxOsRBqU7Wxqib1uKcWJaePRuiLuYAtRpCocPzFpM1k3a_zLcPoswlyBXnlV2ndAsGasMITOLc480zhSQlgucsaERdORmD5QLzBpOhJzl0vjUnq02oVEGUsnY0mFxEsfNu-rTFoGj8deDr0W5INuKNHDPFZt_YHG7htCGaRoIQd9IF6FElXjNmVUaa9mlXRPIx7T-P3Tmv4I86OTo7Ec7x8ffoBXfsmbslXo1dOZXcOYqdbrTR8l8O25B8Ud_CQsjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wagner+liquid%E2%80%93vapour+pressure+equation+constants+from+a+simple+methodology&rft.jtitle=The+Journal+of+chemical+thermodynamics&rft.au=Forero+G.%2C+Luis+A.&rft.au=Vel%C3%A1squez+J.%2C+Jorge+A.&rft.date=2011-08-01&rft.issn=0021-9614&rft.volume=43&rft.issue=8&rft.spage=1235&rft.epage=1251&rft_id=info:doi/10.1016%2Fj.jct.2011.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jct_2011_03_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9614&client=summon |