Molecular dynamics simulations of a highly charged peptide from an SH3 domain: Possible sequence-function relationship

A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics be...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 45; no. 1; pp. 4 - 15
Main Authors Krueger, Brent P., Kollman, Peter A.
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.10.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10‐ns simulations of both the native‐like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM‐PBSA analysis using several force fields, suggest a comparable free energy (ΔΔG ≤6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690‐member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. Proteins 2001;45:4–15. © 2001 Wiley‐Liss, Inc.
AbstractList A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10-ns simulations of both the native-like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM-PBSA analysis using several force fields, suggest a comparable free energy (DeltaDeltaG < or =6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690-member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins.
A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10‐ns simulations of both the native‐like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM‐PBSA analysis using several force fields, suggest a comparable free energy (ΔΔ G ≤6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690‐member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. Proteins 2001;45:4–15. © 2001 Wiley‐Liss, Inc.
A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10-ns simulations of both the native-like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM-PBSA analysis using several force fields, suggest a comparable free energy (DeltaDeltaG < or =6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690-member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins.A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10-ns simulations of both the native-like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM-PBSA analysis using several force fields, suggest a comparable free energy (DeltaDeltaG < or =6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690-member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins.
A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10‐ns simulations of both the native‐like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM‐PBSA analysis using several force fields, suggest a comparable free energy (ΔΔG ≤6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690‐member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. Proteins 2001;45:4–15. © 2001 Wiley‐Liss, Inc.
Author Krueger, Brent P.
Kollman, Peter A.
Author_xml – sequence: 1
  givenname: Brent P.
  surname: Krueger
  fullname: Krueger, Brent P.
  organization: Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California
– sequence: 2
  givenname: Peter A.
  surname: Kollman
  fullname: Kollman, Peter A.
  email: kruegerb@hope.edu
  organization: Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11536355$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNU7Lb1wS8geRJ8mDaZzJ_ENym2a6m21KrgS8gkd7rRTDJNZtT99mbdVUHQpwuX3zncc88B2vPBA0JPKDmmhJQnYwzTMaWUP0ALSkRbEMqqPbQgnLcFq3m9jw5S-kwIaQRrHqF9SmvWsLpeoK9vggM9OxWxWXs1WJ1wskNeTDb4hEOPFV7Zu5VbY71S8Q4MHmGcrAHcxzBg5fG7JcMmDMr6F_g6pGQ7BzjB_QxeQ9HPXm-8cISd6cqOR-hhr1yCx7t5iN6fvbo9XRaXV-evT19eFprVgheKAhc9K3thuKmqSjQ5Wdcy09FagaId1cBVKTQ3YFrSEcG14g0wI1TDO8MO0bOtb35RvidNcrBJg3PKQ5iTbCmt2pJWGXy6A-duACPHaAcV1_LXpzLwfAvomCNG6P8gRG5akJsW5KaFzJ78xWo7_cw-RWXd_xTfrIP1v63l9c3V7U5RbBU2TfD9t0LFL7JpWVvLj2_Pc7xP5YX4sJQX7Ac_cqrc
CitedBy_id crossref_primary_10_1002_prot_10348
crossref_primary_10_1016_S0022_2836_02_00888_4
crossref_primary_10_1016_j_cplett_2009_02_076
crossref_primary_10_1002_jcc_21273
crossref_primary_10_1016_S0006_3495_03_74966_2
crossref_primary_10_1093_protein_15_12_967
crossref_primary_10_1002_prot_10252
crossref_primary_10_2165_00822942_200403020_00004
Cites_doi 10.1016/0092-8674(93)90582-B
10.1007/978-94-017-1120-3_2
10.1063/1.448118
10.1021/j100058a043
10.1021/jp9937757
10.1021/ja991382f
10.1021/bi9627626
10.1038/1412
10.1126/science.7761829
10.1021/bi971786p
10.1038/75932
10.1002/jcc.540161210
10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
10.1006/jmbi.1998.1885
10.1016/0022-2364(84)90257-9
10.1016/0009-2614(93)89366-P
10.1038/36626
10.1021/ja00124a002
10.1016/0022-2836(92)90634-V
10.1021/ja981844
10.1006/jmbi.1998.2072
10.1002/jcc.540161209
10.1002/jcc.540161211
10.1016/0022-2836(88)90540-2
10.1006/jmbi.1999.2949
10.1063/1.468411
10.1021/j100194a059
10.1063/1.464397
10.1023/A:1008763014207
10.1038/385595a0
10.1002/(SICI)1097-0134(1997)1 <167::AID-PROT21>3.0.CO;2-L
10.1063/1.477873
10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
10.1021/jm000241h
10.1016/0021-9991(77)90098-5
10.1016/S0301-4622(99)00007-1
10.1016/0959-440X(95)80012-P
10.1002/(SICI)1097-0134(20000601)39:4<309::AID-PROT40>3.0.CO;2-S
10.1073/pnas.88.4.1237
10.1063/1.1309534
10.1021/cr960149m
10.1021/bi00140a022
10.1006/jmbi.1998.1943
10.1021/jp994157t
10.1021/ja992359x
10.1126/science.2237415
10.1063/1.461272
10.1073/pnas.97.13.7084
10.1021/ja990935j
10.1002/(SICI)1097-0134(20000501)39:2<132::AID-PROT3>3.0.CO;2-2
10.1093/nar/28.1.263
10.1073/pnas.190324897
10.1063/1.465608
ContentType Journal Article
Copyright Copyright © 2001 Wiley‐Liss, Inc.
Copyright 2001 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2001 Wiley‐Liss, Inc.
– notice: Copyright 2001 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/prot.1118
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 15
ExternalDocumentID 11536355
10_1002_prot_1118
PROT1118
ark_67375_WNG_71Z2J9VH_J
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: GM‐29072
– fundername: NIGMS NIH HHS
  grantid: GM-29072
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RNS
ROL
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
53G
6TJ
AAYXX
ABEML
ACSCC
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
EBD
EMOBN
FA8
HF~
LH6
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
SV3
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3598-a1e89f32f9d8d44496013b73db15aea1b1ce8a29c8ded70b098ca86e3d9a68bd3
IEDL.DBID DR2
ISSN 0887-3585
IngestDate Fri Jul 11 01:04:23 EDT 2025
Wed Feb 19 01:26:14 EST 2025
Thu Apr 24 23:05:22 EDT 2025
Tue Jul 01 03:56:41 EDT 2025
Wed Jan 22 17:10:11 EST 2025
Wed Oct 30 09:49:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2001 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3598-a1e89f32f9d8d44496013b73db15aea1b1ce8a29c8ded70b098ca86e3d9a68bd3
Notes ark:/67375/WNG-71Z2J9VH-J
ArticleID:PROT1118
istex:292F728F33D2FB7865DC93E989FFE513AC7A345F
National Institutes of Health - No. GM-29072
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 11536355
PQID 71147214
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_71147214
pubmed_primary_11536355
crossref_primary_10_1002_prot_1118
crossref_citationtrail_10_1002_prot_1118
wiley_primary_10_1002_prot_1118_PROT1118
istex_primary_ark_67375_WNG_71Z2J9VH_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-10-01
1 October 2001
2001-10-00
2001-Oct-01
20011001
PublicationDateYYYYMMDD 2001-10-01
PublicationDate_xml – month: 10
  year: 2001
  text: 2001-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2001
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References Grantcharova VP, Baker D. Folding dynamics of the src SH3 domain. Biochemistry 1997; 36: 15685-15692.
Hünenberger PH, McCammon JA. Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: a continuum electrostatics study. J Chem Phys 1999; 110: 1856-1872.
Zhang O, Forman-Kay JD. NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. Biochemistry 1997; 36: 3959-3970.
Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science 1995; 268: 1144-1149.
Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Seibel GL, Singh UC, Weiner PK, Kollman PA. AMBER 5. San Francisco: University of California; 1997.
Schäfer H, Mark AE, van Gunsteren WF. Absolute entropies from molecular dynamics simulation trajectories. J Chem Phys 2000; 113: 7809-7817.
Koyama S, Yu H, Dalgarno DC, Shin TB, Zydowsky LD, Schreiber SL. Structure of the PI3K SH3 domain and analysis of the SH3 family. Cell 1993; 72: 945-952.
Keepers JW, James TL. A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J Magn Reson 1984; 57: 404-426.
Wang H, Sung S-S. Molecular dynamics simulations of three-strand β-sheet folding. J Am Chem Soc 2000; 122: 1999-2009.
Bader JS, Chandler D. Computer simulation study of the mean forces between ferrous and ferric ions in water. J Phys Chem 1992; 96: 6423-6427.
Saito M. Molecular dynamics simulations of proteins in solution-artifacts caused by the cutoff approximation. J Chem Phys 1994; 101: 4055-4061.
Smith PE, Pettitt BM. Peptides in ionic solutions-a comparison of the Ewald and switching function techniques. J Chem Phys 1991; 95: 8430-8441.
Thomas PD, Basus VJ, James TL. Protein solution structure determination using distances from two-dimensional nuclear Overhauser effect experiments-effect of approximations on the accuracy of derived structures. Proc Natl Acad Sci USA 1991; 88: 1237-1241.
Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999; 121: 8133-8143.
Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 2000; 21: 1049-1074.
Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol 1998; 280: 925-932.
Tsai J, Levitt M, Baker D. Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. J Mol Biol 1999; 291: 215-225.
Roseman MA. Hydrophilicity of polar amino-acid side-chains is markedly reduced by flanking peptide-bonds. J Mol Biol 1988; 200: 513-522.
Weber W, Hünenberger PH, McCammon JA. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. J Phys Chem B 2000; 104: 3668-3675.
Sanner MF, Olson AJ, Spehner J-C. Reduced surface-an efficient way to compute molecular surfaces. Biopolymers 1996; 38: 305-320.
Yi Q, Bystroff C, Rajagopal P, Klevit RE, Baker D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J Mol Biol 1998; 283: 293-300.
Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Design 2000; 18: 113-135.
Grantcharova VP, Riddle DS, Santiago JV, Baker D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nature Struct Biol 1998; 5: 714-720.
Ferrara P, Caflisch A. Folding mechanism of a three-stranded antiparallel β-sheet protein. Proc Natl Acad Sci USA 2000; 97: 10780-10785.
Janežič D, Venable RM, Brooks BR. Harmonic analysis of large systems. 3. Comparison with molecular dynamics. J Comput Chem 1995; 16: 1554-1566.
Bystroff C, Baker D. Blind predictions of local protein structure in CASP2 targets using the I-sites library. Proteins 1997; 29: 167-171.
Hünenberger PH, McCammon JA. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem 1999; 78: 69-88.
O'Neil KT, DeGrado WF. A Thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 1990; 250: 646-651.
Ferrara P, Apostolakis J, Caflisch A. Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J Phys Chem B 2000; 104: 5000-5010.
Dyson HJ, Sayre JR, Merutka G, Shin HC, Lerner RA, Wright PE. Folding of peptide fragments comprising the complete sequence of proteins-models for initiation of protein folding. 2. Plastocyanin. J Mol Biol 1992; 226: 819-835.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179-5197.
Lednev IK, Karnoup AS, Sparrow MC, Asher SA. α-Helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study. J Am Chem Soc 1999; 121: 8074-8086.
Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 2000; 43: 3786-3791.
Akiyama S, Takahashi S, Ishimori K, Marishima I. Stepwise formation of α-helices during cytochrome c folding. Nature Struct Biol 2000; 7: 514-520.
Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA. Continuum Solvent studies of the stability of the DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 1998; 120: 9401-9409.
Schlitter J. Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 1993; 215: 617-621.
Janežič D, Brooks BR. Harmonic analysis of large systems. 2. Comparison of different protein models. J Comput Chem 1995; 16: 1543-1553.
Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 1994; 98: 1978-1988.
Brooks BR, Janežič D, Karplus M. Harmonic analysis of large systems. 1. Methodology. J Comput Chem 1995; 16: 1522-1542.
SYBYL; 6.5 . St. Louis, MO: Tripos.
Schreiber H, Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry 1992; 31: 5856-5860.
Muñoz V, Thompson PA, Hofrichter J, Eaton WA. Folding dynamics and mechanism of β-hairpin formation. Nature 1997; 390: 196-199.
Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997; 385: 595-602.
York DM, Darden TA, Pedersen LG. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J Chem Phys 1993; 99: 8345-8348.
Lee MR, Duan Y, Kollman PA. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins 2000; 39: 309-316.
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684-3690.
Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of cartesian equations of motion of a system with constraints-molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341.
Bystroff C, Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 1998; 281: 565-577.
Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res 2000; 28: 263-266.
Grantcharova VP, Riddle DS, Baker D. Long-range order in the src SH3 folding transition state. Proc Natl Acad Sci USA 2000; 97: 7084-7089.
Fersht AR. Characterizing transition states in protein folding-an essential step in the puzzle. Curr Opin Struct Biol 1995; 5: 79-84.
Cramer CJ, Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 1999; 99: 2161-2200.
Darden T, York D, Pedersen L. Particle mesh Ewald: an N × log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089-10092.
Krittanai C, Johnson WCJ. The relative order of helical propensity of amino acids changes with solvent environment. Proteins 2000; 39: 132-141.
Leach AR. Molecular modeling principles and applications. London: Addison-Wesley/Longman; 1998. 595 p.
1998; 281
1998; 280
1984; 81
2000; 28
2000; 113
1995; 16
2000; 43
2000; 21
2000; 7
1991; 95
1999; 291
1992; 226
1998
1995; 117
1999; 121
1997; 29
1997
1988; 200
1977; 23
1992; 31
1997; 3
1996; 38
1995; 5
1992; 96
1994; 101
2000; 18
2000; 39
1993; 72
2000; 104
1991; 88
1993; 99
1997; 36
1997; 385
1993; 98
2000; 97
1984; 57
1999; 110
1999; 78
1999; 99
1995; 268
2000; 122
1997; 390
1998; 5
1993; 215
1998; 283
1998; 120
1994; 98
1990; 250
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
Leach AR (e_1_2_6_34_2) 1998
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
Case DA (e_1_2_6_26_2) 1997
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Koyama S, Yu H, Dalgarno DC, Shin TB, Zydowsky LD, Schreiber SL. Structure of the PI3K SH3 domain and analysis of the SH3 family. Cell 1993; 72: 945-952.
– reference: Roseman MA. Hydrophilicity of polar amino-acid side-chains is markedly reduced by flanking peptide-bonds. J Mol Biol 1988; 200: 513-522.
– reference: Leach AR. Molecular modeling principles and applications. London: Addison-Wesley/Longman; 1998. 595 p.
– reference: Zhang O, Forman-Kay JD. NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. Biochemistry 1997; 36: 3959-3970.
– reference: Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179-5197.
– reference: Bader JS, Chandler D. Computer simulation study of the mean forces between ferrous and ferric ions in water. J Phys Chem 1992; 96: 6423-6427.
– reference: Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA. Continuum Solvent studies of the stability of the DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 1998; 120: 9401-9409.
– reference: Lednev IK, Karnoup AS, Sparrow MC, Asher SA. α-Helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study. J Am Chem Soc 1999; 121: 8074-8086.
– reference: Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of cartesian equations of motion of a system with constraints-molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341.
– reference: Wang H, Sung S-S. Molecular dynamics simulations of three-strand β-sheet folding. J Am Chem Soc 2000; 122: 1999-2009.
– reference: SYBYL; 6.5 . St. Louis, MO: Tripos.
– reference: Grantcharova VP, Baker D. Folding dynamics of the src SH3 domain. Biochemistry 1997; 36: 15685-15692.
– reference: Smith PE, Pettitt BM. Peptides in ionic solutions-a comparison of the Ewald and switching function techniques. J Chem Phys 1991; 95: 8430-8441.
– reference: Ferrara P, Caflisch A. Folding mechanism of a three-stranded antiparallel β-sheet protein. Proc Natl Acad Sci USA 2000; 97: 10780-10785.
– reference: Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684-3690.
– reference: Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Seibel GL, Singh UC, Weiner PK, Kollman PA. AMBER 5. San Francisco: University of California; 1997.
– reference: Krittanai C, Johnson WCJ. The relative order of helical propensity of amino acids changes with solvent environment. Proteins 2000; 39: 132-141.
– reference: Schäfer H, Mark AE, van Gunsteren WF. Absolute entropies from molecular dynamics simulation trajectories. J Chem Phys 2000; 113: 7809-7817.
– reference: Keepers JW, James TL. A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J Magn Reson 1984; 57: 404-426.
– reference: Tsai J, Levitt M, Baker D. Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. J Mol Biol 1999; 291: 215-225.
– reference: Brooks BR, Janežič D, Karplus M. Harmonic analysis of large systems. 1. Methodology. J Comput Chem 1995; 16: 1522-1542.
– reference: Thomas PD, Basus VJ, James TL. Protein solution structure determination using distances from two-dimensional nuclear Overhauser effect experiments-effect of approximations on the accuracy of derived structures. Proc Natl Acad Sci USA 1991; 88: 1237-1241.
– reference: Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 2000; 21: 1049-1074.
– reference: Weber W, Hünenberger PH, McCammon JA. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. J Phys Chem B 2000; 104: 3668-3675.
– reference: Schlitter J. Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 1993; 215: 617-621.
– reference: Yi Q, Bystroff C, Rajagopal P, Klevit RE, Baker D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J Mol Biol 1998; 283: 293-300.
– reference: Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997; 385: 595-602.
– reference: Fersht AR. Characterizing transition states in protein folding-an essential step in the puzzle. Curr Opin Struct Biol 1995; 5: 79-84.
– reference: Akiyama S, Takahashi S, Ishimori K, Marishima I. Stepwise formation of α-helices during cytochrome c folding. Nature Struct Biol 2000; 7: 514-520.
– reference: Ferrara P, Apostolakis J, Caflisch A. Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J Phys Chem B 2000; 104: 5000-5010.
– reference: Hünenberger PH, McCammon JA. Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: a continuum electrostatics study. J Chem Phys 1999; 110: 1856-1872.
– reference: Bystroff C, Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 1998; 281: 565-577.
– reference: O'Neil KT, DeGrado WF. A Thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 1990; 250: 646-651.
– reference: Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Design 2000; 18: 113-135.
– reference: Janežič D, Brooks BR. Harmonic analysis of large systems. 2. Comparison of different protein models. J Comput Chem 1995; 16: 1543-1553.
– reference: Dyson HJ, Sayre JR, Merutka G, Shin HC, Lerner RA, Wright PE. Folding of peptide fragments comprising the complete sequence of proteins-models for initiation of protein folding. 2. Plastocyanin. J Mol Biol 1992; 226: 819-835.
– reference: Cramer CJ, Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 1999; 99: 2161-2200.
– reference: Sanner MF, Olson AJ, Spehner J-C. Reduced surface-an efficient way to compute molecular surfaces. Biopolymers 1996; 38: 305-320.
– reference: Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science 1995; 268: 1144-1149.
– reference: Muñoz V, Thompson PA, Hofrichter J, Eaton WA. Folding dynamics and mechanism of β-hairpin formation. Nature 1997; 390: 196-199.
– reference: Grantcharova VP, Riddle DS, Baker D. Long-range order in the src SH3 folding transition state. Proc Natl Acad Sci USA 2000; 97: 7084-7089.
– reference: Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999; 121: 8133-8143.
– reference: Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res 2000; 28: 263-266.
– reference: Schreiber H, Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry 1992; 31: 5856-5860.
– reference: Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol 1998; 280: 925-932.
– reference: Darden T, York D, Pedersen L. Particle mesh Ewald: an N × log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089-10092.
– reference: Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 1994; 98: 1978-1988.
– reference: Hünenberger PH, McCammon JA. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem 1999; 78: 69-88.
– reference: York DM, Darden TA, Pedersen LG. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J Chem Phys 1993; 99: 8345-8348.
– reference: Bystroff C, Baker D. Blind predictions of local protein structure in CASP2 targets using the I-sites library. Proteins 1997; 29: 167-171.
– reference: Lee MR, Duan Y, Kollman PA. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins 2000; 39: 309-316.
– reference: Grantcharova VP, Riddle DS, Santiago JV, Baker D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nature Struct Biol 1998; 5: 714-720.
– reference: Saito M. Molecular dynamics simulations of proteins in solution-artifacts caused by the cutoff approximation. J Chem Phys 1994; 101: 4055-4061.
– reference: Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 2000; 43: 3786-3791.
– reference: Janežič D, Venable RM, Brooks BR. Harmonic analysis of large systems. 3. Comparison with molecular dynamics. J Comput Chem 1995; 16: 1554-1566.
– volume: 283
  start-page: 293
  year: 1998
  end-page: 300
  article-title: Prediction and structural characterization of an independently folding substructure in the src SH3 domain
  publication-title: J Mol Biol
– volume: 281
  start-page: 565
  year: 1998
  end-page: 577
  article-title: Prediction of local structure in proteins using a library of sequence–structure motifs
  publication-title: J Mol Biol
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J Chem Phys
– volume: 36
  start-page: 3959
  year: 1997
  end-page: 3970
  article-title: NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions
  publication-title: Biochemistry
– volume: 21
  start-page: 1049
  year: 2000
  end-page: 1074
  article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
  publication-title: J Comput Chem
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  article-title: Particle mesh Ewald: an × log( ) method for Ewald sums in large systems
  publication-title: J Chem Phys
– volume: 121
  start-page: 8074
  year: 1999
  end-page: 8086
  article-title: α‐Helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study
  publication-title: J Am Chem Soc
– volume: 122
  start-page: 1999
  year: 2000
  end-page: 2009
  article-title: Molecular dynamics simulations of three‐strand β‐sheet folding
  publication-title: J Am Chem Soc
– volume: 215
  start-page: 617
  year: 1993
  end-page: 621
  article-title: Estimation of absolute and relative entropies of macromolecules using the covariance matrix
  publication-title: Chem Phys Lett
– volume: 101
  start-page: 4055
  year: 1994
  end-page: 4061
  article-title: Molecular dynamics simulations of proteins in solution—artifacts caused by the cutoff approximation
  publication-title: J Chem Phys
– volume: 110
  start-page: 1856
  year: 1999
  end-page: 1872
  article-title: Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction: a continuum electrostatics study
  publication-title: J Chem Phys
– volume: 16
  start-page: 1543
  year: 1995
  end-page: 1553
  article-title: Harmonic analysis of large systems. 2. Comparison of different protein models
  publication-title: J Comput Chem
– volume: 5
  start-page: 79
  year: 1995
  end-page: 84
  article-title: Characterizing transition states in protein folding—an essential step in the puzzle
  publication-title: Curr Opin Struct Biol
– volume: 99
  start-page: 2161
  year: 1999
  end-page: 2200
  article-title: Implicit solvation models: equilibria, structure, spectra, and dynamics
  publication-title: Chem Rev
– volume: 291
  start-page: 215
  year: 1999
  end-page: 225
  article-title: Hierarchy of structure loss in MD simulations of src SH3 domain unfolding
  publication-title: J Mol Biol
– volume: 29
  start-page: 167
  year: 1997
  end-page: 171
  article-title: Blind predictions of local protein structure in CASP2 targets using the I‐sites library
  publication-title: Proteins
– volume: 121
  start-page: 8133
  year: 1999
  end-page: 8143
  article-title: Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies
  publication-title: J Am Chem Soc
– volume: 16
  start-page: 1554
  year: 1995
  end-page: 1566
  article-title: Harmonic analysis of large systems. 3. Comparison with molecular dynamics
  publication-title: J Comput Chem
– volume: 38
  start-page: 305
  year: 1996
  end-page: 320
  article-title: Reduced surface—an efficient way to compute molecular surfaces
  publication-title: Biopolymers
– volume: 99
  start-page: 8345
  year: 1993
  end-page: 8348
  article-title: The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods
  publication-title: J Chem Phys
– volume: 385
  start-page: 595
  year: 1997
  end-page: 602
  article-title: Three‐dimensional structure of the tyrosine kinase c‐Src
  publication-title: Nature
– volume: 78
  start-page: 69
  year: 1999
  end-page: 88
  article-title: Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study
  publication-title: Biophys Chem
– year: 1997
– volume: 250
  start-page: 646
  year: 1990
  end-page: 651
  article-title: A Thermodynamic scale for the helix‐forming tendencies of the commonly occurring amino acids
  publication-title: Science
– volume: 43
  start-page: 3786
  year: 2000
  end-page: 3791
  article-title: Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models
  publication-title: J Med Chem
– volume: 390
  start-page: 196
  year: 1997
  end-page: 199
  article-title: Folding dynamics and mechanism of β‐hairpin formation
  publication-title: Nature
– volume: 18
  start-page: 113
  year: 2000
  end-page: 135
  article-title: Combined molecular mechanical and continuum solvent approach (MM‐PBSA/GBSA) to predict ligand binding
  publication-title: Perspect Drug Discov Design
– volume: 113
  start-page: 7809
  year: 2000
  end-page: 7817
  article-title: Absolute entropies from molecular dynamics simulation trajectories
  publication-title: J Chem Phys
– volume: 95
  start-page: 8430
  year: 1991
  end-page: 8441
  article-title: Peptides in ionic solutions—a comparison of the Ewald and switching function techniques
  publication-title: J Chem Phys
– volume: 97
  start-page: 7084
  year: 2000
  end-page: 7089
  article-title: Long‐range order in the src SH3 folding transition state
  publication-title: Proc Natl Acad Sci USA
– volume: 98
  start-page: 1978
  year: 1994
  end-page: 1988
  article-title: Accurate calculation of hydration free energies using macroscopic solvent models
  publication-title: J Phys Chem
– volume: 31
  start-page: 5856
  year: 1992
  end-page: 5860
  article-title: Cutoff size does strongly influence molecular dynamics results on solvated polypeptides
  publication-title: Biochemistry
– volume: 117
  start-page: 5179
  year: 1995
  end-page: 5197
  article-title: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
  publication-title: J Am Chem Soc
– volume: 5
  start-page: 714
  year: 1998
  end-page: 720
  article-title: Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain
  publication-title: Nature Struct Biol
– volume: 96
  start-page: 6423
  year: 1992
  end-page: 6427
  article-title: Computer simulation study of the mean forces between ferrous and ferric ions in water
  publication-title: J Phys Chem
– volume: 88
  start-page: 1237
  year: 1991
  end-page: 1241
  article-title: Protein solution structure determination using distances from two‐dimensional nuclear Overhauser effect experiments—effect of approximations on the accuracy of derived structures
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 514
  year: 2000
  end-page: 520
  article-title: Stepwise formation of α‐helices during cytochrome folding
  publication-title: Nature Struct Biol
– volume: 120
  start-page: 9401
  year: 1998
  end-page: 9409
  article-title: Continuum Solvent studies of the stability of the DNA, RNA, and phosphoramidate–DNA helices
  publication-title: J Am Chem Soc
– volume: 104
  start-page: 3668
  year: 2000
  end-page: 3675
  article-title: Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation
  publication-title: J Phys Chem B
– volume: 36
  start-page: 15685
  year: 1997
  end-page: 15692
  article-title: Folding dynamics of the src SH3 domain
  publication-title: Biochemistry
– volume: 57
  start-page: 404
  year: 1984
  end-page: 426
  article-title: A theoretical study of distance determinations from NMR. Two‐dimensional nuclear Overhauser effect spectra
  publication-title: J Magn Reson
– start-page: 595
  year: 1998
– volume: 226
  start-page: 819
  year: 1992
  end-page: 835
  article-title: Folding of peptide fragments comprising the complete sequence of proteins—models for initiation of protein folding. 2. Plastocyanin
  publication-title: J Mol Biol
– volume: 16
  start-page: 1522
  year: 1995
  end-page: 1542
  article-title: Harmonic analysis of large systems. 1. Methodology
  publication-title: J Comput Chem
– volume: 39
  start-page: 309
  year: 2000
  end-page: 316
  article-title: Use of MM‐PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece
  publication-title: Proteins
– volume: 268
  start-page: 1144
  year: 1995
  end-page: 1149
  article-title: Classical electrostatics in biology and chemistry
  publication-title: Science
– volume: 72
  start-page: 945
  year: 1993
  end-page: 952
  article-title: Structure of the PI3K SH3 domain and analysis of the SH3 family
  publication-title: Cell
– volume: 280
  start-page: 925
  year: 1998
  end-page: 932
  article-title: Reversible peptide folding in solution by molecular dynamics simulation
  publication-title: J Mol Biol
– volume: 3
  start-page: 83
  year: 1997
  end-page: 96
– volume: 28
  start-page: 263
  year: 2000
  end-page: 266
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  article-title: Numerical integration of cartesian equations of motion of a system with constraints—molecular dynamics of ‐alkanes
  publication-title: J Comput Phys
– volume: 104
  start-page: 5000
  year: 2000
  end-page: 5010
  article-title: Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations
  publication-title: J Phys Chem B
– volume: 200
  start-page: 513
  year: 1988
  end-page: 522
  article-title: Hydrophilicity of polar amino‐acid side‐chains is markedly reduced by flanking peptide‐bonds
  publication-title: J Mol Biol
– volume: 97
  start-page: 10780
  year: 2000
  end-page: 10785
  article-title: Folding mechanism of a three‐stranded antiparallel β‐sheet protein
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 132
  year: 2000
  end-page: 141
  article-title: The relative order of helical propensity of amino acids changes with solvent environment
  publication-title: Proteins
– ident: e_1_2_6_18_2
  doi: 10.1016/0092-8674(93)90582-B
– ident: e_1_2_6_42_2
  doi: 10.1007/978-94-017-1120-3_2
– ident: e_1_2_6_49_2
  doi: 10.1063/1.448118
– ident: e_1_2_6_32_2
  doi: 10.1021/j100058a043
– ident: e_1_2_6_45_2
  doi: 10.1021/jp9937757
– ident: e_1_2_6_3_2
  doi: 10.1021/ja991382f
– ident: e_1_2_6_19_2
  doi: 10.1021/bi9627626
– ident: e_1_2_6_23_2
  doi: 10.1038/1412
– ident: e_1_2_6_33_2
  doi: 10.1126/science.7761829
– ident: e_1_2_6_21_2
  doi: 10.1021/bi971786p
– ident: e_1_2_6_4_2
  doi: 10.1038/75932
– ident: e_1_2_6_38_2
  doi: 10.1002/jcc.540161210
– ident: e_1_2_6_50_2
  doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
– ident: e_1_2_6_8_2
  doi: 10.1006/jmbi.1998.1885
– ident: e_1_2_6_53_2
  doi: 10.1016/0022-2364(84)90257-9
– ident: e_1_2_6_37_2
  doi: 10.1016/0009-2614(93)89366-P
– ident: e_1_2_6_2_2
  doi: 10.1038/36626
– ident: e_1_2_6_41_2
  doi: 10.1021/ja00124a002
– ident: e_1_2_6_20_2
  doi: 10.1016/0022-2836(92)90634-V
– ident: e_1_2_6_28_2
  doi: 10.1021/ja981844
– ident: e_1_2_6_15_2
  doi: 10.1006/jmbi.1998.2072
– ident: e_1_2_6_35_2
  doi: 10.1002/jcc.540161209
– ident: e_1_2_6_39_2
  doi: 10.1002/jcc.540161211
– ident: e_1_2_6_57_2
  doi: 10.1016/0022-2836(88)90540-2
– ident: e_1_2_6_22_2
  doi: 10.1006/jmbi.1999.2949
– ident: e_1_2_6_14_2
  doi: 10.1063/1.468411
– ident: e_1_2_6_12_2
  doi: 10.1021/j100194a059
– ident: e_1_2_6_27_2
  doi: 10.1063/1.464397
– ident: e_1_2_6_30_2
  doi: 10.1023/A:1008763014207
– ident: e_1_2_6_25_2
  doi: 10.1038/385595a0
– ident: e_1_2_6_16_2
  doi: 10.1002/(SICI)1097-0134(1997)1 <167::AID-PROT21>3.0.CO;2-L
– start-page: 595
  volume-title: Molecular modeling principles and applications
  year: 1998
  ident: e_1_2_6_34_2
– ident: e_1_2_6_46_2
  doi: 10.1063/1.477873
– ident: e_1_2_6_43_2
  doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
– ident: e_1_2_6_36_2
  doi: 10.1021/jm000241h
– ident: e_1_2_6_48_2
  doi: 10.1016/0021-9991(77)90098-5
– ident: e_1_2_6_47_2
  doi: 10.1016/S0301-4622(99)00007-1
– ident: e_1_2_6_55_2
  doi: 10.1016/0959-440X(95)80012-P
– volume-title: AMBER 5
  year: 1997
  ident: e_1_2_6_26_2
– ident: e_1_2_6_31_2
  doi: 10.1002/(SICI)1097-0134(20000601)39:4<309::AID-PROT40>3.0.CO;2-S
– ident: e_1_2_6_54_2
  doi: 10.1073/pnas.88.4.1237
– ident: e_1_2_6_40_2
  doi: 10.1063/1.1309534
– ident: e_1_2_6_9_2
  doi: 10.1021/cr960149m
– ident: e_1_2_6_13_2
  doi: 10.1021/bi00140a022
– ident: e_1_2_6_17_2
  doi: 10.1006/jmbi.1998.1943
– ident: e_1_2_6_6_2
  doi: 10.1021/jp994157t
– ident: e_1_2_6_7_2
  doi: 10.1021/ja992359x
– ident: e_1_2_6_51_2
  doi: 10.1126/science.2237415
– ident: e_1_2_6_10_2
  doi: 10.1063/1.461272
– ident: e_1_2_6_24_2
  doi: 10.1073/pnas.97.13.7084
– ident: e_1_2_6_29_2
  doi: 10.1021/ja990935j
– volume-title: SYBYL
  ident: e_1_2_6_44_2
– ident: e_1_2_6_52_2
  doi: 10.1002/(SICI)1097-0134(20000501)39:2<132::AID-PROT3>3.0.CO;2-2
– ident: e_1_2_6_56_2
  doi: 10.1093/nar/28.1.263
– ident: e_1_2_6_5_2
  doi: 10.1073/pnas.190324897
– ident: e_1_2_6_11_2
  doi: 10.1063/1.465608
SSID ssj0006936
Score 1.6905305
Snippet A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This...
A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Computer Simulation
CORMA
helical propensity
MM-PBSA
Models, Molecular
Nuclear Magnetic Resonance, Biomolecular
particle mesh Ewald
Peptides - chemistry
Pfam
Protein Folding
src Homology Domains
Structure-Activity Relationship
Thermodynamics
Title Molecular dynamics simulations of a highly charged peptide from an SH3 domain: Possible sequence-function relationship
URI https://api.istex.fr/ark:/67375/WNG-71Z2J9VH-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.1118
https://www.ncbi.nlm.nih.gov/pubmed/11536355
https://www.proquest.com/docview/71147214
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIQQvDDYuHTcLoYmXbHViJzE8jYlRVdqYxgYTQoqOLxHV2qRqWmnjif_AP-SX4OPUrYaGhHjzw0ni2OfEn53vfIeQlwIdp2QukJTlEZepjlQpWMTAGg3cciswwfngMO2d8v6ZOFshb0IuTKsPsThww8jw32sMcFDNzlI0FHUMMOAx0Re5WgiIjpfSUan05QHbIHKYOKgKdeOdxZVX1qIbOKwX1wHNq7jVLzz7a-Rr6HLLNznfnk3Vtv7-h5rjf77TXXJnDkjpbutB98iKrdbJxm7lNuOjS7pFPUXUn72vk5tvQ-vWXigUt0EuDkKJXWra-vYNbQajeV2whtYlBYqyyMNL6oWZrKFjJNMYSzG7hUJFP_YSauoRDKrX9KjGOB1aGmjev378xOUX70Yngbz3bTC-T073353s9aJ5QYdIo1BgBMzmskziUprccO48wwFQlSVGMQEWmGLa5hBLnRtrsq7qylxDntrESEhzZZIHZLWqK_uIUBGXJmccGEDGhWIy0w4aalFqAMWU7JBXYWoLPVc7x6Ibw6LVaY4LHGvc_-Qd8mJhOm4lPq4z2vL-sbCAyTly4jJRfD58X2TsS9yXn3pFv0OeBwcq3Dzg7xeobD1rnA3jbr_NO-Rh61fLp7llB4Gf67T3jr93ozg6_nCCjc1_N31MbnvinGcgPiGr08nMPnVIaqqe-ZD5DdIIHmQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am9B44bJxKbdZCE28ZKsTJ7ERL2NilLKWaXQwIaHIt4hqbVL1Im088R_4h_wSfJym1dCQEG9-OEkc-5ycz87n7wA8j9FxcuoCSVkWMJHoQOUxDai0RktmmY3xgHOnm7ROWPs0Pl2BV_VZmEofYrHhhpHhv9cY4LghvbtUDUUhA4x4fg3WsKK3X1AdL8WjEuELBFZh5FBxrSvUDHcXl17KRms4sOdXQc3LyNWnnoNb8LXudMU4OduZTdWO_v6HnuP_vtVtuDnHpGSvcqI7sGKLDdjcK9x6fHhBtolnifrt9w24_rpure_XteI24bxTV9klpipxPyGT_nBeGmxCypxIgsrIgwvitZmsISPk0xhL8IALkQX52IqIKYeyX7wkRyWG6sCSmun968dPzMB4NzKu-Xvf-qO7cHLwprffCuY1HQKNWoGBpJaLPApzYbhhzDmHw6AqjYyisbSSKqotl6HQ3FiTNlVTcC15YiMjZMKVie7BalEW9gGQOMwNp0xSKVMWKypS7dChjnMtpaJKNOBFPbeZngueY92NQVZJNYcZjjUugXgDni1MR5XKx1VG295BFhZyfIa0uDTOPnffZin9ErbFp1bWbsBW7UGZmwf8AyMLW84mzoYyt-RmDbhfOdbyaS7zIPZznfbu8fduZEfHH3rYePjvpluw3up1DrPDd933j-CG59F5QuJjWJ2OZ_aJA1ZT9dTHz2-PfyJ_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7i8cNkYlNsshCZestWJkzjwNDZKKaxUu8CEJkW-RVRr06oXaeOJ_8A_5Jfg49SthoaEePPDSeLY5-R8dj5_B-BFjI5TUBtI0rCAZYkKZBHTgAqjlWCGmRgPOO-3k-Yxa53EJ0vw2p-FqfQh5htuGBnue40BPtTF9kI0FHUMMOD5NVhhSZ2jS-8dLLSjkszVB6yiyIJiLytUD7fnl15KRis4rudXIc3LwNVlnsYdOPV9rggnZ1vTidxS3_-Qc_zPl7oLt2eIlOxULnQPlky5Cms7pV2N9y_IJnEcUbf5vgrX3_jWzV1fKW4Nzvd9jV2iqwL3YzLu9meFwcZkUBBBUBe5d0GcMpPRZIhsGm0IHm8hoiSHzYjoQV90y1ekM8BA7Rnied6_fvzE_It3IyPP3vvWHd6H48bbo91mMKvoEChUCgwENTwrorDINNeMWdewCFSmkZY0FkZQSZXhIswU10andVnPuBI8MZHORMKljtZhuRyU5iGQOCw0p0xQIVIWS5qlymJDFRdKCEllVoOXfmpzNZM7x6obvbwSag5zHGtcAPEaPJ-bDiuNj6uMNp1_zC3E6AxJcWmcf2m_y1P6NWxln5t5qwYb3oFyOw_4_0WUZjAdWxvK7IKb1eBB5VeLp9m8g8jPdtp5x9-7kXcOPh1h49G_m27Ajc5eI__4vv3hMdxyJDrHRnwCy5PR1Dy1qGoin7no-Q07WSE3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+of+a+highly+charged+peptide+from+an+SH3+domain%3A+possible+sequence-function+relationship&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Krueger%2C+B+P&rft.au=Kollman%2C+P+A&rft.date=2001-10-01&rft.issn=0887-3585&rft.volume=45&rft.issue=1&rft.spage=4&rft_id=info:doi/10.1002%2Fprot.1118&rft_id=info%3Apmid%2F11536355&rft.externalDocID=11536355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon