Evaluating the Effects of UAS Flight Speed on Lidar Snow Depth Estimation in a Heterogeneous Landscape
Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light detection and ranging (LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has generally been poorer prec...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 21; p. 5091 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light detection and ranging (LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has generally been poorer precision in forested areas. At a constant flight speed, the poorest precision within forests is observed beneath tree canopies that retain foliage into or through winter. The precision of lidar-derived elevation products is improved by increasing the sample size of ground returns but doing so reduces the spatial coverage of a mission due to limitations of battery power. We address the influence of flight speed on ground return density for baseline and snow-covered conditions and the subsequent effect on precision of snow depth estimates across a mixed landscape, while evaluating trade-offs between precision and bias. Prior to and following a snow event in December 2020, UAS flights were conducted at four different flight speeds over a region consisting of three contrasting land types: (1) open field, (2) deciduous forest, (3) conifer forest. For all cover types, we observed significant improvements in precision as flight speeds were reduced to 2 m s−1, as well as increases in the area over which a 2 cm snow depth precision was achieved. On the other hand, snow depth estimate differences were minimized at baseline flight speeds of 2 m s−1 and 4 m s−1 and snow-on flight speeds of 6 m s−1 over open fields and between 2 and 4 m s−1 over forest areas. Here, with consideration to precision and estimate bias within each cover type, we make recommendations for ideal flight speeds based on survey ground conditions and vegetation cover. |
---|---|
AbstractList | Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light detection and ranging (LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has generally been poorer precision in forested areas. At a constant flight speed, the poorest precision within forests is observed beneath tree canopies that retain foliage into or through winter. The precision of lidar-derived elevation products is improved by increasing the sample size of ground returns but doing so reduces the spatial coverage of a mission due to limitations of battery power. We address the influence of flight speed on ground return density for baseline and snow-covered conditions and the subsequent effect on precision of snow depth estimates across a mixed landscape, while evaluating trade-offs between precision and bias. Prior to and following a snow event in December 2020, UAS flights were conducted at four different flight speeds over a region consisting of three contrasting land types: (1) open field, (2) deciduous forest, (3) conifer forest. For all cover types, we observed significant improvements in precision as flight speeds were reduced to 2 m s[sup.−1], as well as increases in the area over which a 2 cm snow depth precision was achieved. On the other hand, snow depth estimate differences were minimized at baseline flight speeds of 2 m s[sup.−1] and 4 m s[sup.−1] and snow-on flight speeds of 6 m s[sup.−1] over open fields and between 2 and 4 m s[sup.−1] over forest areas. Here, with consideration to precision and estimate bias within each cover type, we make recommendations for ideal flight speeds based on survey ground conditions and vegetation cover. Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light detection and ranging (LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has generally been poorer precision in forested areas. At a constant flight speed, the poorest precision within forests is observed beneath tree canopies that retain foliage into or through winter. The precision of lidar-derived elevation products is improved by increasing the sample size of ground returns but doing so reduces the spatial coverage of a mission due to limitations of battery power. We address the influence of flight speed on ground return density for baseline and snow-covered conditions and the subsequent effect on precision of snow depth estimates across a mixed landscape, while evaluating trade-offs between precision and bias. Prior to and following a snow event in December 2020, UAS flights were conducted at four different flight speeds over a region consisting of three contrasting land types: (1) open field, (2) deciduous forest, (3) conifer forest. For all cover types, we observed significant improvements in precision as flight speeds were reduced to 2 m s−1, as well as increases in the area over which a 2 cm snow depth precision was achieved. On the other hand, snow depth estimate differences were minimized at baseline flight speeds of 2 m s−1 and 4 m s−1 and snow-on flight speeds of 6 m s−1 over open fields and between 2 and 4 m s−1 over forest areas. Here, with consideration to precision and estimate bias within each cover type, we make recommendations for ideal flight speeds based on survey ground conditions and vegetation cover. |
Audience | Academic |
Author | Palace, Michael W Jacobs, Jennifer M Sullivan, Franklin B Hunsaker, Adam G |
Author_xml | – sequence: 1 givenname: Franklin B. orcidid: 0000-0002-2499-8245 surname: Sullivan fullname: Sullivan, Franklin B. – sequence: 2 givenname: Adam G. surname: Hunsaker fullname: Hunsaker, Adam G. – sequence: 3 givenname: Michael W. surname: Palace fullname: Palace, Michael W. – sequence: 4 givenname: Jennifer M. surname: Jacobs fullname: Jacobs, Jennifer M. |
BookMark | eNpNUcFuEzEQtVCRKKUXvsASN6QUe71er49RSWmlSBxCz9asPd44Su3FdkD9e1yCgJnDjN7Me3rSe0suYopIyHvOboTQ7FMuXHZcMs1fkcuOqW7Vd7q7-G9_Q65LObBWQnDN-kviNz_geIIa4kzrHunGe7S10OTp43pH745h3le6WxAdTZFug4NMdzH9pJ9xqXu6KTU8NXq7hUiB3mPFnGaMmE6FbiG6YmHBd-S1h2PB6z_zijzebb7d3q-2X7883K63KyukrisulbQwgGBWy74fYZwQvIRhQjagZlZZZNyj8rpXznkBHgTwCRywYQQUV-ThrOsSHMySm7f8bBIE8xtIeTaQa7BHNK7rRy8550xNvVW9VugV4sS1RfSjaFofzlpLTt9PWKo5pFOOzb7pxnEUSg7i5evm_DVDEw3Rp5rBtnb4FGwLyIeGr5XqpJBK8Ub4eCbYnErJ6P_a5My85Gj-5Sh-AT2IkTg |
Cites_doi | 10.1002/hyp.11144 10.1002/2016JD025362 10.5194/hess-18-4261-2014 10.5194/tc-10-1229-2016 10.1016/j.agrformet.2012.03.011 10.1029/2020WR029194 10.1016/j.rse.2018.11.037 10.1364/JOSA.41.000302 10.1016/j.jhydrol.2022.129006 10.1029/2011WR010745 10.1080/10106040108542184 10.1002/hyp.14274 10.1029/2018WR024533 10.5194/tc-17-3435-2023 10.1016/j.jhydrol.2021.127311 10.3389/ffgc.2020.00021 10.3390/su132011485 10.1029/2019WR024898 10.5194/tc-14-1919-2020 10.5194/tc-15-1485-2021 10.1016/j.jhydrol.2021.126722 10.1109/TGRS.2019.2938017 10.1029/2008JD011063 10.5194/tc-10-2559-2016 10.3390/rs14071649 10.1029/2019WR026129 10.1080/15481603.2019.1672365 10.1029/2018WR022553 10.1002/2013WR013935 10.1016/j.coldregions.2022.103587 10.1002/hyp.14614 10.1002/wrcr.20504 10.1109/TGRS.2003.810682 10.3189/2013JoG12J154 10.1002/eco.1565 10.5194/tc-10-257-2016 10.1002/hyp.13936 10.3389/frsen.2022.1038287 10.1029/RG020i001p00067 10.3189/172756410791386535 10.5194/hess-24-2545-2020 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs15215091 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Databases Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_d248f511107b4c7497ef7eeb19ceef83 A772535771 10_3390_rs15215091 |
GeographicLocations | Canada United States--US |
GeographicLocations_xml | – name: Canada – name: United States--US |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS TR2 TUS RIG 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI ACUHS |
ID | FETCH-LOGICAL-c359t-1575ca6a30c95448a8beaf5a6be06e90c7ce01fe7f947ddf3afa3a1bada068ae3 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Tue Dec 17 15:14:27 EST 2024 Mon Nov 04 14:32:19 EST 2024 Wed Nov 13 00:22:15 EST 2024 Fri Dec 06 04:17:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-1575ca6a30c95448a8beaf5a6be06e90c7ce01fe7f947ddf3afa3a1bada068ae3 |
ORCID | 0000-0002-2499-8245 |
OpenAccessLink | https://www.proquest.com/docview/2888375633?pq-origsite=%requestingapplication% |
PQID | 2888375633 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d248f511107b4c7497ef7eeb19ceef83 proquest_journals_2888375633 gale_infotracacademiconefile_A772535771 crossref_primary_10_3390_rs15215091 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – sequence: 0 name: MDPI AG – name: MDPI AG |
References | Harpold (ref_21) 2014; 50 Singh (ref_38) 2010; 51 Currier (ref_9) 2022; 36 Koutantou (ref_28) 2022; 200 Seidel (ref_39) 2016; 10 Rutter (ref_2) 2009; 114 ref_36 Varade (ref_44) 2020; 57 Deems (ref_20) 2013; 59 Warren (ref_41) 1982; 20 Liu (ref_32) 2020; 58 Feng (ref_31) 2023; 617 Adolph (ref_42) 2017; 122 Musselman (ref_16) 2012; 161 Hotovy (ref_5) 2020; 34 Zheng (ref_30) 2016; 10 Marshall (ref_37) 1994; 10 ref_17 Gersonde (ref_3) 2017; 31 Helbig (ref_4) 2020; 24 Broxton (ref_13) 2015; 8 Currier (ref_8) 2018; 54 Harder (ref_29) 2020; 14 Curcio (ref_43) 1951; 41 Jacobs (ref_26) 2021; 15 Kostadinov (ref_23) 2019; 222 Sun (ref_12) 2022; 58 McPhee (ref_11) 2022; 605 Mazzotti (ref_15) 2020; 56 Cho (ref_19) 2021; 602 Louhaichi (ref_34) 2001; 16 Lundquist (ref_10) 2013; 49 Currier (ref_24) 2019; 55 Zhang (ref_33) 2003; 41 Kirchner (ref_22) 2014; 18 Johnston (ref_1) 2022; 2022 Krogh (ref_14) 2020; 3 Harder (ref_25) 2016; 10 ref_27 Skiles (ref_40) 2023; 3 Mazzotti (ref_18) 2019; 55 ref_7 Proulx (ref_35) 2023; 17 Lundquist (ref_6) 2021; 35 |
References_xml | – volume: 31 start-page: 1846 year: 2017 ident: ref_3 article-title: Snow Disappearance Timing Is Dominated by Forest Effects on Snow Accumulation in Warm Winter Climates of the Pacific Northwest, United States publication-title: Hydrol. Process. doi: 10.1002/hyp.11144 contributor: fullname: Gersonde – volume: 122 start-page: 121 year: 2017 ident: ref_42 article-title: Dominance of Grain Size Impacts on Seasonal Snow Albedo at Open Sites in New Hampshire publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2016JD025362 contributor: fullname: Adolph – volume: 18 start-page: 4261 year: 2014 ident: ref_22 article-title: LiDAR Measurement of Seasonal Snow Accumulation along an Elevation Gradient in the Southern Sierra Nevada, California publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-4261-2014 contributor: fullname: Kirchner – volume: 10 start-page: 1229 year: 2016 ident: ref_39 article-title: Case Study of Spatial and Temporal Variability of Snow Cover, Grain Size, Albedo and Radiative Forcing in the Sierra Nevada and Rocky Mountain Snowpack Derived from Imaging Spectroscopy publication-title: Cryosphere doi: 10.5194/tc-10-1229-2016 contributor: fullname: Seidel – volume: 161 start-page: 46 year: 2012 ident: ref_16 article-title: Influence of Canopy Structure and Direct Beam Solar Irradiance on Snowmelt Rates in a Mixed Conifer Forest publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.03.011 contributor: fullname: Musselman – volume: 58 start-page: e2020WR029194 year: 2022 ident: ref_12 article-title: Forest Canopy Density Effects on Snowpack across the Climate Gradients of the Western United States Mountain Ranges publication-title: Water Resour. Res. doi: 10.1029/2020WR029194 contributor: fullname: Sun – volume: 222 start-page: 34 year: 2019 ident: ref_23 article-title: Watershed-Scale Mapping of Fractional Snow Cover under Conifer Forest Canopy Using Lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.037 contributor: fullname: Kostadinov – volume: 41 start-page: 302 year: 1951 ident: ref_43 article-title: The Near Infrared Absorption Spectrum of Liquid Water publication-title: JOSA doi: 10.1364/JOSA.41.000302 contributor: fullname: Curcio – volume: 617 start-page: 129006 year: 2023 ident: ref_31 article-title: Applicability of Alpine Snow Depth Estimation Based on Multitemporal UAV-LiDAR Data: A Case Study in the Maxian Mountains, Northwest China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.129006 contributor: fullname: Feng – ident: ref_7 doi: 10.1029/2011WR010745 – volume: 16 start-page: 65 year: 2001 ident: ref_34 article-title: Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat publication-title: Geocarto Int. doi: 10.1080/10106040108542184 contributor: fullname: Louhaichi – volume: 35 start-page: e14274 year: 2021 ident: ref_6 article-title: Snow Interception Modelling: Isolated Observations Have Led to Many Land Surface Models Lacking Appropriate Temperature Sensitivities publication-title: Hydrol. Process. doi: 10.1002/hyp.14274 contributor: fullname: Lundquist – volume: 55 start-page: 6285 year: 2019 ident: ref_24 article-title: Comparing Aerial Lidar Observations with Terrestrial Lidar and Snow-Probe Transects From NASA’s 2017 SnowEx Campaign publication-title: Water Resour. Res. doi: 10.1029/2018WR024533 contributor: fullname: Currier – volume: 17 start-page: 3435 year: 2023 ident: ref_35 article-title: Brief Communication: Comparison of in Situ Ephemeral Snow Depth Measurements over a Mixed-Use Temperate Forest Landscape publication-title: Cryosphere doi: 10.5194/tc-17-3435-2023 contributor: fullname: Proulx – volume: 2022 start-page: C32B-01 year: 2022 ident: ref_1 article-title: A New Global Climatology of Ephemeral and Seasonal Snow publication-title: AGU Fall Meet. Abstr. contributor: fullname: Johnston – volume: 605 start-page: 127311 year: 2022 ident: ref_11 article-title: Sensitivity of Forest–Snow Interactions to Climate Forcing: Local Variability in a Pyrenean Valley publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127311 contributor: fullname: McPhee – volume: 3 start-page: 21 year: 2020 ident: ref_14 article-title: Using Process Based Snow Modeling and Lidar to Predict the Effects of Forest Thinning on the Northern Sierra Nevada Snowpack publication-title: Front. For. Glob. Chang. doi: 10.3389/ffgc.2020.00021 contributor: fullname: Krogh – ident: ref_17 doi: 10.3390/su132011485 – volume: 55 start-page: 6198 year: 2019 ident: ref_18 article-title: Revisiting Snow Cover Variability and Canopy Structure within Forest Stands: Insights from Airborne Lidar Data publication-title: Water Resour. Res. doi: 10.1029/2019WR024898 contributor: fullname: Mazzotti – volume: 14 start-page: 1919 year: 2020 ident: ref_29 article-title: Improving Sub-Canopy Snow Depth Mapping with Unmanned Aerial Vehicles: Lidar versus Structure-from-Motion Techniques publication-title: Cryosphere doi: 10.5194/tc-14-1919-2020 contributor: fullname: Harder – volume: 15 start-page: 1485 year: 2021 ident: ref_26 article-title: Snow Depth Mapping with Unpiloted Aerial System Lidar Observations: A Case Study in Durham, New Hampshire, United States publication-title: Cryosphere doi: 10.5194/tc-15-1485-2021 contributor: fullname: Jacobs – volume: 602 start-page: 126722 year: 2021 ident: ref_19 article-title: Maximum Entropy Modeling to Identify Physical Drivers of Shallow Snowpack Heterogeneity Using Unpiloted Aerial System (UAS) Lidar publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126722 contributor: fullname: Cho – volume: 58 start-page: 567 year: 2020 ident: ref_32 article-title: Improving Estimation of Forest Canopy Cover by Introducing Loss Ratio of Laser Pulses Using Airborne LiDAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2938017 contributor: fullname: Liu – volume: 10 start-page: 21 year: 1994 ident: ref_37 article-title: An Improved Snow Hydrology for GCMs. Part 1: Snow Cover Fraction, Albedo, Grain Size, and Age publication-title: Clim. Dyn. contributor: fullname: Marshall – volume: 114 start-page: D06111 year: 2009 ident: ref_2 article-title: Evaluation of Forest Snow Processes Models (SnowMIP2) publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2008JD011063 contributor: fullname: Rutter – volume: 10 start-page: 2559 year: 2016 ident: ref_25 article-title: Accuracy of Snow Depth Estimation in Mountain and Prairie Environments by an Unmanned Aerial Vehicle publication-title: Cryosphere doi: 10.5194/tc-10-2559-2016 contributor: fullname: Harder – ident: ref_27 doi: 10.3390/rs14071649 – volume: 56 start-page: e2019WR026129 year: 2020 ident: ref_15 article-title: Resolving Small-Scale Forest Snow Patterns Using an Energy Balance Snow Model With a One-Layer Canopy publication-title: Water Resour. Res. doi: 10.1029/2019WR026129 contributor: fullname: Mazzotti – volume: 57 start-page: 107 year: 2020 ident: ref_44 article-title: Potential of Multispectral Reflectance for Assessment of Snow Geophysical Parameters in Solang Valley in the Lower Indian Himalayas publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2019.1672365 contributor: fullname: Varade – volume: 54 start-page: 8756 year: 2018 ident: ref_8 article-title: Snow Depth Variability at the Forest Edge in Multiple Climates in the Western United States publication-title: Water Resour. Res. doi: 10.1029/2018WR022553 contributor: fullname: Currier – volume: 50 start-page: 2749 year: 2014 ident: ref_21 article-title: LiDAR-Derived Snowpack Data Sets from Mixed Conifer Forests across the Western United States publication-title: Water Resour. Res. doi: 10.1002/2013WR013935 contributor: fullname: Harpold – volume: 200 start-page: 103587 year: 2022 ident: ref_28 article-title: Exploring Snow Distribution Dynamics in Steep Forested Slopes with UAV-Borne LiDAR publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2022.103587 contributor: fullname: Koutantou – volume: 36 start-page: e14614 year: 2022 ident: ref_9 article-title: The Impact of Forest-controlled Snow Variability on Late-season Streamflow Varies by Climatic Region and Forest Structure publication-title: Hydrol. Process. doi: 10.1002/hyp.14614 contributor: fullname: Currier – volume: 49 start-page: 6356 year: 2013 ident: ref_10 article-title: Lower Forest Density Enhances Snow Retention in Regions with Warmer Winters: A Global Framework Developed from Plot-Scale Observations and Modeling publication-title: Water Resour. Res. doi: 10.1002/wrcr.20504 contributor: fullname: Lundquist – volume: 41 start-page: 872 year: 2003 ident: ref_33 article-title: A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.810682 contributor: fullname: Zhang – volume: 59 start-page: 467 year: 2013 ident: ref_20 article-title: Lidar Measurement of Snow Depth: A Review publication-title: J. Glaciol. doi: 10.3189/2013JoG12J154 contributor: fullname: Deems – ident: ref_36 – volume: 8 start-page: 1073 year: 2015 ident: ref_13 article-title: Quantifying the Effects of Vegetation Structure on Snow Accumulation and Ablation in Mixed-conifer Forests publication-title: Ecohydrology doi: 10.1002/eco.1565 contributor: fullname: Broxton – volume: 10 start-page: 257 year: 2016 ident: ref_30 article-title: Topographic and Vegetation Effects on Snow Accumulation in the Southern Sierra Nevada: A Statistical Summary from Lidar Data publication-title: Cryosphere doi: 10.5194/tc-10-257-2016 contributor: fullname: Zheng – volume: 34 start-page: 5298 year: 2020 ident: ref_5 article-title: The Impact of Changing Subcanopy Radiation on Snowmelt in a Disturbed Coniferous Forest publication-title: Hydrol. Process. doi: 10.1002/hyp.13936 contributor: fullname: Hotovy – volume: 3 start-page: 1038287 year: 2023 ident: ref_40 article-title: UAV Hyperspectral Imaging for Multiscale Assessment of Landsat 9 Snow Grain Size and Albedo publication-title: Front. Remote Sens. doi: 10.3389/frsen.2022.1038287 contributor: fullname: Skiles – volume: 20 start-page: 67 year: 1982 ident: ref_41 article-title: Optical Properties of Snow publication-title: Rev. Geophys. doi: 10.1029/RG020i001p00067 contributor: fullname: Warren – volume: 51 start-page: 83 year: 2010 ident: ref_38 article-title: Hyperspectral Analysis of Snow Reflectance to Understand the Effects of Contamination and Grain Size publication-title: Ann. Glaciol. doi: 10.3189/172756410791386535 contributor: fullname: Singh – volume: 24 start-page: 2545 year: 2020 ident: ref_4 article-title: Snow Processes in Mountain Forests: Interception Modeling for Coarse-Scale Applications publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-24-2545-2020 contributor: fullname: Helbig |
SSID | ssj0000331904 |
Score | 2.3976054 |
Snippet | Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 5091 |
SubjectTerms | Accuracy Airspeed Analysis Bias Clouds Confidence intervals Coniferous forests Deciduous forests Environmental protection Estimates Evaluation Flight Foliage Forest management Forests Lasers Lidar Mapping Missing data Optical radar Precipitation Predation Remote sensing Sensors Snow Snow cover Snow depth Spatial discrimination Spatial resolution Sustainable forestry UAS Vegetation Vegetation cover Winter |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kL3oRnzi6LgUKnsJ2TyfdyXF0Zxhk9TIO7K2pdFe7C5IMM1nEf291Oqu7h8WL1xBIUe-PVH0lxHtSqGRkpBqiSgDFhwIDqcKYqOugWlOOJ1m-fDXrbfn5orq4deorzYRleuCsuNMwL-vIXQHDlLb0tmwsRUucYRpO77HOPJ9yfgtMjTlYs2vJMvORasb1p_tDqlSpPN6pQCNR_33peKwxqyfi8dQcwiIL9VQ8oO6ZeDjdKb_89VzE5UTO3X0H7twgcw8foI-wXWxg9SNBbdjsuCRB38H5VcA9bLr-J5zRbriEJQd03lWEqw4Q1mkYpmcfov76AOdp7TcNRL0Q29Xy26d1MV1KKLyumqFQ3HR5NKilbyoGXFi3hLFC05I01EhvPUkVycamtCFEjRE1qhYDSlMj6ZfiqOs7eiUgKDIMVaWm9AOOGiQr5423ynNnx_V-Jt7daM_tMiGGYyCRdOz-6ngmPibF_nkjkViPD9i0bjKt-5dpZ-JDMotLoTbs0eO0McCCJtIqt2BkUOnKWv7c8Y3l3BSDBzdncK9tZbR-_T-keSMepVPzeQ_xWBwN-2t6yw3J0J6MvvcbzDTefQ priority: 102 providerName: Directory of Open Access Journals |
Title | Evaluating the Effects of UAS Flight Speed on Lidar Snow Depth Estimation in a Heterogeneous Landscape |
URI | https://www.proquest.com/docview/2888375633 https://doaj.org/article/d248f511107b4c7497ef7eeb19ceef83 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcmgvJf2i26aLoIWeTKSVLdmnskl3s5Q0lG4XcjOyNEoCwd7aDqX_vjO2NqGH5mobbEYzevPkmTeMfQRppQjIVH2QRFCcT6wHmWgdVO5lpdNhJMu3c73apF8vsot44NbFssrdnjhs1L5xdEZ-NEOqpkymlfq8_ZXQ1Cj6uxpHaDxm-3JmNJX05cvTuzMWodDBRDqqkipk90dtR3hFIPkPDg1y_f_blAekWR6wZzFF5PNxTZ-zR1C_YE_itPKrPy9ZWESJ7vqSY_7GRwXijjeBb-Zrvrwhws3XWwQm3tT87Nrblq_r5jf_Atv-ii8wrMeORX5dc8tXVBLToCdBc9vxM2r-pbKoV2yzXPw8WSVxXkLiVFb0icTUy1ltlXBFhrTL5hXYkFldgdBQCGccCBnAhCI13gdlg1VWVtZboXML6jXbq5sa3jDuJWgkrEIB_YaDwoIRs8IZ6TC_Q9SfsA8765XbURajRDpBNi7vbTxhx2TYuydIynq40LSXZYyM0s_SPGDahzy0Sp1JCwPBAEJIgfgdcjVhn2hZSgq4vrXOxr4B_FCSrirnyA8ylRmDrzvcrVwZI7Er7_3m7cO337GnNEp-7DM8ZHt9ewvvMeHoq-ngVVO2f7w4__5jOtD2v-ek2BE |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgHMoF8SkWClgCiVNUe53YyQktsMsC2162K_VmOfa4rYSSJZsK8e-ZSbytOMA1ieRoPOM3z_a8YewdSCdFRKYaoiSC4kPmAshM66jKIGudDy1ZTk71cpN_Oy_O04bbLl2r3K-Jw0IdWk975MdTpGrKFFqpD9ufGXWNotPV1ELjLruXK4RuqhRffLnZYxEKHUzkoyqpQnZ_3O0Irwgk_8KhQa7_X4vygDSLh-xBShH5bJzTR-wONI_ZYepWfvn7CYvzJNHdXHDM3_ioQLzjbeSb2ZovfhDh5ustAhNvG766Cq7j66b9xT_Dtr_kcwzrsWKRXzXc8SVdiWnRk6C93vEVFf_StainbLOYn31aZqlfQuZVUfWZxNTLO-2U8FWBtMuVNbhYOF2D0FAJbzwIGcHEKjchROWiU07WLjihSwfqGTto2gaeMx4kaCSsQgEdw0HlwIhp5Y30mN8h6k_Y27317HaUxbBIJ8jG9tbGE_aRDHvzBUlZDw_a7sKmyLBhmpcR0z7koXXuTV4ZiAYQQirE71iqCXtP02Ip4PrOeZfqBvBHSbrKzpAfFKowBoc72s-cTZG4s7d-8-L_r9-ww-XZycquvp5-f8nuU1v5sebwiB303TW8wuSjr18PHvYHOi_YZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagk4AXxE-tbIAlkHiKateJnTyhjrUqUKqJUmlvlmOft0koKUmmif-ec-Ju4gFek0iJznf-7nPuviPkPXDDmUem6jwPBMW6xDjgiZRe5I6XMu1Hsnxby-U2_XKencf6pzaWVe73xH6jdrUNZ-STKVI1oTIpxMTHsoiz08XH3a8kTJAKf1rjOI375ABRkU1H5OBkvj77fnviwgS6G0sHjVKBXH_StAG9AmT-hUq9eP-_tugedxZPyOOYMNLZsMJPyT2onpGHcXb55e_nxM-jYHd1QTGbo4MecUtrT7ezDV38DPSbbnYIU7Su6OrKmYZuqvqGnsKuu6RzDPKhf5FeVdTQZSiQqdGvoL5u6Sq0AociqRdku5j_-LRM4vSExIqs6BKOiZg10ghmiwxJmMlLMD4zsgQmoWBWWWDcg_JFqpzzwngjDC-NM0zmBsRLMqrqCg4JdRwk0lcmIPyUg8KAYtPCKm4x28McYEze7a2nd4NIhkZyEWys72w8JifBsLdPBGHr_kLdXOgYJ9pN09xjEoistEytSgsFXgECSoFo7nMxJh_CsugQfl1jrIldBPihQchKz5AtZCJTCl93vF85HeOy1Xde9Or_t9-SB-heevV5_fWIPAoz5ocGxGMy6ppreI2ZSFe-iS72B_Tj3gA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+Effects+of+UAS+Flight+Speed+on+Lidar+Snow+Depth+Estimation+in+a+Heterogeneous+Landscape&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Sullivan%2C+Franklin+B&rft.au=Hunsaker%2C+Adam+G&rft.au=Palace%2C+Michael+W&rft.au=Jacobs%2C+Jennifer+M&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=21&rft.spage=5091&rft_id=info:doi/10.3390%2Frs15215091&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |