Molecular dynamics simulations of a highly charged peptide from an SH3 domain: Possible sequence-function relationship
A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics be...
Saved in:
Published in | Proteins, structure, function, and bioinformatics Vol. 45; no. 1; pp. 4 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.10.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10‐ns simulations of both the native‐like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM‐PBSA analysis using several force fields, suggest a comparable free energy (ΔΔG ≤6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690‐member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. Proteins 2001;45:4–15. © 2001 Wiley‐Liss, Inc. |
---|---|
AbstractList | A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10-ns simulations of both the native-like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM-PBSA analysis using several force fields, suggest a comparable free energy (DeltaDeltaG < or =6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690-member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10‐ns simulations of both the native‐like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM‐PBSA analysis using several force fields, suggest a comparable free energy (ΔΔ G ≤6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690‐member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. Proteins 2001;45:4–15. © 2001 Wiley‐Liss, Inc. A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10-ns simulations of both the native-like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM-PBSA analysis using several force fields, suggest a comparable free energy (DeltaDeltaG < or =6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690-member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins.A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10-ns simulations of both the native-like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM-PBSA analysis using several force fields, suggest a comparable free energy (DeltaDeltaG < or =6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690-member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This peptide, biologically important because it is a likely folding nucleus for SH3 domains, provides a challenging subject for molecular dynamics because it is highly charged. We present stable, 10‐ns simulations of both the native‐like diverging turn structure and a helical model. Free energies of these two conformations, estimated through MM‐PBSA analysis using several force fields, suggest a comparable free energy (ΔΔG ≤6 kcal/mol) for native and helix conformations. NOE intensities calculated from the native trajectory reproduce experimental data quite well, suggesting that the conformations sampled by the trajectory reasonably represent those observed in the NMR experiment. The molecular dynamics results, as well as sequence analysis of a diverse 690‐member family of SH3 domain proteins, suggest that the presence of two elements is essential for formation of the diverging turn structure: a pair of residues with low helical propensity in the turn region and, as previously recognized, two hydrophobic residues to close the end of the diverging turn. Thus, these two sequence features may form the structural basis for the function of this peptide as a folding nucleus in this family of proteins. Proteins 2001;45:4–15. © 2001 Wiley‐Liss, Inc. |
Author | Krueger, Brent P. Kollman, Peter A. |
Author_xml | – sequence: 1 givenname: Brent P. surname: Krueger fullname: Krueger, Brent P. organization: Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California – sequence: 2 givenname: Peter A. surname: Kollman fullname: Kollman, Peter A. email: kruegerb@hope.edu organization: Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11536355$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFDEUxYNU7Lb1wS8geRJ8mDaZzJ_ENym2a6m21KrgS8gkd7rRTDJNZtT99mbdVUHQpwuX3zncc88B2vPBA0JPKDmmhJQnYwzTMaWUP0ALSkRbEMqqPbQgnLcFq3m9jw5S-kwIaQRrHqF9SmvWsLpeoK9vggM9OxWxWXs1WJ1wskNeTDb4hEOPFV7Zu5VbY71S8Q4MHmGcrAHcxzBg5fG7JcMmDMr6F_g6pGQ7BzjB_QxeQ9HPXm-8cISd6cqOR-hhr1yCx7t5iN6fvbo9XRaXV-evT19eFprVgheKAhc9K3thuKmqSjQ5Wdcy09FagaId1cBVKTQ3YFrSEcG14g0wI1TDO8MO0bOtb35RvidNcrBJg3PKQ5iTbCmt2pJWGXy6A-duACPHaAcV1_LXpzLwfAvomCNG6P8gRG5akJsW5KaFzJ78xWo7_cw-RWXd_xTfrIP1v63l9c3V7U5RbBU2TfD9t0LFL7JpWVvLj2_Pc7xP5YX4sJQX7Ac_cqrc |
CitedBy_id | crossref_primary_10_1002_prot_10348 crossref_primary_10_1016_S0022_2836_02_00888_4 crossref_primary_10_1016_j_cplett_2009_02_076 crossref_primary_10_1002_jcc_21273 crossref_primary_10_1016_S0006_3495_03_74966_2 crossref_primary_10_1093_protein_15_12_967 crossref_primary_10_1002_prot_10252 crossref_primary_10_2165_00822942_200403020_00004 |
Cites_doi | 10.1016/0092-8674(93)90582-B 10.1007/978-94-017-1120-3_2 10.1063/1.448118 10.1021/j100058a043 10.1021/jp9937757 10.1021/ja991382f 10.1021/bi9627626 10.1038/1412 10.1126/science.7761829 10.1021/bi971786p 10.1038/75932 10.1002/jcc.540161210 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y 10.1006/jmbi.1998.1885 10.1016/0022-2364(84)90257-9 10.1016/0009-2614(93)89366-P 10.1038/36626 10.1021/ja00124a002 10.1016/0022-2836(92)90634-V 10.1021/ja981844 10.1006/jmbi.1998.2072 10.1002/jcc.540161209 10.1002/jcc.540161211 10.1016/0022-2836(88)90540-2 10.1006/jmbi.1999.2949 10.1063/1.468411 10.1021/j100194a059 10.1063/1.464397 10.1023/A:1008763014207 10.1038/385595a0 10.1002/(SICI)1097-0134(1997)1 <167::AID-PROT21>3.0.CO;2-L 10.1063/1.477873 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F 10.1021/jm000241h 10.1016/0021-9991(77)90098-5 10.1016/S0301-4622(99)00007-1 10.1016/0959-440X(95)80012-P 10.1002/(SICI)1097-0134(20000601)39:4<309::AID-PROT40>3.0.CO;2-S 10.1073/pnas.88.4.1237 10.1063/1.1309534 10.1021/cr960149m 10.1021/bi00140a022 10.1006/jmbi.1998.1943 10.1021/jp994157t 10.1021/ja992359x 10.1126/science.2237415 10.1063/1.461272 10.1073/pnas.97.13.7084 10.1021/ja990935j 10.1002/(SICI)1097-0134(20000501)39:2<132::AID-PROT3>3.0.CO;2-2 10.1093/nar/28.1.263 10.1073/pnas.190324897 10.1063/1.465608 |
ContentType | Journal Article |
Copyright | Copyright © 2001 Wiley‐Liss, Inc. Copyright 2001 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2001 Wiley‐Liss, Inc. – notice: Copyright 2001 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/prot.1118 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1097-0134 |
EndPage | 15 |
ExternalDocumentID | 11536355 10_1002_prot_1118 PROT1118 ark_67375_WNG_71Z2J9VH_J |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: GM‐29072 – fundername: NIGMS NIH HHS grantid: GM-29072 |
GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RBB RNS ROL RWI RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ 53G 6TJ AAYXX ABEML ACSCC AEYWJ AGHNM AGQPQ AGYGG CITATION EBD EMOBN FA8 HF~ LH6 NDZJH PALCI RIWAO RJQFR SAMSI SV3 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3598-a1e89f32f9d8d44496013b73db15aea1b1ce8a29c8ded70b098ca86e3d9a68bd3 |
IEDL.DBID | DR2 |
ISSN | 0887-3585 |
IngestDate | Fri Jul 11 01:04:23 EDT 2025 Wed Feb 19 01:26:14 EST 2025 Thu Apr 24 23:05:22 EDT 2025 Tue Jul 01 03:56:41 EDT 2025 Wed Jan 22 17:10:11 EST 2025 Wed Oct 30 09:49:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2001 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3598-a1e89f32f9d8d44496013b73db15aea1b1ce8a29c8ded70b098ca86e3d9a68bd3 |
Notes | ark:/67375/WNG-71Z2J9VH-J ArticleID:PROT1118 istex:292F728F33D2FB7865DC93E989FFE513AC7A345F National Institutes of Health - No. GM-29072 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 11536355 |
PQID | 71147214 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_71147214 pubmed_primary_11536355 crossref_primary_10_1002_prot_1118 crossref_citationtrail_10_1002_prot_1118 wiley_primary_10_1002_prot_1118_PROT1118 istex_primary_ark_67375_WNG_71Z2J9VH_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-10-01 1 October 2001 2001-10-00 2001-Oct-01 20011001 |
PublicationDateYYYYMMDD | 2001-10-01 |
PublicationDate_xml | – month: 10 year: 2001 text: 2001-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Proteins, structure, function, and bioinformatics |
PublicationTitleAlternate | Proteins |
PublicationYear | 2001 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | Grantcharova VP, Baker D. Folding dynamics of the src SH3 domain. Biochemistry 1997; 36: 15685-15692. Hünenberger PH, McCammon JA. Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: a continuum electrostatics study. J Chem Phys 1999; 110: 1856-1872. Zhang O, Forman-Kay JD. NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. Biochemistry 1997; 36: 3959-3970. Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science 1995; 268: 1144-1149. Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Seibel GL, Singh UC, Weiner PK, Kollman PA. AMBER 5. San Francisco: University of California; 1997. Schäfer H, Mark AE, van Gunsteren WF. Absolute entropies from molecular dynamics simulation trajectories. J Chem Phys 2000; 113: 7809-7817. Koyama S, Yu H, Dalgarno DC, Shin TB, Zydowsky LD, Schreiber SL. Structure of the PI3K SH3 domain and analysis of the SH3 family. Cell 1993; 72: 945-952. Keepers JW, James TL. A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J Magn Reson 1984; 57: 404-426. Wang H, Sung S-S. Molecular dynamics simulations of three-strand β-sheet folding. J Am Chem Soc 2000; 122: 1999-2009. Bader JS, Chandler D. Computer simulation study of the mean forces between ferrous and ferric ions in water. J Phys Chem 1992; 96: 6423-6427. Saito M. Molecular dynamics simulations of proteins in solution-artifacts caused by the cutoff approximation. J Chem Phys 1994; 101: 4055-4061. Smith PE, Pettitt BM. Peptides in ionic solutions-a comparison of the Ewald and switching function techniques. J Chem Phys 1991; 95: 8430-8441. Thomas PD, Basus VJ, James TL. Protein solution structure determination using distances from two-dimensional nuclear Overhauser effect experiments-effect of approximations on the accuracy of derived structures. Proc Natl Acad Sci USA 1991; 88: 1237-1241. Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999; 121: 8133-8143. Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 2000; 21: 1049-1074. Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol 1998; 280: 925-932. Tsai J, Levitt M, Baker D. Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. J Mol Biol 1999; 291: 215-225. Roseman MA. Hydrophilicity of polar amino-acid side-chains is markedly reduced by flanking peptide-bonds. J Mol Biol 1988; 200: 513-522. Weber W, Hünenberger PH, McCammon JA. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. J Phys Chem B 2000; 104: 3668-3675. Sanner MF, Olson AJ, Spehner J-C. Reduced surface-an efficient way to compute molecular surfaces. Biopolymers 1996; 38: 305-320. Yi Q, Bystroff C, Rajagopal P, Klevit RE, Baker D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J Mol Biol 1998; 283: 293-300. Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Design 2000; 18: 113-135. Grantcharova VP, Riddle DS, Santiago JV, Baker D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nature Struct Biol 1998; 5: 714-720. Ferrara P, Caflisch A. Folding mechanism of a three-stranded antiparallel β-sheet protein. Proc Natl Acad Sci USA 2000; 97: 10780-10785. Janežič D, Venable RM, Brooks BR. Harmonic analysis of large systems. 3. Comparison with molecular dynamics. J Comput Chem 1995; 16: 1554-1566. Bystroff C, Baker D. Blind predictions of local protein structure in CASP2 targets using the I-sites library. Proteins 1997; 29: 167-171. Hünenberger PH, McCammon JA. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem 1999; 78: 69-88. O'Neil KT, DeGrado WF. A Thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 1990; 250: 646-651. Ferrara P, Apostolakis J, Caflisch A. Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J Phys Chem B 2000; 104: 5000-5010. Dyson HJ, Sayre JR, Merutka G, Shin HC, Lerner RA, Wright PE. Folding of peptide fragments comprising the complete sequence of proteins-models for initiation of protein folding. 2. Plastocyanin. J Mol Biol 1992; 226: 819-835. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179-5197. Lednev IK, Karnoup AS, Sparrow MC, Asher SA. α-Helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study. J Am Chem Soc 1999; 121: 8074-8086. Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 2000; 43: 3786-3791. Akiyama S, Takahashi S, Ishimori K, Marishima I. Stepwise formation of α-helices during cytochrome c folding. Nature Struct Biol 2000; 7: 514-520. Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA. Continuum Solvent studies of the stability of the DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 1998; 120: 9401-9409. Schlitter J. Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 1993; 215: 617-621. Janežič D, Brooks BR. Harmonic analysis of large systems. 2. Comparison of different protein models. J Comput Chem 1995; 16: 1543-1553. Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 1994; 98: 1978-1988. Brooks BR, Janežič D, Karplus M. Harmonic analysis of large systems. 1. Methodology. J Comput Chem 1995; 16: 1522-1542. SYBYL; 6.5 . St. Louis, MO: Tripos. Schreiber H, Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry 1992; 31: 5856-5860. Muñoz V, Thompson PA, Hofrichter J, Eaton WA. Folding dynamics and mechanism of β-hairpin formation. Nature 1997; 390: 196-199. Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997; 385: 595-602. York DM, Darden TA, Pedersen LG. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J Chem Phys 1993; 99: 8345-8348. Lee MR, Duan Y, Kollman PA. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins 2000; 39: 309-316. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684-3690. Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of cartesian equations of motion of a system with constraints-molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341. Bystroff C, Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 1998; 281: 565-577. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res 2000; 28: 263-266. Grantcharova VP, Riddle DS, Baker D. Long-range order in the src SH3 folding transition state. Proc Natl Acad Sci USA 2000; 97: 7084-7089. Fersht AR. Characterizing transition states in protein folding-an essential step in the puzzle. Curr Opin Struct Biol 1995; 5: 79-84. Cramer CJ, Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 1999; 99: 2161-2200. Darden T, York D, Pedersen L. Particle mesh Ewald: an N × log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089-10092. Krittanai C, Johnson WCJ. The relative order of helical propensity of amino acids changes with solvent environment. Proteins 2000; 39: 132-141. Leach AR. Molecular modeling principles and applications. London: Addison-Wesley/Longman; 1998. 595 p. 1998; 281 1998; 280 1984; 81 2000; 28 2000; 113 1995; 16 2000; 43 2000; 21 2000; 7 1991; 95 1999; 291 1992; 226 1998 1995; 117 1999; 121 1997; 29 1997 1988; 200 1977; 23 1992; 31 1997; 3 1996; 38 1995; 5 1992; 96 1994; 101 2000; 18 2000; 39 1993; 72 2000; 104 1991; 88 1993; 99 1997; 36 1997; 385 1993; 98 2000; 97 1984; 57 1999; 110 1999; 78 1999; 99 1995; 268 2000; 122 1997; 390 1998; 5 1993; 215 1998; 283 1998; 120 1994; 98 1990; 250 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 Leach AR (e_1_2_6_34_2) 1998 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 Case DA (e_1_2_6_26_2) 1997 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Koyama S, Yu H, Dalgarno DC, Shin TB, Zydowsky LD, Schreiber SL. Structure of the PI3K SH3 domain and analysis of the SH3 family. Cell 1993; 72: 945-952. – reference: Roseman MA. Hydrophilicity of polar amino-acid side-chains is markedly reduced by flanking peptide-bonds. J Mol Biol 1988; 200: 513-522. – reference: Leach AR. Molecular modeling principles and applications. London: Addison-Wesley/Longman; 1998. 595 p. – reference: Zhang O, Forman-Kay JD. NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. Biochemistry 1997; 36: 3959-3970. – reference: Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179-5197. – reference: Bader JS, Chandler D. Computer simulation study of the mean forces between ferrous and ferric ions in water. J Phys Chem 1992; 96: 6423-6427. – reference: Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA. Continuum Solvent studies of the stability of the DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 1998; 120: 9401-9409. – reference: Lednev IK, Karnoup AS, Sparrow MC, Asher SA. α-Helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study. J Am Chem Soc 1999; 121: 8074-8086. – reference: Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of cartesian equations of motion of a system with constraints-molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341. – reference: Wang H, Sung S-S. Molecular dynamics simulations of three-strand β-sheet folding. J Am Chem Soc 2000; 122: 1999-2009. – reference: SYBYL; 6.5 . St. Louis, MO: Tripos. – reference: Grantcharova VP, Baker D. Folding dynamics of the src SH3 domain. Biochemistry 1997; 36: 15685-15692. – reference: Smith PE, Pettitt BM. Peptides in ionic solutions-a comparison of the Ewald and switching function techniques. J Chem Phys 1991; 95: 8430-8441. – reference: Ferrara P, Caflisch A. Folding mechanism of a three-stranded antiparallel β-sheet protein. Proc Natl Acad Sci USA 2000; 97: 10780-10785. – reference: Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684-3690. – reference: Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Seibel GL, Singh UC, Weiner PK, Kollman PA. AMBER 5. San Francisco: University of California; 1997. – reference: Krittanai C, Johnson WCJ. The relative order of helical propensity of amino acids changes with solvent environment. Proteins 2000; 39: 132-141. – reference: Schäfer H, Mark AE, van Gunsteren WF. Absolute entropies from molecular dynamics simulation trajectories. J Chem Phys 2000; 113: 7809-7817. – reference: Keepers JW, James TL. A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J Magn Reson 1984; 57: 404-426. – reference: Tsai J, Levitt M, Baker D. Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. J Mol Biol 1999; 291: 215-225. – reference: Brooks BR, Janežič D, Karplus M. Harmonic analysis of large systems. 1. Methodology. J Comput Chem 1995; 16: 1522-1542. – reference: Thomas PD, Basus VJ, James TL. Protein solution structure determination using distances from two-dimensional nuclear Overhauser effect experiments-effect of approximations on the accuracy of derived structures. Proc Natl Acad Sci USA 1991; 88: 1237-1241. – reference: Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 2000; 21: 1049-1074. – reference: Weber W, Hünenberger PH, McCammon JA. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. J Phys Chem B 2000; 104: 3668-3675. – reference: Schlitter J. Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 1993; 215: 617-621. – reference: Yi Q, Bystroff C, Rajagopal P, Klevit RE, Baker D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J Mol Biol 1998; 283: 293-300. – reference: Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997; 385: 595-602. – reference: Fersht AR. Characterizing transition states in protein folding-an essential step in the puzzle. Curr Opin Struct Biol 1995; 5: 79-84. – reference: Akiyama S, Takahashi S, Ishimori K, Marishima I. Stepwise formation of α-helices during cytochrome c folding. Nature Struct Biol 2000; 7: 514-520. – reference: Ferrara P, Apostolakis J, Caflisch A. Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J Phys Chem B 2000; 104: 5000-5010. – reference: Hünenberger PH, McCammon JA. Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: a continuum electrostatics study. J Chem Phys 1999; 110: 1856-1872. – reference: Bystroff C, Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 1998; 281: 565-577. – reference: O'Neil KT, DeGrado WF. A Thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 1990; 250: 646-651. – reference: Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Design 2000; 18: 113-135. – reference: Janežič D, Brooks BR. Harmonic analysis of large systems. 2. Comparison of different protein models. J Comput Chem 1995; 16: 1543-1553. – reference: Dyson HJ, Sayre JR, Merutka G, Shin HC, Lerner RA, Wright PE. Folding of peptide fragments comprising the complete sequence of proteins-models for initiation of protein folding. 2. Plastocyanin. J Mol Biol 1992; 226: 819-835. – reference: Cramer CJ, Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 1999; 99: 2161-2200. – reference: Sanner MF, Olson AJ, Spehner J-C. Reduced surface-an efficient way to compute molecular surfaces. Biopolymers 1996; 38: 305-320. – reference: Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science 1995; 268: 1144-1149. – reference: Muñoz V, Thompson PA, Hofrichter J, Eaton WA. Folding dynamics and mechanism of β-hairpin formation. Nature 1997; 390: 196-199. – reference: Grantcharova VP, Riddle DS, Baker D. Long-range order in the src SH3 folding transition state. Proc Natl Acad Sci USA 2000; 97: 7084-7089. – reference: Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999; 121: 8133-8143. – reference: Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res 2000; 28: 263-266. – reference: Schreiber H, Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry 1992; 31: 5856-5860. – reference: Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol 1998; 280: 925-932. – reference: Darden T, York D, Pedersen L. Particle mesh Ewald: an N × log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089-10092. – reference: Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 1994; 98: 1978-1988. – reference: Hünenberger PH, McCammon JA. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem 1999; 78: 69-88. – reference: York DM, Darden TA, Pedersen LG. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J Chem Phys 1993; 99: 8345-8348. – reference: Bystroff C, Baker D. Blind predictions of local protein structure in CASP2 targets using the I-sites library. Proteins 1997; 29: 167-171. – reference: Lee MR, Duan Y, Kollman PA. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins 2000; 39: 309-316. – reference: Grantcharova VP, Riddle DS, Santiago JV, Baker D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nature Struct Biol 1998; 5: 714-720. – reference: Saito M. Molecular dynamics simulations of proteins in solution-artifacts caused by the cutoff approximation. J Chem Phys 1994; 101: 4055-4061. – reference: Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 2000; 43: 3786-3791. – reference: Janežič D, Venable RM, Brooks BR. Harmonic analysis of large systems. 3. Comparison with molecular dynamics. J Comput Chem 1995; 16: 1554-1566. – volume: 283 start-page: 293 year: 1998 end-page: 300 article-title: Prediction and structural characterization of an independently folding substructure in the src SH3 domain publication-title: J Mol Biol – volume: 281 start-page: 565 year: 1998 end-page: 577 article-title: Prediction of local structure in proteins using a library of sequence–structure motifs publication-title: J Mol Biol – volume: 81 start-page: 3684 year: 1984 end-page: 3690 article-title: Molecular dynamics with coupling to an external bath publication-title: J Chem Phys – volume: 36 start-page: 3959 year: 1997 end-page: 3970 article-title: NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions publication-title: Biochemistry – volume: 21 start-page: 1049 year: 2000 end-page: 1074 article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? publication-title: J Comput Chem – volume: 98 start-page: 10089 year: 1993 end-page: 10092 article-title: Particle mesh Ewald: an × log( ) method for Ewald sums in large systems publication-title: J Chem Phys – volume: 121 start-page: 8074 year: 1999 end-page: 8086 article-title: α‐Helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study publication-title: J Am Chem Soc – volume: 122 start-page: 1999 year: 2000 end-page: 2009 article-title: Molecular dynamics simulations of three‐strand β‐sheet folding publication-title: J Am Chem Soc – volume: 215 start-page: 617 year: 1993 end-page: 621 article-title: Estimation of absolute and relative entropies of macromolecules using the covariance matrix publication-title: Chem Phys Lett – volume: 101 start-page: 4055 year: 1994 end-page: 4061 article-title: Molecular dynamics simulations of proteins in solution—artifacts caused by the cutoff approximation publication-title: J Chem Phys – volume: 110 start-page: 1856 year: 1999 end-page: 1872 article-title: Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction: a continuum electrostatics study publication-title: J Chem Phys – volume: 16 start-page: 1543 year: 1995 end-page: 1553 article-title: Harmonic analysis of large systems. 2. Comparison of different protein models publication-title: J Comput Chem – volume: 5 start-page: 79 year: 1995 end-page: 84 article-title: Characterizing transition states in protein folding—an essential step in the puzzle publication-title: Curr Opin Struct Biol – volume: 99 start-page: 2161 year: 1999 end-page: 2200 article-title: Implicit solvation models: equilibria, structure, spectra, and dynamics publication-title: Chem Rev – volume: 291 start-page: 215 year: 1999 end-page: 225 article-title: Hierarchy of structure loss in MD simulations of src SH3 domain unfolding publication-title: J Mol Biol – volume: 29 start-page: 167 year: 1997 end-page: 171 article-title: Blind predictions of local protein structure in CASP2 targets using the I‐sites library publication-title: Proteins – volume: 121 start-page: 8133 year: 1999 end-page: 8143 article-title: Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies publication-title: J Am Chem Soc – volume: 16 start-page: 1554 year: 1995 end-page: 1566 article-title: Harmonic analysis of large systems. 3. Comparison with molecular dynamics publication-title: J Comput Chem – volume: 38 start-page: 305 year: 1996 end-page: 320 article-title: Reduced surface—an efficient way to compute molecular surfaces publication-title: Biopolymers – volume: 99 start-page: 8345 year: 1993 end-page: 8348 article-title: The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods publication-title: J Chem Phys – volume: 385 start-page: 595 year: 1997 end-page: 602 article-title: Three‐dimensional structure of the tyrosine kinase c‐Src publication-title: Nature – volume: 78 start-page: 69 year: 1999 end-page: 88 article-title: Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study publication-title: Biophys Chem – year: 1997 – volume: 250 start-page: 646 year: 1990 end-page: 651 article-title: A Thermodynamic scale for the helix‐forming tendencies of the commonly occurring amino acids publication-title: Science – volume: 43 start-page: 3786 year: 2000 end-page: 3791 article-title: Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models publication-title: J Med Chem – volume: 390 start-page: 196 year: 1997 end-page: 199 article-title: Folding dynamics and mechanism of β‐hairpin formation publication-title: Nature – volume: 18 start-page: 113 year: 2000 end-page: 135 article-title: Combined molecular mechanical and continuum solvent approach (MM‐PBSA/GBSA) to predict ligand binding publication-title: Perspect Drug Discov Design – volume: 113 start-page: 7809 year: 2000 end-page: 7817 article-title: Absolute entropies from molecular dynamics simulation trajectories publication-title: J Chem Phys – volume: 95 start-page: 8430 year: 1991 end-page: 8441 article-title: Peptides in ionic solutions—a comparison of the Ewald and switching function techniques publication-title: J Chem Phys – volume: 97 start-page: 7084 year: 2000 end-page: 7089 article-title: Long‐range order in the src SH3 folding transition state publication-title: Proc Natl Acad Sci USA – volume: 98 start-page: 1978 year: 1994 end-page: 1988 article-title: Accurate calculation of hydration free energies using macroscopic solvent models publication-title: J Phys Chem – volume: 31 start-page: 5856 year: 1992 end-page: 5860 article-title: Cutoff size does strongly influence molecular dynamics results on solvated polypeptides publication-title: Biochemistry – volume: 117 start-page: 5179 year: 1995 end-page: 5197 article-title: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules publication-title: J Am Chem Soc – volume: 5 start-page: 714 year: 1998 end-page: 720 article-title: Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain publication-title: Nature Struct Biol – volume: 96 start-page: 6423 year: 1992 end-page: 6427 article-title: Computer simulation study of the mean forces between ferrous and ferric ions in water publication-title: J Phys Chem – volume: 88 start-page: 1237 year: 1991 end-page: 1241 article-title: Protein solution structure determination using distances from two‐dimensional nuclear Overhauser effect experiments—effect of approximations on the accuracy of derived structures publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 514 year: 2000 end-page: 520 article-title: Stepwise formation of α‐helices during cytochrome folding publication-title: Nature Struct Biol – volume: 120 start-page: 9401 year: 1998 end-page: 9409 article-title: Continuum Solvent studies of the stability of the DNA, RNA, and phosphoramidate–DNA helices publication-title: J Am Chem Soc – volume: 104 start-page: 3668 year: 2000 end-page: 3675 article-title: Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation publication-title: J Phys Chem B – volume: 36 start-page: 15685 year: 1997 end-page: 15692 article-title: Folding dynamics of the src SH3 domain publication-title: Biochemistry – volume: 57 start-page: 404 year: 1984 end-page: 426 article-title: A theoretical study of distance determinations from NMR. Two‐dimensional nuclear Overhauser effect spectra publication-title: J Magn Reson – start-page: 595 year: 1998 – volume: 226 start-page: 819 year: 1992 end-page: 835 article-title: Folding of peptide fragments comprising the complete sequence of proteins—models for initiation of protein folding. 2. Plastocyanin publication-title: J Mol Biol – volume: 16 start-page: 1522 year: 1995 end-page: 1542 article-title: Harmonic analysis of large systems. 1. Methodology publication-title: J Comput Chem – volume: 39 start-page: 309 year: 2000 end-page: 316 article-title: Use of MM‐PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece publication-title: Proteins – volume: 268 start-page: 1144 year: 1995 end-page: 1149 article-title: Classical electrostatics in biology and chemistry publication-title: Science – volume: 72 start-page: 945 year: 1993 end-page: 952 article-title: Structure of the PI3K SH3 domain and analysis of the SH3 family publication-title: Cell – volume: 280 start-page: 925 year: 1998 end-page: 932 article-title: Reversible peptide folding in solution by molecular dynamics simulation publication-title: J Mol Biol – volume: 3 start-page: 83 year: 1997 end-page: 96 – volume: 28 start-page: 263 year: 2000 end-page: 266 article-title: The Pfam protein families database publication-title: Nucleic Acids Res – volume: 23 start-page: 327 year: 1977 end-page: 341 article-title: Numerical integration of cartesian equations of motion of a system with constraints—molecular dynamics of ‐alkanes publication-title: J Comput Phys – volume: 104 start-page: 5000 year: 2000 end-page: 5010 article-title: Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations publication-title: J Phys Chem B – volume: 200 start-page: 513 year: 1988 end-page: 522 article-title: Hydrophilicity of polar amino‐acid side‐chains is markedly reduced by flanking peptide‐bonds publication-title: J Mol Biol – volume: 97 start-page: 10780 year: 2000 end-page: 10785 article-title: Folding mechanism of a three‐stranded antiparallel β‐sheet protein publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 132 year: 2000 end-page: 141 article-title: The relative order of helical propensity of amino acids changes with solvent environment publication-title: Proteins – ident: e_1_2_6_18_2 doi: 10.1016/0092-8674(93)90582-B – ident: e_1_2_6_42_2 doi: 10.1007/978-94-017-1120-3_2 – ident: e_1_2_6_49_2 doi: 10.1063/1.448118 – ident: e_1_2_6_32_2 doi: 10.1021/j100058a043 – ident: e_1_2_6_45_2 doi: 10.1021/jp9937757 – ident: e_1_2_6_3_2 doi: 10.1021/ja991382f – ident: e_1_2_6_19_2 doi: 10.1021/bi9627626 – ident: e_1_2_6_23_2 doi: 10.1038/1412 – ident: e_1_2_6_33_2 doi: 10.1126/science.7761829 – ident: e_1_2_6_21_2 doi: 10.1021/bi971786p – ident: e_1_2_6_4_2 doi: 10.1038/75932 – ident: e_1_2_6_38_2 doi: 10.1002/jcc.540161210 – ident: e_1_2_6_50_2 doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y – ident: e_1_2_6_8_2 doi: 10.1006/jmbi.1998.1885 – ident: e_1_2_6_53_2 doi: 10.1016/0022-2364(84)90257-9 – ident: e_1_2_6_37_2 doi: 10.1016/0009-2614(93)89366-P – ident: e_1_2_6_2_2 doi: 10.1038/36626 – ident: e_1_2_6_41_2 doi: 10.1021/ja00124a002 – ident: e_1_2_6_20_2 doi: 10.1016/0022-2836(92)90634-V – ident: e_1_2_6_28_2 doi: 10.1021/ja981844 – ident: e_1_2_6_15_2 doi: 10.1006/jmbi.1998.2072 – ident: e_1_2_6_35_2 doi: 10.1002/jcc.540161209 – ident: e_1_2_6_39_2 doi: 10.1002/jcc.540161211 – ident: e_1_2_6_57_2 doi: 10.1016/0022-2836(88)90540-2 – ident: e_1_2_6_22_2 doi: 10.1006/jmbi.1999.2949 – ident: e_1_2_6_14_2 doi: 10.1063/1.468411 – ident: e_1_2_6_12_2 doi: 10.1021/j100194a059 – ident: e_1_2_6_27_2 doi: 10.1063/1.464397 – ident: e_1_2_6_30_2 doi: 10.1023/A:1008763014207 – ident: e_1_2_6_25_2 doi: 10.1038/385595a0 – ident: e_1_2_6_16_2 doi: 10.1002/(SICI)1097-0134(1997)1 <167::AID-PROT21>3.0.CO;2-L – start-page: 595 volume-title: Molecular modeling principles and applications year: 1998 ident: e_1_2_6_34_2 – ident: e_1_2_6_46_2 doi: 10.1063/1.477873 – ident: e_1_2_6_43_2 doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F – ident: e_1_2_6_36_2 doi: 10.1021/jm000241h – ident: e_1_2_6_48_2 doi: 10.1016/0021-9991(77)90098-5 – ident: e_1_2_6_47_2 doi: 10.1016/S0301-4622(99)00007-1 – ident: e_1_2_6_55_2 doi: 10.1016/0959-440X(95)80012-P – volume-title: AMBER 5 year: 1997 ident: e_1_2_6_26_2 – ident: e_1_2_6_31_2 doi: 10.1002/(SICI)1097-0134(20000601)39:4<309::AID-PROT40>3.0.CO;2-S – ident: e_1_2_6_54_2 doi: 10.1073/pnas.88.4.1237 – ident: e_1_2_6_40_2 doi: 10.1063/1.1309534 – ident: e_1_2_6_9_2 doi: 10.1021/cr960149m – ident: e_1_2_6_13_2 doi: 10.1021/bi00140a022 – ident: e_1_2_6_17_2 doi: 10.1006/jmbi.1998.1943 – ident: e_1_2_6_6_2 doi: 10.1021/jp994157t – ident: e_1_2_6_7_2 doi: 10.1021/ja992359x – ident: e_1_2_6_51_2 doi: 10.1126/science.2237415 – ident: e_1_2_6_10_2 doi: 10.1063/1.461272 – ident: e_1_2_6_24_2 doi: 10.1073/pnas.97.13.7084 – ident: e_1_2_6_29_2 doi: 10.1021/ja990935j – volume-title: SYBYL ident: e_1_2_6_44_2 – ident: e_1_2_6_52_2 doi: 10.1002/(SICI)1097-0134(20000501)39:2<132::AID-PROT3>3.0.CO;2-2 – ident: e_1_2_6_56_2 doi: 10.1093/nar/28.1.263 – ident: e_1_2_6_5_2 doi: 10.1073/pnas.190324897 – ident: e_1_2_6_11_2 doi: 10.1063/1.465608 |
SSID | ssj0006936 |
Score | 1.6905305 |
Snippet | A seven‐residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This... A seven-residue peptide that is highly conserved in SH3 domains despite being far from the active site has been shown by NMR to be stable in solution. This... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4 |
SubjectTerms | Computer Simulation CORMA helical propensity MM-PBSA Models, Molecular Nuclear Magnetic Resonance, Biomolecular particle mesh Ewald Peptides - chemistry Pfam Protein Folding src Homology Domains Structure-Activity Relationship Thermodynamics |
Title | Molecular dynamics simulations of a highly charged peptide from an SH3 domain: Possible sequence-function relationship |
URI | https://api.istex.fr/ark:/67375/WNG-71Z2J9VH-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.1118 https://www.ncbi.nlm.nih.gov/pubmed/11536355 https://www.proquest.com/docview/71147214 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIQQvDDYuHTcLoYmXbHViJzE8jYlRVdqYxgYTQoqOLxHV2qRqWmnjif_AP-SX4OPUrYaGhHjzw0ni2OfEn53vfIeQlwIdp2QukJTlEZepjlQpWMTAGg3cciswwfngMO2d8v6ZOFshb0IuTKsPsThww8jw32sMcFDNzlI0FHUMMOAx0Re5WgiIjpfSUan05QHbIHKYOKgKdeOdxZVX1qIbOKwX1wHNq7jVLzz7a-Rr6HLLNznfnk3Vtv7-h5rjf77TXXJnDkjpbutB98iKrdbJxm7lNuOjS7pFPUXUn72vk5tvQ-vWXigUt0EuDkKJXWra-vYNbQajeV2whtYlBYqyyMNL6oWZrKFjJNMYSzG7hUJFP_YSauoRDKrX9KjGOB1aGmjev378xOUX70Yngbz3bTC-T073353s9aJ5QYdIo1BgBMzmskziUprccO48wwFQlSVGMQEWmGLa5hBLnRtrsq7qylxDntrESEhzZZIHZLWqK_uIUBGXJmccGEDGhWIy0w4aalFqAMWU7JBXYWoLPVc7x6Ibw6LVaY4LHGvc_-Qd8mJhOm4lPq4z2vL-sbCAyTly4jJRfD58X2TsS9yXn3pFv0OeBwcq3Dzg7xeobD1rnA3jbr_NO-Rh61fLp7llB4Gf67T3jr93ozg6_nCCjc1_N31MbnvinGcgPiGr08nMPnVIaqqe-ZD5DdIIHmQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am9B44bJxKbdZCE28ZKsTJ7ERL2NilLKWaXQwIaHIt4hqbVL1Im088R_4h_wSfJym1dCQEG9-OEkc-5ycz87n7wA8j9FxcuoCSVkWMJHoQOUxDai0RktmmY3xgHOnm7ROWPs0Pl2BV_VZmEofYrHhhpHhv9cY4LghvbtUDUUhA4x4fg3WsKK3X1AdL8WjEuELBFZh5FBxrSvUDHcXl17KRms4sOdXQc3LyNWnnoNb8LXudMU4OduZTdWO_v6HnuP_vtVtuDnHpGSvcqI7sGKLDdjcK9x6fHhBtolnifrt9w24_rpure_XteI24bxTV9klpipxPyGT_nBeGmxCypxIgsrIgwvitZmsISPk0xhL8IALkQX52IqIKYeyX7wkRyWG6sCSmun968dPzMB4NzKu-Xvf-qO7cHLwprffCuY1HQKNWoGBpJaLPApzYbhhzDmHw6AqjYyisbSSKqotl6HQ3FiTNlVTcC15YiMjZMKVie7BalEW9gGQOMwNp0xSKVMWKypS7dChjnMtpaJKNOBFPbeZngueY92NQVZJNYcZjjUugXgDni1MR5XKx1VG295BFhZyfIa0uDTOPnffZin9ErbFp1bWbsBW7UGZmwf8AyMLW84mzoYyt-RmDbhfOdbyaS7zIPZznfbu8fduZEfHH3rYePjvpluw3up1DrPDd933j-CG59F5QuJjWJ2OZ_aJA1ZT9dTHz2-PfyJ_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7i8cNkYlNsshCZestWJkzjwNDZKKaxUu8CEJkW-RVRr06oXaeOJ_8A_5Jfg49SthoaEePPDSeLY5-R8dj5_B-BFjI5TUBtI0rCAZYkKZBHTgAqjlWCGmRgPOO-3k-Yxa53EJ0vw2p-FqfQh5htuGBnue40BPtTF9kI0FHUMMOD5NVhhSZ2jS-8dLLSjkszVB6yiyIJiLytUD7fnl15KRis4rudXIc3LwNVlnsYdOPV9rggnZ1vTidxS3_-Qc_zPl7oLt2eIlOxULnQPlky5Cms7pV2N9y_IJnEcUbf5vgrX3_jWzV1fKW4Nzvd9jV2iqwL3YzLu9meFwcZkUBBBUBe5d0GcMpPRZIhsGm0IHm8hoiSHzYjoQV90y1ekM8BA7Rnied6_fvzE_It3IyPP3vvWHd6H48bbo91mMKvoEChUCgwENTwrorDINNeMWdewCFSmkZY0FkZQSZXhIswU10andVnPuBI8MZHORMKljtZhuRyU5iGQOCw0p0xQIVIWS5qlymJDFRdKCEllVoOXfmpzNZM7x6obvbwSag5zHGtcAPEaPJ-bDiuNj6uMNp1_zC3E6AxJcWmcf2m_y1P6NWxln5t5qwYb3oFyOw_4_0WUZjAdWxvK7IKb1eBB5VeLp9m8g8jPdtp5x9-7kXcOPh1h49G_m27Ajc5eI__4vv3hMdxyJDrHRnwCy5PR1Dy1qGoin7no-Q07WSE3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+of+a+highly+charged+peptide+from+an+SH3+domain%3A+possible+sequence-function+relationship&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Krueger%2C+B+P&rft.au=Kollman%2C+P+A&rft.date=2001-10-01&rft.issn=0887-3585&rft.volume=45&rft.issue=1&rft.spage=4&rft_id=info:doi/10.1002%2Fprot.1118&rft_id=info%3Apmid%2F11536355&rft.externalDocID=11536355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |