Understanding the relationship between land use/land cover changes and air quality: A GIS-based fuzzy inference system approach
Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, nat...
Saved in:
Published in | Environmental monitoring and assessment Vol. 196; no. 12; p. 1160 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, natural processes, and urban design. This study investigates the spatio-temporal variation of key air pollutants resulting from urban LULC changes in the Delhi region. Findings reveal a notable increase in pollutant concentrations, particularly particulate matter, in 2019 (PM
10
: 318.65 ± 45.80 µg/m
3
) and 2023 (PM
10
: 383.70 ± 61.49 µg/m
3
), compared to 2008 (PM
10
: 246.76 ± 30.66). LULC change analysis demonstrates a rise in built-up areas 24.59%(2008 to 2019), 33.62% (2008 to 2023) and a decline in vegetation cover 27.49% (2008 to 2019),32.37% (2008 to 2023). Correlation analysis indicates a positive correlation between PM
10
and urban indices (+ 0.63) and a negative correlation between PM
10
and vegetation indices (− 0.61), highlighting the impact of LULC on air quality deterioration. Subsequently, a fuzzy inference system model integrates LULC information to develop an air quality index (AQI). Incorporating LULC changes in AQI assessment offers a realistic approach to address the complexity arising from combined air pollutant effects, surpassing conventional AQI calculation methods. The findings underscore the significance of understanding the impact of Land Use and Land Cover (LULC) change on ambient air quality in formulating effective air quality management programs and policies. Integrating this knowledge into policymaking is crucial for the successful abatement of air pollution in urbanized areas. |
---|---|
AbstractList | Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, natural processes, and urban design. This study investigates the spatio-temporal variation of key air pollutants resulting from urban LULC changes in the Delhi region. Findings reveal a notable increase in pollutant concentrations, particularly particulate matter, in 2019 (PM
10
: 318.65 ± 45.80 µg/m
3
) and 2023 (PM
10
: 383.70 ± 61.49 µg/m
3
), compared to 2008 (PM
10
: 246.76 ± 30.66). LULC change analysis demonstrates a rise in built-up areas 24.59%(2008 to 2019), 33.62% (2008 to 2023) and a decline in vegetation cover 27.49% (2008 to 2019),32.37% (2008 to 2023). Correlation analysis indicates a positive correlation between PM
10
and urban indices (+ 0.63) and a negative correlation between PM
10
and vegetation indices (− 0.61), highlighting the impact of LULC on air quality deterioration. Subsequently, a fuzzy inference system model integrates LULC information to develop an air quality index (AQI). Incorporating LULC changes in AQI assessment offers a realistic approach to address the complexity arising from combined air pollutant effects, surpassing conventional AQI calculation methods. The findings underscore the significance of understanding the impact of Land Use and Land Cover (LULC) change on ambient air quality in formulating effective air quality management programs and policies. Integrating this knowledge into policymaking is crucial for the successful abatement of air pollution in urbanized areas. Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, natural processes, and urban design. This study investigates the spatio-temporal variation of key air pollutants resulting from urban LULC changes in the Delhi region. Findings reveal a notable increase in pollutant concentrations, particularly particulate matter, in 2019 (PM : 318.65 ± 45.80 µg/m ) and 2023 (PM : 383.70 ± 61.49 µg/m ), compared to 2008 (PM : 246.76 ± 30.66). LULC change analysis demonstrates a rise in built-up areas 24.59%(2008 to 2019), 33.62% (2008 to 2023) and a decline in vegetation cover 27.49% (2008 to 2019),32.37% (2008 to 2023). Correlation analysis indicates a positive correlation between PM and urban indices (+ 0.63) and a negative correlation between PM and vegetation indices (- 0.61), highlighting the impact of LULC on air quality deterioration. Subsequently, a fuzzy inference system model integrates LULC information to develop an air quality index (AQI). Incorporating LULC changes in AQI assessment offers a realistic approach to address the complexity arising from combined air pollutant effects, surpassing conventional AQI calculation methods. The findings underscore the significance of understanding the impact of Land Use and Land Cover (LULC) change on ambient air quality in formulating effective air quality management programs and policies. Integrating this knowledge into policymaking is crucial for the successful abatement of air pollution in urbanized areas. Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, natural processes, and urban design. This study investigates the spatio-temporal variation of key air pollutants resulting from urban LULC changes in the Delhi region. Findings reveal a notable increase in pollutant concentrations, particularly particulate matter, in 2019 (PM10: 318.65 ± 45.80 µg/m3) and 2023 (PM10: 383.70 ± 61.49 µg/m3), compared to 2008 (PM10: 246.76 ± 30.66). LULC change analysis demonstrates a rise in built-up areas 24.59%(2008 to 2019), 33.62% (2008 to 2023) and a decline in vegetation cover 27.49% (2008 to 2019),32.37% (2008 to 2023). Correlation analysis indicates a positive correlation between PM10 and urban indices (+ 0.63) and a negative correlation between PM10 and vegetation indices (- 0.61), highlighting the impact of LULC on air quality deterioration. Subsequently, a fuzzy inference system model integrates LULC information to develop an air quality index (AQI). Incorporating LULC changes in AQI assessment offers a realistic approach to address the complexity arising from combined air pollutant effects, surpassing conventional AQI calculation methods. The findings underscore the significance of understanding the impact of Land Use and Land Cover (LULC) change on ambient air quality in formulating effective air quality management programs and policies. Integrating this knowledge into policymaking is crucial for the successful abatement of air pollution in urbanized areas.Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, natural processes, and urban design. This study investigates the spatio-temporal variation of key air pollutants resulting from urban LULC changes in the Delhi region. Findings reveal a notable increase in pollutant concentrations, particularly particulate matter, in 2019 (PM10: 318.65 ± 45.80 µg/m3) and 2023 (PM10: 383.70 ± 61.49 µg/m3), compared to 2008 (PM10: 246.76 ± 30.66). LULC change analysis demonstrates a rise in built-up areas 24.59%(2008 to 2019), 33.62% (2008 to 2023) and a decline in vegetation cover 27.49% (2008 to 2019),32.37% (2008 to 2023). Correlation analysis indicates a positive correlation between PM10 and urban indices (+ 0.63) and a negative correlation between PM10 and vegetation indices (- 0.61), highlighting the impact of LULC on air quality deterioration. Subsequently, a fuzzy inference system model integrates LULC information to develop an air quality index (AQI). Incorporating LULC changes in AQI assessment offers a realistic approach to address the complexity arising from combined air pollutant effects, surpassing conventional AQI calculation methods. The findings underscore the significance of understanding the impact of Land Use and Land Cover (LULC) change on ambient air quality in formulating effective air quality management programs and policies. Integrating this knowledge into policymaking is crucial for the successful abatement of air pollution in urbanized areas. Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, natural processes, and urban design. This study investigates the spatio-temporal variation of key air pollutants resulting from urban LULC changes in the Delhi region. Findings reveal a notable increase in pollutant concentrations, particularly particulate matter, in 2019 (PM10: 318.65 ± 45.80 µg/m3) and 2023 (PM10: 383.70 ± 61.49 µg/m3), compared to 2008 (PM10: 246.76 ± 30.66). LULC change analysis demonstrates a rise in built-up areas 24.59%(2008 to 2019), 33.62% (2008 to 2023) and a decline in vegetation cover 27.49% (2008 to 2019),32.37% (2008 to 2023). Correlation analysis indicates a positive correlation between PM10 and urban indices (+ 0.63) and a negative correlation between PM10 and vegetation indices (− 0.61), highlighting the impact of LULC on air quality deterioration. Subsequently, a fuzzy inference system model integrates LULC information to develop an air quality index (AQI). Incorporating LULC changes in AQI assessment offers a realistic approach to address the complexity arising from combined air pollutant effects, surpassing conventional AQI calculation methods. The findings underscore the significance of understanding the impact of Land Use and Land Cover (LULC) change on ambient air quality in formulating effective air quality management programs and policies. Integrating this knowledge into policymaking is crucial for the successful abatement of air pollution in urbanized areas. Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover (LULC) change is an essential factor that significantly impacts ambient air quality through alterations in emission sources, vegetation cover, natural processes, and urban design. This study investigates the spatio-temporal variation of key air pollutants resulting from urban LULC changes in the Delhi region. Findings reveal a notable increase in pollutant concentrations, particularly particulate matter, in 2019 (PM₁₀: 318.65 ± 45.80 µg/m³) and 2023 (PM₁₀: 383.70 ± 61.49 µg/m³), compared to 2008 (PM₁₀: 246.76 ± 30.66). LULC change analysis demonstrates a rise in built-up areas 24.59%(2008 to 2019), 33.62% (2008 to 2023) and a decline in vegetation cover 27.49% (2008 to 2019),32.37% (2008 to 2023). Correlation analysis indicates a positive correlation between PM₁₀ and urban indices (+ 0.63) and a negative correlation between PM₁₀ and vegetation indices (− 0.61), highlighting the impact of LULC on air quality deterioration. Subsequently, a fuzzy inference system model integrates LULC information to develop an air quality index (AQI). Incorporating LULC changes in AQI assessment offers a realistic approach to address the complexity arising from combined air pollutant effects, surpassing conventional AQI calculation methods. The findings underscore the significance of understanding the impact of Land Use and Land Cover (LULC) change on ambient air quality in formulating effective air quality management programs and policies. Integrating this knowledge into policymaking is crucial for the successful abatement of air pollution in urbanized areas. |
ArticleNumber | 1160 |
Author | Zaid, Mohd Basu, D. |
Author_xml | – sequence: 1 givenname: Mohd surname: Zaid fullname: Zaid, Mohd email: mzaid.esed@iitb.ac.in, mzaid202@gmail.com organization: Department of Civil Engineering, Motilal Nehru National Institute of Technology Allahabad – sequence: 2 givenname: D. surname: Basu fullname: Basu, D. organization: Department of Civil Engineering, Motilal Nehru National Institute of Technology Allahabad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39496974$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT1vFDEQhi0URC6BP0CBLNHQLPG3z3RRBCFSJApIbXnt2dxGe96LZ5fTpeGv48sFkCgQbmY0el6PRs8JOcpjBkJec_aeM2bPkDNjeMOEargUxjbbZ2TBtZWNcNodkQXjdWikccfkBPGOMeasci_IsXTKmdovyI-bnKDgFHLq8y2dVkALDGHqx4yrfkNbmLYAmQ4VoDPC2WMTx-9QaFyFfAtI95PQF3o_h6Gfdh_oOb28-tq0ASHRbn542NE-d1AgR6C4wwnWNGw2ZQxx9ZI878KA8OqpnpKbTx-_XXxurr9cXl2cXzdRajc1PETDwMVQH3NKdda0MjmdYrAmdEZHk2TSHWutURaSZLDUy6RSa9IyCCFPybvDv3Xt_Qw4-XWPEYZ6Dowzesm14loYaf8DFYoLozSv6Nu_0LtxLrkesqekE5xzVak3T9TcriH5TenXoez8LwsVEAcglhGxQPcb4czvVfuDal9V-0fVfltD8hDCClcP5c_uf6R-AuNNrN0 |
Cites_doi | 10.1016/j.landurbplan.2014.11.007 10.1016/s0925-7721(01)00048-7 10.3389/fnhum.2014.00613 10.1016/j.simpat.2022.102540 10.1016/S1352-2310(99)00145-4 10.1016/j.jenvman.2019.06.038 10.1016/j.ejrs.2024.04.007 10.1007/s10661-011-2412-0 10.1016/j.ejrs.2023.04.005 10.1016/j.scitotenv.2021.149143 10.1016/j.rsase.2021.100507 10.3390/rs3122552 10.3390/su15054209 10.1016/j.psep.2021.06.027 10.1016/s0019-9958(65)90241-x 10.1007/s10668-019-00515-0 10.1016/S2542-5196(22)00090-0 10.1016/j.envpol.2024.123830 10.1016/0165-0114(78)90029-5 10.1007/978-3-031-21587-2_17 10.1007/s00181-021-02151-y 10.1080/01431160304987 10.1016/j.rineng.2024.102039 10.1016/j.ecoinf.2016.04.005 10.1016/j.jia.2023.06.005 10.3389/fpubh.2020.00014 10.1016/j.envint.2006.03.009 10.1016/j.eswa.2010.10.078 10.2166/aqua.2023.013 10.1016/j.icte.2020.05.007 10.1016/j.uclim.2018.11.005 10.1007/s11356-022-24442-2 10.1007/s12517-021-08255-0 10.15866/ireaco.v6i4.4093 10.3390/en12132545 10.1016/j.eswa.2012.02.141 10.1201/9780429052729 10.1016/j.scs.2016.03.009 10.1088/1755-1315/1127/1/012029 10.5194/egusphere-2024-501 10.1016/j.atmosenv.2017.11.014 10.1007/s10708-023-10982-8 10.1007/s10661-024-12638-7 10.1016/S2542-5196(20)30298-9 10.4209/aaqr.210377 10.4209/aaqr.220191 10.1016/j.buildenv.2024.111832 10.1007/s10546-016-0210-5 10.1007/s11518-006-0151-5 10.1016/j.uclim.2022.101254 10.5572/ajae.2015.9.2.101 10.1016/j.envc.2021.100356 10.3133/pp964 10.1007/s40808-016-0075-0 10.1080/19475705.2023.2190853 10.2166/aqua.2023.200 10.1007/s11356-022-22318-z 10.1007/978-1-4614-3597-6 10.1016/j.apr.2023.101782 10.1007/s42489-020-00060-1 10.3233/ifs-1994-2306 10.1007/s13762-021-03602-w 10.3390/rs10020219 10.1016/j.ecoinf.2018.06.002 10.1177/001316446002000104 10.51983/tarce-2018.7.2.2273 10.1016/j.oregeorev.2020.103332 10.1016/j.psep.2019.12.001 10.1016/j.advwatres.2017.08.016 10.18502/japh.v8i1.12032 10.1016/j.apr.2021.101151 10.1016/j.envpol.2014.02.026 10.1007/s10661-022-10573-z 10.1093/ckj/sfac114 10.3390/rs13183550 10.1080/01431160701227653 10.1016/0270-0255(87)90473-8 10.1016/j.procs.2015.07.415 10.1016/j.matpr.2021.01.264 10.1016/j.scitotenv.2018.12.308 10.1080/00207233.2022.2072585 10.1016/j.atmosenv.2014.07.006 10.2139/ssrn.2462105 10.1016/j.atmosenv.2012.06.004 10.4209/aaqr.220082 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 8FD C1K F1W FR3 H97 K9. KL. L.G M7N P64 SOI 7X8 7S9 L.6 |
DOI | 10.1007/s10661-024-13267-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences |
EISSN | 1573-2959 |
EndPage | 1160 |
ExternalDocumentID | 39496974 10_1007_s10661_024_13267_w |
Genre | Journal Article |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | --- -5A -5G -5~ -BR -EM -XX -Y2 -~C ..I .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M1P M2P M4Y MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 8FD ABRTQ C1K F1W FR3 H97 K9. KL. L.G M7N P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c359t-1ac60e9caaaa0944f76b3d95dca76af65c6d3d5f0b7647ed30e858d4db6d8a223 |
IEDL.DBID | U2A |
ISSN | 0167-6369 1573-2959 |
IngestDate | Fri Jul 11 05:18:57 EDT 2025 Thu Jul 10 19:00:42 EDT 2025 Wed Aug 27 05:12:14 EDT 2025 Thu Apr 03 07:03:52 EDT 2025 Tue Jul 01 02:42:43 EDT 2025 Fri Feb 21 02:36:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Air quality Correlation Fuzzy inference system (FIS) Hotspot LULC change |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-1ac60e9caaaa0944f76b3d95dca76af65c6d3d5f0b7647ed30e858d4db6d8a223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 39496974 |
PQID | 3123921114 |
PQPubID | 54151 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3154152637 proquest_miscellaneous_3124126451 proquest_journals_3123921114 pubmed_primary_39496974 crossref_primary_10_1007_s10661_024_13267_w springer_journals_10_1007_s10661_024_13267_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Humans and the Environment |
PublicationTitle | Environmental monitoring and assessment |
PublicationTitleAbbrev | Environ Monit Assess |
PublicationTitleAlternate | Environ Monit Assess |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | J Cohen (13267_CR18) 1960; 20 K Dutta (13267_CR24) 2021; 19 KH Jodhani (13267_CR40) 2024; 22 13267_CR72 RG Congalton (13267_CR19) 2019 13267_CR73 G Guo (13267_CR30) 2015; 135 13267_CR76 GM Gandhi (13267_CR27) 2015; 57 13267_CR78 TL Saaty (13267_CR71) 2004; 13 13267_CR79 13267_CR25 H Kumar (13267_CR44) 2021; 47 T Mandal (13267_CR48) 2011; 184 M Ohmer (13267_CR56) 2017; 109 D Moravec (13267_CR50) 2021; 13 JJ Carbajal-Hernández (13267_CR11) 2012; 60 S Saha (13267_CR74) 2021; 22 W Ocampo-Duque (13267_CR55) 2006; 32 X Zhou (13267_CR95) 2023; 14 M Bokaie (13267_CR8) 2016; 23 M Punia (13267_CR65) 2011; 38 JR Anderson (13267_CR3) 1976; 964 MN Ahmad (13267_CR2) 2022; 30 LA Zadeh (13267_CR91) 1965; 8 R Fuller (13267_CR26) 2022; 6 13267_CR20 S Jombo (13267_CR41) 2023; 88 MC Morillo (13267_CR51) 2022; 81 13267_CR64 13267_CR67 13267_CR14 13267_CR58 SD Superczynski (13267_CR84) 2011; 3 13267_CR1 13267_CR15 13267_CR59 H Romero (13267_CR68) 1999; 33 13267_CR4 SK Guttikunda (13267_CR34) 2019; 27 J Xue (13267_CR89) 2024; 23 Benedict (13267_CR5) 2023; 1127 P Singh (13267_CR81) 2020; 14 13267_CR9 LA Zadeh (13267_CR92) 1978; 1 BW Dionova (13267_CR23) 2020 N Parveen (13267_CR60) 2021; 152 CJ Chung (13267_CR17) 2019; 246 M Grundström (13267_CR29) 2014; 189 N Kumar (13267_CR45) 2014 13267_CR90 JA Prieto-Amparan (13267_CR63) 2018; 10 13267_CR93 SL Chiu (13267_CR16) 1994; 2 MÁ Olvera-García (13267_CR57) 2016; 33 13267_CR52 Kanchan (13267_CR42) 2015; 9 13267_CR53 13267_CR54 13267_CR12 13267_CR13 AA Darem (13267_CR21) 2023; 26 SK Guttikunda (13267_CR32) 2023; 15 M Khan (13267_CR43) 2023; 14 SK Guttikunda (13267_CR33) 2014; 95 13267_CR49 M Pathak (13267_CR61) 2024; 348 JJ Carbajal-Hernández (13267_CR10) 2012; 39 B Bera (13267_CR6) 2020 Y Zha (13267_CR94) 2003; 24 N Verma (13267_CR85) 2022; 45 13267_CR80 S Pramanik (13267_CR62) 2020 RW Saaty (13267_CR70) 1987; 9 13267_CR82 13267_CR83 TJ Ross (13267_CR69) 2005 Y Hong (13267_CR35) 2020; 134 13267_CR86 G Xian (13267_CR87) 2007; 28 13267_CR88 Y Jamei (13267_CR39) 2019; 659 13267_CR46 J-L Santiago (13267_CR75) 2016; 162 13267_CR36 H Liu (13267_CR47) 2018; 173 13267_CR37 DP Shah (13267_CR77) 2021; 5 13267_CR38 JD Boissonnat (13267_CR7) 2000; 22 Z Zhu (13267_CR96) 2019; 12 P Goyal (13267_CR28) 2021; 798 Y Guo (13267_CR31) 2024; 27 J Debnath (13267_CR22) 2018; 46 S Raheja (13267_CR66) 2022; 118 |
References_xml | – volume: 135 start-page: 1 year: 2015 ident: 13267_CR30 publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2014.11.007 – volume: 22 start-page: 185 issue: 1–3 year: 2000 ident: 13267_CR7 publication-title: In Proceedings of the Sixteenth Annual Symposium on Computational Geometry doi: 10.1016/s0925-7721(01)00048-7 – ident: 13267_CR9 doi: 10.3389/fnhum.2014.00613 – volume: 118 year: 2022 ident: 13267_CR66 publication-title: Simulation Modelling Practice and Theory doi: 10.1016/j.simpat.2022.102540 – volume: 33 start-page: 4039 issue: 24–25 year: 1999 ident: 13267_CR68 publication-title: Chile. Atmospheric Environment doi: 10.1016/S1352-2310(99)00145-4 – volume: 246 start-page: 808 year: 2019 ident: 13267_CR17 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2019.06.038 – volume: 27 start-page: 382 issue: 2 year: 2024 ident: 13267_CR31 publication-title: The Egyptian Journal of Remote Sensing and Space Sciences doi: 10.1016/j.ejrs.2024.04.007 – volume: 184 start-page: 6187 issue: 10 year: 2011 ident: 13267_CR48 publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-011-2412-0 – volume: 26 start-page: 341 issue: 2 year: 2023 ident: 13267_CR21 publication-title: The Egyptian Journal of Remote Sensing and Space Science doi: 10.1016/j.ejrs.2023.04.005 – volume: 798 year: 2021 ident: 13267_CR28 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2021.149143 – volume: 22 issue: 100507 year: 2021 ident: 13267_CR74 publication-title: Remote Sensing Applications: Society and Environment doi: 10.1016/j.rsase.2021.100507 – volume: 3 start-page: 2552 issue: 12 year: 2011 ident: 13267_CR84 publication-title: Remote Sensing doi: 10.3390/rs3122552 – volume: 14 start-page: 171 issue: 2 year: 2020 ident: 13267_CR81 publication-title: Journal of Geomatics – volume: 15 start-page: 4209 issue: 5 year: 2023 ident: 13267_CR32 publication-title: Sustainability doi: 10.3390/su15054209 – volume: 152 start-page: 495 year: 2021 ident: 13267_CR60 publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2021.06.027 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 13267_CR91 publication-title: Information and Control doi: 10.1016/s0019-9958(65)90241-x – volume-title: Land use/land cover change and surface urban heat island intensity: Source–sink landscape-based study in Delhi year: 2020 ident: 13267_CR62 doi: 10.1007/s10668-019-00515-0 – volume: 6 start-page: e535 issue: 6 year: 2022 ident: 13267_CR26 publication-title: The Lancet Planetary Health doi: 10.1016/S2542-5196(22)00090-0 – volume: 348 start-page: 123830 year: 2024 ident: 13267_CR61 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2024.123830 – volume: 1 start-page: 3 issue: 1 year: 1978 ident: 13267_CR92 publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(78)90029-5 – ident: 13267_CR53 doi: 10.1007/978-3-031-21587-2_17 – ident: 13267_CR90 doi: 10.1007/s00181-021-02151-y – volume: 24 start-page: 583 issue: 3 year: 2003 ident: 13267_CR94 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160304987 – volume: 22 start-page: 102039 year: 2024 ident: 13267_CR40 publication-title: Results in Engineering doi: 10.1016/j.rineng.2024.102039 – volume: 33 start-page: 57 year: 2016 ident: 13267_CR57 publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2016.04.005 – volume: 23 start-page: 283 issue: 1 year: 2024 ident: 13267_CR89 publication-title: Journal of Integrative Agriculture doi: 10.1016/j.jia.2023.06.005 – ident: 13267_CR49 doi: 10.3389/fpubh.2020.00014 – volume: 32 start-page: 733 issue: 6 year: 2006 ident: 13267_CR55 publication-title: Environment International doi: 10.1016/j.envint.2006.03.009 – volume: 38 start-page: 5577 issue: 5 year: 2011 ident: 13267_CR65 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.10.078 – ident: 13267_CR83 doi: 10.2166/aqua.2023.013 – year: 2020 ident: 13267_CR23 publication-title: ICT Express doi: 10.1016/j.icte.2020.05.007 – volume: 27 start-page: 124 year: 2019 ident: 13267_CR34 publication-title: Urban Climate doi: 10.1016/j.uclim.2018.11.005 – volume: 30 start-page: 32985 year: 2022 ident: 13267_CR2 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-022-24442-2 – ident: 13267_CR58 doi: 10.1007/s12517-021-08255-0 – ident: 13267_CR73 doi: 10.15866/ireaco.v6i4.4093 – volume: 12 start-page: 2545 issue: 13 year: 2019 ident: 13267_CR96 publication-title: Energies doi: 10.3390/en12132545 – volume: 39 start-page: 10571 issue: 12 year: 2012 ident: 13267_CR10 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.02.141 – volume-title: Assessing the accuracy of remotely sensed data year: 2019 ident: 13267_CR19 doi: 10.1201/9780429052729 – volume: 23 start-page: 94 year: 2016 ident: 13267_CR8 publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2016.03.009 – volume: 1127 issue: 1 year: 2023 ident: 13267_CR5 publication-title: IOP Conference Series: Earth and Environmental Science doi: 10.1088/1755-1315/1127/1/012029 – ident: 13267_CR4 doi: 10.5194/egusphere-2024-501 – volume: 173 start-page: 223 year: 2018 ident: 13267_CR47 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2017.11.014 – volume: 88 start-page: 377 year: 2023 ident: 13267_CR41 publication-title: GeoJournal doi: 10.1007/s10708-023-10982-8 – ident: 13267_CR15 doi: 10.1007/s10661-024-12638-7 – ident: 13267_CR59 doi: 10.1016/S2542-5196(20)30298-9 – ident: 13267_CR78 doi: 10.4209/aaqr.210377 – ident: 13267_CR14 doi: 10.4209/aaqr.220191 – ident: 13267_CR67 doi: 10.1016/j.buildenv.2024.111832 – volume: 162 start-page: 451 issue: 3 year: 2016 ident: 13267_CR75 publication-title: Boundary-Layer Meteorology doi: 10.1007/s10546-016-0210-5 – ident: 13267_CR54 – volume: 13 start-page: 1 issue: 1 year: 2004 ident: 13267_CR71 publication-title: Journal of Systems Science and Systems Engineering doi: 10.1007/s11518-006-0151-5 – volume: 45 year: 2022 ident: 13267_CR85 publication-title: Urban Climate doi: 10.1016/j.uclim.2022.101254 – volume: 9 start-page: 101 issue: 2 year: 2015 ident: 13267_CR42 publication-title: Asian Journal of Atmospheric Environment doi: 10.5572/ajae.2015.9.2.101 – ident: 13267_CR25 – volume-title: Fuzzy logic with engineering applications year: 2005 ident: 13267_CR69 – volume: 5 year: 2021 ident: 13267_CR77 publication-title: India. Environmental Challenges doi: 10.1016/j.envc.2021.100356 – volume: 964 start-page: 1 year: 1976 ident: 13267_CR3 publication-title: Professional Paper doi: 10.3133/pp964 – ident: 13267_CR38 doi: 10.1007/s40808-016-0075-0 – volume: 14 start-page: 2190853 issue: 1 year: 2023 ident: 13267_CR43 publication-title: Geomatics, Natural Hazards and Risk doi: 10.1080/19475705.2023.2190853 – ident: 13267_CR79 doi: 10.2166/aqua.2023.200 – ident: 13267_CR36 doi: 10.1007/s11356-022-22318-z – ident: 13267_CR72 doi: 10.1007/978-1-4614-3597-6 – volume: 14 issue: 6 year: 2023 ident: 13267_CR95 publication-title: Atmospheric Pollution Research doi: 10.1016/j.apr.2023.101782 – ident: 13267_CR12 – year: 2020 ident: 13267_CR6 publication-title: KN - Journal of Cartography and Geographic Information doi: 10.1007/s42489-020-00060-1 – volume: 2 start-page: 267 issue: 3 year: 1994 ident: 13267_CR16 publication-title: Journal of Intelligent and Fuzzy Systems doi: 10.3233/ifs-1994-2306 – volume: 19 start-page: 8677 issue: 9 year: 2021 ident: 13267_CR24 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-021-03602-w – volume: 10 start-page: 219 issue: 2 year: 2018 ident: 13267_CR63 publication-title: Remote Sensing doi: 10.3390/rs10020219 – volume: 46 start-page: 133 year: 2018 ident: 13267_CR22 publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2018.06.002 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 13267_CR18 publication-title: Educational and Psychological Measurement doi: 10.1177/001316446002000104 – ident: 13267_CR64 doi: 10.51983/tarce-2018.7.2.2273 – ident: 13267_CR76 – ident: 13267_CR1 doi: 10.1016/j.oregeorev.2020.103332 – volume: 134 start-page: 308 year: 2020 ident: 13267_CR35 publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2019.12.001 – volume: 109 start-page: 121 year: 2017 ident: 13267_CR56 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2017.08.016 – ident: 13267_CR52 doi: 10.18502/japh.v8i1.12032 – ident: 13267_CR88 doi: 10.1016/j.apr.2021.101151 – volume: 189 start-page: 73 year: 2014 ident: 13267_CR29 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2014.02.026 – ident: 13267_CR80 doi: 10.1007/s10661-022-10573-z – ident: 13267_CR46 doi: 10.1093/ckj/sfac114 – ident: 13267_CR82 – volume: 13 start-page: 3550 issue: 18 year: 2021 ident: 13267_CR50 publication-title: Remote Sensing doi: 10.3390/rs13183550 – ident: 13267_CR86 – volume: 28 start-page: 5427 issue: 24 year: 2007 ident: 13267_CR87 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160701227653 – volume: 9 start-page: 161 issue: 3–5 year: 1987 ident: 13267_CR70 publication-title: Mathematical Modelling doi: 10.1016/0270-0255(87)90473-8 – volume: 57 start-page: 1199 year: 2015 ident: 13267_CR27 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.07.415 – volume: 47 start-page: 3661 year: 2021 ident: 13267_CR44 publication-title: Materials Today: Proceedings doi: 10.1016/j.matpr.2021.01.264 – volume: 659 start-page: 1335 year: 2019 ident: 13267_CR39 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.12.308 – ident: 13267_CR13 – volume: 81 start-page: 1501 issue: 4 year: 2022 ident: 13267_CR51 publication-title: International Journal of Environmental Studies doi: 10.1080/00207233.2022.2072585 – volume: 95 start-page: 501 year: 2014 ident: 13267_CR33 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2014.07.006 – volume-title: Environmental interventions and air pollution (re) distribution in Delhi year: 2014 ident: 13267_CR45 doi: 10.2139/ssrn.2462105 – ident: 13267_CR20 – ident: 13267_CR93 – volume: 60 start-page: 37 year: 2012 ident: 13267_CR11 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2012.06.004 – ident: 13267_CR37 doi: 10.4209/aaqr.220082 |
SSID | ssj0009749 |
Score | 2.4174652 |
Snippet | Air pollution is a global issue that demands urgent attention due to its detrimental effects on human health and the environment. Land Use and Land Cover... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1160 |
SubjectTerms | air air pollutants Air Pollutants - analysis Air pollution Air Pollution - statistics & numerical data Air pollution control Air pollution effects Air quality Air quality management Atmospheric Protection/Air Quality Control/Air Pollution Cities Correlation analysis Earth and Environmental Science Ecology Ecotoxicology Environment Environmental Management Environmental Monitoring - methods Fuzzy Logic Geographic Information Systems Geographical information systems human health India Inference Land cover Land use land use and land cover maps Land use management Monitoring/Environmental Analysis Outdoor air quality Particulate emissions Particulate matter Particulate Matter - analysis particulates Plant cover Pollutants Quality management Suspended particulate matter Temporal variations Urban planning Urbanization Vegetation Vegetation cover Vegetation index |
Title | Understanding the relationship between land use/land cover changes and air quality: A GIS-based fuzzy inference system approach |
URI | https://link.springer.com/article/10.1007/s10661-024-13267-w https://www.ncbi.nlm.nih.gov/pubmed/39496974 https://www.proquest.com/docview/3123921114 https://www.proquest.com/docview/3124126451 https://www.proquest.com/docview/3154152637 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9tAEB1Sh0J7KI2btGqTsIHc2iW29kNSb6Y4Hy3ppTGkJ7HaWVFf7GDZBPvSv97ZlRQ7pAlEJyGtxMLM7LzRznsCOJal7fm0x-MCkUtUJU9jI7iNBSbWEMgPn7Ivf-rzkfx-ra4bUljVdru3W5Jhpd4gu1Eu4ZRTOFVQFN63L2BbUe3uG7lG8WAttZvUoNcremuhs4Yq8_933E9HDzDmg_3RkHZO38KbBi-yQW3gHdhyky68HAat6WUXXm_oCXZhb7imrdFDTdxW7-DvaJPDwgj0sVnbBfdnfMOabi3m2xzZonIn4cT69k5WU4Mr5q-Y8YzVNMzlVzZgZxe_uE-DyMrFarVk45Y9yGqBaNYqlu_C6HR49e2cN79e4FaobM77xuqey6yhgwpAWSa6EJgptCbRptTKahRk2F6RaJk4FD2XqhQlFhpTQ5BjDzqT6cR9AGZ0mWFJK0MpUMZI5Z11mCJaeg_BBRXB59YC-U2tsJGvtZS9vXKyVx7sld9GsN8aKW-ircoFpd-MKtm-jODo7jbFid_8MBM3XYQxsk_oT_WfGqM8ntEiieB97QB3UxKZzDS5VgRfWo9YT-Dx-X583vBP8CoO3un7ZfahM58t3AGhnnlxCNuDs98_hofB2f8B9OD9Jg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRQh6QBAouBRYJDjBimR3vbaROESQktDHhUbqzax31iKXtIoTRemFP8MPZXZtN0EFJA71ybLX1kjz-sY78xnglSpt16c9LgpErjAueSqM5FZITKwhkB8-ZR-f6OFYfTmLz7bgZzsLE7rd2y3JEKk3ht0ol3DKKZwqKHLvZdNKeehWSyrUqg-jT6TV10IcDE4_DnnzLwFuZZzNec9Y3XWZNXRQRaPKRBcSsxitSbQpdWw1SpK0WyRaJQ5l16VxigoLjakRnt6AAv0tAh-p952x6K-pfZMaZHsGcS111ozm_Fnm39PfNUx7bT82pLmD-3CvwaesXxvUA9hy0w7cHgRu61UHdjb4CzuwO1iPydFDTZyoHsKP8ebMDCOQyWZt1933yQVrusOYb6tki8q9CyfWt5OyehS5Yv6KmcxYPfa5es_67PPoK_dpF1m5uLxcsUk7rchqQmrWMqQ_gvGNqGcXtqfnU_cEmNFlhiVFolKiEkjlpHWYIlp6D8GTOII3rQbyi5rRI19zN3t95aSvPOgrX0aw3yopb7y7yiWl-4wq556K4OXVbfJLv9lipu58EdaoHqHNuPevNbHHT1omETyuDeBKJJmpTJNpRfC2tYi1AH-Xd-__lr-AO8PT46P8aHRy-BTuimCpvldnH7bns4V7RohrXjwPBs_g20172C9OkzpY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEB1VRSB6QBAouBRYJDjBKol3vbaROEQ0oaFQIUGk3sx6Zy1ycaM4UZRe-CU-kdm13QQVkDjUp8jeRCPNzM4b77wXgBeyMD1X9niYI3KJUcGTUAtuQoGx0QTy_avsT6fqeCI_nEVnO_Cz5cL4aff2SLLmNDiVpnLRnWHR3SK-UV3hVF84dVOU6qtmrPLErlfUtFVvx0fk4ZdhOBp-fXfMm_8V4EZE6YL3tVE9mxpNF3U3sohVLjCN0OhY6UJFRqEgq3t5rGRsUfRsEiUoMVeY6NBJHdCmf0M69jFl0CQcbGR-4xpwOzVxJVTa0HT-bPPvpfAKvr1yNutL3ugu3GmwKhvUwXUPdmzZgZtDr3O97sDelpZhB_aHG8ocfanZM6r78GOyzZ9hBDjZvJ3A-z6dsWZSjLkRS7asbNd_MG60lNW05Iq5O3o6ZzUFdP2GDdj78RfuSjCyYnlxsWbTlrnIanFq1qqlP4DJtbhnH3bL89I-AqZVkWJBu1IhUIZIraWxmCAa-h2CKlEAr1oPZLNa3SPb6Dg7f2Xkr8z7K1sFcNg6KWsyvcoElf6Uuui-DOD55WPKUXfwokt7vvRrZJ-QZ9T_15rIYSkl4gAe1gFwaZJIZaootAJ43UbExoC_23vwf8ufwa3PR6Ps4_j05DHcDn2gurGdQ9hdzJf2CYGvRf7UxzuDb9edYL8AHp8-iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+relationship+between+land+use%2Fland+cover+changes+and+air+quality%3A+A+GIS-based+fuzzy+inference+system+approach&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Zaid%2C+Mohd&rft.au=Basu%2C+D.&rft.date=2024-12-01&rft.issn=0167-6369&rft.eissn=1573-2959&rft.volume=196&rft.issue=12&rft_id=info:doi/10.1007%2Fs10661-024-13267-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10661_024_13267_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon |