Stress‐based multi‐material topology optimization of compliant mechanisms

In this paper, a level‐set‐based method is presented to deal with the multi‐material topology optimization of compliant mechanisms with stress constraints. A novel stress‐based multi‐material topology optimization model of compliant mechanisms is proposed. In this model, the multi‐material level set...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 113; no. 7; pp. 1021 - 1044
Main Authors Chu, Sheng, Gao, Liang, Xiao, Mi, Luo, Zhen, Li, Hao
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 17.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a level‐set‐based method is presented to deal with the multi‐material topology optimization of compliant mechanisms with stress constraints. A novel stress‐based multi‐material topology optimization model of compliant mechanisms is proposed. In this model, the multi‐material level set topology description model and the separable stress interpolation scheme are adopted. The weighted sum method is used to deal with the multi‐objective optimization of the output displacement and compliance of compliant mechanisms. The penalty of stresses is also considered in the objective function to control the local stress level in different materials. To solve the optimization problem, the parametric level set method is employed, and the sensitivity analysis is conducted. Application of the method is demonstrated by 2 numerical examples. Results show that the multi‐material structures without undesirable de facto hinges can be obtained. The output displacement and compliance of the compliant mechanisms are optimized, and stress constraints in different materials are simultaneously satisfied.
AbstractList In this paper, a level‐set‐based method is presented to deal with the multi‐material topology optimization of compliant mechanisms with stress constraints. A novel stress‐based multi‐material topology optimization model of compliant mechanisms is proposed. In this model, the multi‐material level set topology description model and the separable stress interpolation scheme are adopted. The weighted sum method is used to deal with the multi‐objective optimization of the output displacement and compliance of compliant mechanisms. The penalty of stresses is also considered in the objective function to control the local stress level in different materials. To solve the optimization problem, the parametric level set method is employed, and the sensitivity analysis is conducted. Application of the method is demonstrated by 2 numerical examples. Results show that the multi‐material structures without undesirable de facto hinges can be obtained. The output displacement and compliance of the compliant mechanisms are optimized, and stress constraints in different materials are simultaneously satisfied.
Abstract In this paper, a level‐set‐based method is presented to deal with the multi‐material topology optimization of compliant mechanisms with stress constraints. A novel stress‐based multi‐material topology optimization model of compliant mechanisms is proposed. In this model, the multi‐material level set topology description model and the separable stress interpolation scheme are adopted. The weighted sum method is used to deal with the multi‐objective optimization of the output displacement and compliance of compliant mechanisms. The penalty of stresses is also considered in the objective function to control the local stress level in different materials. To solve the optimization problem, the parametric level set method is employed, and the sensitivity analysis is conducted. Application of the method is demonstrated by 2 numerical examples. Results show that the multi‐material structures without undesirable de facto hinges can be obtained. The output displacement and compliance of the compliant mechanisms are optimized, and stress constraints in different materials are simultaneously satisfied.
Author Gao, Liang
Luo, Zhen
Xiao, Mi
Chu, Sheng
Li, Hao
Author_xml – sequence: 1
  givenname: Sheng
  surname: Chu
  fullname: Chu, Sheng
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Mi
  orcidid: 0000-0002-5544-9935
  surname: Xiao
  fullname: Xiao, Mi
  email: xiaomi@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Zhen
  surname: Luo
  fullname: Luo, Zhen
  organization: The University of Technology, Sydney
– sequence: 5
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: The University of Technology, Sydney
BookMark eNp10MFOwzAMBuAIDYltIPEIlbhw6XDaZWmOaBoDaYMDcI7SxoVMTVOSTGiceASekSehY1w5WZY_2dY_IoPWtUjIOYUJBciuWosTNhP8iAwpCJ5CBnxAhv1IpEwU9ISMQtgAUMogH5L1Y_QYwvfnV6kC6sRum2j6zqqI3qgmia5zjXvZJa6LxpoPFY1rE1cnlbNdY1QbE4vVq2pNsOGUHNeqCXj2V8fk-WbxNL9NVw_Lu_n1Kq1y1v_EGOiMVTpHNcWCU42AHAsssykDpLxGVRQ6rzXTXEwZasXZTJVYZVWpKRf5mFwc9nbevW0xRLlxW9_2JyUVBRdczAB6dXlQlXcheKxl541VficpyH1Ysg9L7sPqaXqg76bB3b9O3q8Xv_4HCXlwqw
CitedBy_id crossref_primary_10_1007_s00158_023_03697_4
crossref_primary_10_1002_nme_5979
crossref_primary_10_1016_j_commatsci_2024_113201
crossref_primary_10_32604_cmes_2023_025585
crossref_primary_10_1002_nme_6548
crossref_primary_10_1002_nme_6987
crossref_primary_10_1080_0305215X_2023_2301552
crossref_primary_10_1016_j_compstruc_2023_107041
crossref_primary_10_1016_j_cma_2022_115161
crossref_primary_10_1016_j_matdes_2021_109973
crossref_primary_10_1155_2018_9804123
crossref_primary_10_1177_1045389X211011670
crossref_primary_10_1016_j_mechmachtheory_2022_105133
crossref_primary_10_3390_ma15207321
crossref_primary_10_1016_j_cma_2020_113215
crossref_primary_10_1093_jcde_qwab028
crossref_primary_10_1016_j_euromechsol_2023_104957
crossref_primary_10_1016_j_cma_2020_113453
crossref_primary_10_1007_s00158_019_02278_8
crossref_primary_10_1016_j_compstruct_2018_12_010
crossref_primary_10_1177_09544062221075277
crossref_primary_10_1002_nme_7561
crossref_primary_10_1016_j_cma_2019_112749
crossref_primary_10_1016_j_cma_2021_113935
crossref_primary_10_1016_j_cma_2021_114484
crossref_primary_10_1002_nme_5964
crossref_primary_10_1007_s00366_023_01939_z
crossref_primary_10_2139_ssrn_4840921
crossref_primary_10_1063_5_0007354
crossref_primary_10_1080_0305215X_2020_1779710
crossref_primary_10_1007_s00158_019_02207_9
crossref_primary_10_1016_j_engstruct_2023_116756
crossref_primary_10_1080_15397734_2021_1992776
crossref_primary_10_1016_j_eml_2022_101716
crossref_primary_10_1080_0305215X_2020_1867119
crossref_primary_10_1016_j_cma_2021_114556
crossref_primary_10_1016_j_compstruct_2023_117041
crossref_primary_10_1080_15376494_2021_2000080
crossref_primary_10_1115_1_4053045
crossref_primary_10_1016_j_swevo_2023_101446
crossref_primary_10_1002_nme_6920
crossref_primary_10_3390_mi13070993
crossref_primary_10_1002_nme_6644
crossref_primary_10_3390_mi12111379
crossref_primary_10_1007_s00158_022_03271_4
crossref_primary_10_1177_0954406220908627
crossref_primary_10_1016_j_ijsolstr_2023_112411
crossref_primary_10_1142_S0219876218501165
crossref_primary_10_1016_j_finel_2022_103867
crossref_primary_10_1007_s00158_019_02428_y
crossref_primary_10_1016_j_cma_2021_113674
crossref_primary_10_3390_sym13020293
crossref_primary_10_1016_j_apm_2019_10_019
crossref_primary_10_1016_j_ijmecsci_2019_105103
crossref_primary_10_1016_j_ijmecsci_2024_109268
crossref_primary_10_1016_j_advengsoft_2017_12_002
crossref_primary_10_1016_j_cma_2019_05_046
crossref_primary_10_1115_1_4047429
crossref_primary_10_1186_s10033_020_00503_w
crossref_primary_10_1016_j_cma_2023_116520
crossref_primary_10_1007_s00366_024_01953_9
crossref_primary_10_1007_s10409_020_00932_9
crossref_primary_10_1016_j_ymssp_2019_106369
crossref_primary_10_1016_j_cma_2020_112972
crossref_primary_10_1016_j_mechmachtheory_2019_103622
crossref_primary_10_1016_j_compstruct_2022_115263
crossref_primary_10_1177_09544062211036157
crossref_primary_10_3390_pr11102914
crossref_primary_10_1002_nme_6081
crossref_primary_10_1016_j_cma_2024_116817
Cites_doi 10.1016/j.cma.2016.04.001
10.1007/s00158-015-1279-z
10.1007/s001580050176
10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
10.1007/s004190050248
10.1016/j.cma.2016.03.017
10.1016/j.enganabound.2007.05.007
10.1115/1.2959094
10.1002/nme.1620240207
10.1063/1.117961
10.1016/j.advengsoft.2015.03.001
10.1115/1.2826242
10.1016/j.jcp.2007.08.011
10.1007/BF02123482
10.1002/nme.4296
10.1115/1.1909206
10.1016/S0045-7949(01)00126-2
10.1016/j.cma.2013.10.003
10.1007/s00158-013-0971-0
10.1007/s10409-009-0240-z
10.1016/S0045-7825(02)00559-5
10.1016/j.cma.2016.05.016
10.1016/j.finel.2013.12.003
10.1007/978-3-319-00717-5_3
10.1080/03052150801985544
10.1007/BF01197454
10.2514/6.1998-4906
10.1016/j.cma.2014.11.002
10.1007/s00158-007-0203-6
10.1002/nme.2092
10.1016/j.cma.2008.08.003
10.1115/DETC98/MECH-5937
10.1016/j.cma.2003.10.008
10.1016/j.finel.2013.11.006
10.1007/s00158-015-1372-3
10.1115/DETC2007-34437
10.1007/s00158-004-0512-y
10.1080/08905459708945415
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.5697
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1044
ExternalDocumentID 10_1002_nme_5697
NME5697
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51675196; 51421062
– fundername: National Basic Scientific Research Program of China
  funderid: JCKY2016110C012
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3597-550d25cd3ea4e871de0e7e8eb2450e17fea88d3fd5d7945eda756abec2cbd1793
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Thu Oct 10 16:57:35 EDT 2024
Fri Aug 23 00:51:20 EDT 2024
Sat Aug 24 00:57:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3597-550d25cd3ea4e871de0e7e8eb2450e17fea88d3fd5d7945eda756abec2cbd1793
ORCID 0000-0002-5544-9935
PQID 1987979600
PQPubID 996376
PageCount 24
ParticipantIDs proquest_journals_1987979600
crossref_primary_10_1002_nme_5697
wiley_primary_10_1002_nme_5697_NME5697
PublicationCentury 2000
PublicationDate 17 February 2018
PublicationDateYYYYMMDD 2018-02-17
PublicationDate_xml – month: 02
  year: 2018
  text: 17 February 2018
  day: 17
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 283
2009; 25
1997; 119
2007; 227
2016; 308
2016; 306
2016; 305
2015; 53
2015; 52
1997; 25
1999; 69
1998
2014; 49
2008; 36
2007
2004; 6
2014; 46
2003; 192
1994
2008; 32
2008; 76
2005
2003
2014; 85
1995; 4
1998; 43
2014; 82
2001; 21
1987; 24
2012; 91
2001
2015; 85
2005; 127
1997; 13
2004; 193
2005; 30
1986
2017
2016
2013
1996; 69
2008; 40
2008; 198
2009; 1
2001; 79
2014; 268
e_1_2_8_28_1
Lopes CG (e_1_2_8_9_1) 2016
e_1_2_8_24_1
e_1_2_8_26_1
Bendsøe MP (e_1_2_8_14_1) 2003
Zuo W (e_1_2_8_25_1) 2016
e_1_2_8_5_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
Haug EJ (e_1_2_8_46_1) 1986
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
Choi KK (e_1_2_8_48_1) 2005
e_1_2_8_27_1
Zhang W (e_1_2_8_49_1) 2015; 53
e_1_2_8_4_1
Zhu B (e_1_2_8_7_1) 2014; 46
e_1_2_8_6_1
e_1_2_8_8_1
Wang NF (e_1_2_8_32_1) 2017
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Li R (e_1_2_8_3_1) 2016
e_1_2_8_40_1
Howell LL (e_1_2_8_2_1) 2001
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Wang MY (e_1_2_8_47_1) 2004; 6
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 193
  start-page: 469
  year: 2004
  end-page: 496
  article-title: ‘Color’ level sets: a multiphase method for structural topology optimization with multiple materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 305
  start-page: 359
  year: 2016
  end-page: 375
  article-title: Topology optimization of compliant mechanism and its support through a level set method
  publication-title: Comput Methods Appl Mech Eng
– volume: 306
  start-page: 299
  year: 2016
  end-page: 318
  article-title: Structural topology optimization with minimum distance control of multiphase embedded components by level set method
  publication-title: Comput Methods Appl Mech Eng
– volume: 127
  start-page: 941
  year: 2005
  end-page: 956
  article-title: Design of multimaterial compliant mechanisms using level‐set methods
  publication-title: J Mech Des
– year: 2005
– volume: 13
  start-page: 258
  year: 1997
  end-page: 266
  article-title: ε‐relaxed approach in structural topology optimization
  publication-title: Struct Optim
– volume: 69
  start-page: 3203
  year: 1996
  end-page: 3205
  article-title: Composites with extremal thermal expansion coefficients
  publication-title: Appl Phys Lett
– year: 2001
– volume: 91
  start-page: 843
  year: 2012
  end-page: 871
  article-title: A new level set method for topology optimization of distributed compliant mechanisms
  publication-title: Int J Numer Methods Eng
– volume: 69
  start-page: 635
  year: 1999
  end-page: 654
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch Appl Mech
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  article-title: The method of moving asymptotes: a new method for structural optimization
  publication-title: Int J Numer Methods Eng
– volume: 308
  start-page: 113
  year: 2016
  end-page: 133
  article-title: Multi‐material topology optimization considering interface behavior via XFEM and level set method
  publication-title: Comput Methods Appl Mech Eng
– volume: 52
  start-page: 929
  year: 2015
  end-page: 943
  article-title: Stress‐constrained topology optimization for compliant mechanism design
  publication-title: Struct Multidiscip Optim
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 198
  start-page: 318
  year: 2008
  end-page: 331
  article-title: A new level set method for systematic design of hinge‐free compliant mechanisms
  publication-title: Comput Methods Appl Mech Eng
– volume: 227
  start-page: 680
  year: 2007
  end-page: 705
  article-title: Shape and topology optimization of compliant mechanisms using a parameterization level set method
  publication-title: J Comput Phys
– year: 1994
– year: 1998
– start-page: 1
  year: 2017
  end-page: 23
  article-title: Hierarchical optimization for topology design of multi‐material compliant mechanisms
  publication-title: Eng Optim
– volume: 43
  start-page: 1453
  year: 1998
  end-page: 1478
  article-title: Topology optimization of continuum structures with local stress constraints
  publication-title: Int J Numer Methods Eng
– volume: 40
  start-page: 529
  year: 2008
  end-page: 558
  article-title: Adaptive moving mesh level set method for structure topology optimization
  publication-title: Eng Optim
– year: 1986
– start-page: 1501
  year: 1998
  end-page: 1509
– start-page: 35
  year: 2013
  end-page: 48
– start-page: 1
  year: 2016
  end-page: 15
  article-title: Multi‐material topology optimization using ordered SIMP interpolation
  publication-title: Struct Multidiscip Optim
– volume: 25
  start-page: 493
  year: 1997
  end-page: 524
  article-title: On the design of compliant mechanisms using topology optimization
  publication-title: Mech Based Des Struc
– volume: 21
  start-page: 120
  year: 2001
  end-page: 127
  article-title: A 99 line topology optimization code written in Matlab
  publication-title: Struct Multidiscip Optim
– volume: 6
  start-page: 373
  year: 2004
  end-page: 395
  article-title: PDE‐driven level sets, shape sensitivity and curvature flow for structural topology optimization
  publication-title: Comput Model Eng Sci
– start-page: 8(8)
  year: 2016
  article-title: An augmented formulation of distributed compliant mechanism optimization using a level set method
  publication-title: Adv Mech Eng
– volume: 85
  start-page: 11
  year: 2014
  end-page: 19
  article-title: Topology synthesis of multi‐material compliant mechanisms with a Sequential Element Rejection and Admission method
  publication-title: Finite Elem Anal Des
– volume: 36
  start-page: 125
  year: 2008
  end-page: 141
  article-title: On an alternative approach to stress constraints relaxation in topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 283
  start-page: 1570
  year: 2015
  end-page: 1586
  article-title: A multi‐material level set‐based topology and shape optimization method
  publication-title: Comput Methods Appl Mech Eng
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv Comput Math
– volume: 119
  start-page: 238
  year: 1997
  end-page: 245
  article-title: Topological synthesis of compliant mechanisms using multi‐criteria optimization
  publication-title: J Mech Design
– year: 2007
– year: 2003
– volume: 46
  start-page: 580
  year: 2014
  end-page: 605
  article-title: Topology optimization of hinge‐free compliant mechanisms using level set methods
  publication-title: Struct Multidiscip Optim
– volume: 32
  start-page: 909
  year: 2008
  end-page: 918
  article-title: Minimum stress optimal design with the level set method
  publication-title: Eng Anal Bound Elem
– start-page: 1
  year: 2016
  end-page: 10
  article-title: Topology design of compliant mechanisms with stress constraints based on the topological derivative concept
  publication-title: Struct Multidiscip Optim
– volume: 30
  start-page: 142
  year: 2005
  end-page: 154
  article-title: Compliant mechanism design using multi‐objective topology optimization scheme of continuum structures
  publication-title: Struct Multidiscip Optim
– volume: 76
  start-page: 1
  year: 2008
  end-page: 26
  article-title: A level set‐based parameterization method for structural shape and topology optimization
  publication-title: Int J Numer Methods Eng
– volume: 268
  start-page: 632
  year: 2014
  end-page: 655
  article-title: Stress‐related topology optimization of continuum structures involving multi‐phase materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 85
  start-page: 61
  year: 2015
  end-page: 72
  article-title: Topology optimization of compliant mechanisms using element‐free Galerkin method
  publication-title: Adv Eng Softw
– volume: 1
  start-page: 1
  year: 2009
  end-page: 8
  article-title: A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms
  publication-title: J Mechanisms Robotics
– volume: 25
  start-page: 227
  year: 2009
  end-page: 239
  article-title: Manufacturing tolerant topology optimization
  publication-title: Acta Mech Sin
– volume: 82
  start-page: 16
  year: 2014
  end-page: 31
  article-title: Separable stress interpolation scheme for stress‐based topology optimization with multiple homogenous materials
  publication-title: Finite Elem Anal Des
– volume: 53
  start-page: 1243
  year: 2015
  end-page: 1260
  article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model
  publication-title: Struct Multidiscip Optim
– volume: 49
  start-page: 199
  year: 2014
  end-page: 207
  article-title: A strain based topology optimization method for compliant mechanism design
  publication-title: Struct Multidiscip Optim
– volume: 79
  start-page: 1839
  year: 2001
  end-page: 1850
  article-title: Optimality criteria method for topology optimization under multiple constraints
  publication-title: Comput Struct
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cma.2016.04.001
– ident: e_1_2_8_8_1
  doi: 10.1007/s00158-015-1279-z
– ident: e_1_2_8_43_1
  doi: 10.1007/s001580050176
– volume: 6
  start-page: 373
  year: 2004
  ident: e_1_2_8_47_1
  article-title: PDE‐driven level sets, shape sensitivity and curvature flow for structural topology optimization
  publication-title: Comput Model Eng Sci
  contributor:
    fullname: Wang MY
– ident: e_1_2_8_39_1
  doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
– volume-title: Structural Sensitivity Analysis and Optimization
  year: 2005
  ident: e_1_2_8_48_1
  contributor:
    fullname: Choi KK
– ident: e_1_2_8_28_1
  doi: 10.1007/s004190050248
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cma.2016.03.017
– volume: 46
  start-page: 580
  year: 2014
  ident: e_1_2_8_7_1
  article-title: Topology optimization of hinge‐free compliant mechanisms using level set methods
  publication-title: Struct Multidiscip Optim
  contributor:
    fullname: Zhu B
– ident: e_1_2_8_20_1
  doi: 10.1016/j.enganabound.2007.05.007
– ident: e_1_2_8_15_1
  doi: 10.1115/1.2959094
– start-page: 1
  year: 2017
  ident: e_1_2_8_32_1
  article-title: Hierarchical optimization for topology design of multi‐material compliant mechanisms
  publication-title: Eng Optim
  contributor:
    fullname: Wang NF
– ident: e_1_2_8_45_1
  doi: 10.1002/nme.1620240207
– start-page: 1
  year: 2016
  ident: e_1_2_8_9_1
  article-title: Topology design of compliant mechanisms with stress constraints based on the topological derivative concept
  publication-title: Struct Multidiscip Optim
  contributor:
    fullname: Lopes CG
– ident: e_1_2_8_27_1
  doi: 10.1063/1.117961
– ident: e_1_2_8_5_1
  doi: 10.1016/j.advengsoft.2015.03.001
– ident: e_1_2_8_16_1
  doi: 10.1115/1.2826242
– start-page: 1
  year: 2016
  ident: e_1_2_8_25_1
  article-title: Multi‐material topology optimization using ordered SIMP interpolation
  publication-title: Struct Multidiscip Optim
  contributor:
    fullname: Zuo W
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jcp.2007.08.011
– ident: e_1_2_8_38_1
  doi: 10.1007/BF02123482
– ident: e_1_2_8_12_1
  doi: 10.1002/nme.4296
– ident: e_1_2_8_29_1
  doi: 10.1115/1.1909206
– ident: e_1_2_8_6_1
– ident: e_1_2_8_44_1
  doi: 10.1016/S0045-7949(01)00126-2
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cma.2013.10.003
– ident: e_1_2_8_21_1
  doi: 10.1007/s00158-013-0971-0
– ident: e_1_2_8_19_1
  doi: 10.1007/s10409-009-0240-z
– start-page: 8(8)
  year: 2016
  ident: e_1_2_8_3_1
  article-title: An augmented formulation of distributed compliant mechanism optimization using a level set method
  publication-title: Adv Mech Eng
  contributor:
    fullname: Li R
– ident: e_1_2_8_42_1
  doi: 10.1016/S0045-7825(02)00559-5
– ident: e_1_2_8_24_1
  doi: 10.1016/j.cma.2016.05.016
– volume-title: Topology Optimization: Theory, Methods and Applications
  year: 2003
  ident: e_1_2_8_14_1
  contributor:
    fullname: Bendsøe MP
– ident: e_1_2_8_34_1
  doi: 10.1016/j.finel.2013.12.003
– ident: e_1_2_8_22_1
  doi: 10.1007/978-3-319-00717-5_3
– volume-title: Design Sensitivity Analysis of Structural Systems
  year: 1986
  ident: e_1_2_8_46_1
  contributor:
    fullname: Haug EJ
– ident: e_1_2_8_50_1
  doi: 10.1080/03052150801985544
– ident: e_1_2_8_40_1
  doi: 10.1007/BF01197454
– ident: e_1_2_8_23_1
  doi: 10.2514/6.1998-4906
– ident: e_1_2_8_35_1
  doi: 10.1016/j.cma.2014.11.002
– ident: e_1_2_8_41_1
  doi: 10.1007/s00158-007-0203-6
– ident: e_1_2_8_37_1
  doi: 10.1002/nme.2092
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cma.2008.08.003
– ident: e_1_2_8_17_1
  doi: 10.1115/DETC98/MECH-5937
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cma.2003.10.008
– ident: e_1_2_8_31_1
  doi: 10.1016/j.finel.2013.11.006
– volume: 53
  start-page: 1243
  year: 2015
  ident: e_1_2_8_49_1
  article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1372-3
  contributor:
    fullname: Zhang W
– ident: e_1_2_8_11_1
  doi: 10.1115/DETC2007-34437
– volume-title: Compliant Mechanisms
  year: 2001
  ident: e_1_2_8_2_1
  contributor:
    fullname: Howell LL
– ident: e_1_2_8_18_1
  doi: 10.1007/s00158-004-0512-y
– ident: e_1_2_8_10_1
  doi: 10.1080/08905459708945415
SSID ssj0011503
Score 2.5664692
Snippet In this paper, a level‐set‐based method is presented to deal with the multi‐material topology optimization of compliant mechanisms with stress constraints. A...
Abstract In this paper, a level‐set‐based method is presented to deal with the multi‐material topology optimization of compliant mechanisms with stress...
In this paper, a level-set-based method is presented to deal with the multi-material topology optimization of compliant mechanisms with stress constraints. A...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1021
SubjectTerms compliant mechanisms
level set method
Mathematical models
Multiple objective analysis
multi‐material topology optimization
Sensitivity analysis
stress constraint
Stresses
Topology optimization
Title Stress‐based multi‐material topology optimization of compliant mechanisms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5697
https://www.proquest.com/docview/1987979600
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA-ykx6cTsXplAjirVv_pWmPIhtD6A7qYOChJM0riHQT2x305EfwM_pJfEnbOQVBPJXQBNq8f78X3vuFkHNwEYQHDli2jITlpzy1QinBUrbknkBEzo2k40kwnvrXMzarqyp1L0zFD7E6cNOWYfy1NnAhi8EaaWgOfRZEupFc8-hpPHSzYo7SOMdrqjtYFDoN76ztDpqF3yPRF7xcB6kmyoza5L75vqq45LG_LGU_ff1B3fi_H9gh2zX4pJeVtuySDZh3SLsGorQ286JDttZYCnEUr6hdiz0S35ruko-3dx0AFTUViTjC90aZaVldu_BCF-iN8rrNky4yWlWvoyRpDrrf-KHIi30yHQ3vrsZWfSeDlXqYe1iY0CiXpcoD4QMmWwps4BBifu4zGxyegQhD5WWKKbR0BkpwFghUFDeVSjuDA9KaL-ZwSCgaf6ak4Jyn0ncdX_hZ5IHOFzMdI6FLzhr5JE8V9UZSkSy7Ce5doveuS3qN4JLa-IpEn6NEHFMzu0sujAR-XZ9M4qF-Hv114jHZRMgU6rpth_dIq3xewgnCklKeGgX8BMbo4us
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qHtSDj6pYrbqCeEvNa7MJnsQHVZsefIAHIWSzExBpK6Y96Mmf4G_0lzibR62CIJ7CkgSSnfl2vllmvgXYQ5tIuGehYcogNtxEJIYvJRrKlMKJiZGL3NJh12vfuhd3_K4Gh1UvTKEPMd5w08jI12sNcL0hfTChGtrDFvcCMQUzhHauUXlyNdaO0kzHqeo7eOBblfKsaR9Ub36PRV8Ec5Km5nHmbBHuqy8sykseW6OhbCWvP8Qb__kLS7BQ8k92VDjMMtSwX4fFkouyEulZHeYnhAppFI7VXbMVCK_zBpOPt3cdAxXLixJpRPdzf2bD4uSFFzagBalXdnqyQcqKAnYyJuuhbjl-yHrZKtyend4ct43yWAYjcSj9MCinUTZPlIOxi5RvKTRRoE8pustNtESKse8rJ1VcEdg5qlhwLyZfsROp9HqwBtP9QR_XgRH-UyVjIUQiXdtyYzcNHNQpY6rDJDZgtzJQ9FSob0SFzrId0dxFeu4a0KwsF5X4yyK9lRIIys7MBuznJvj1_agbnurrxl8f3IHZ9k3YiTrn3ctNmCMG5esybks0YXr4PMItYilDuZ174yf0NecL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBalWsVl1BvKXmvclRbEt9tIhaKHgI2ewERPrAtAc9-RP8jf4SZ_OoVRDEU1iSQLIzs_N9y8y3AMdoEgh3DdR04YeaHfFI84RATeqCWyEhcp5autN12z37su_086pK1QuT6UPMNtxUZKTrtQrwsYxP50RDB1h3XJ8vwpLtWqYiXo3bmXSUAjpWUd7h-J5RCM_q5mnx5vdU9IUv51FqmmZaZXgoPjCrLnmqTyeiHr3-0G783x-sw1qOPtlZ5i4bsIDDCpRzJMryOE8qsDonU0ijzkzbNdmEzl3aXvLx9q4yoGRpSSKN6H7qzWySnbvwwka0HA3yPk82illWvk6mZANUDcePySDZgl6reX_e1vJDGbTIIvKhEaORphNJC0MbiW1J1JGjRwTddnQ0eIyh50krlo6kUHdQhtxxQ_IUMxJSrQbbUBqOhrgDjKI_liLknEfCNg07tGPfQkUYY5UksQpHhX2Ccaa9EWQqy2ZAcxeouatCrTBckEdfEqiNFJ8TN9OrcJJa4Nf3g26nqa67f33wEJZvGq3g-qJ7tQcrBJ88VcNt8BqUJs9T3CeIMhEHqS9-Ambx5bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress-based+multi-material+topology+optimization+of+compliant+mechanisms&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Chu%2C+Sheng&rft.au=Gao%2C+Liang&rft.au=Xiao%2C+Mi&rft.au=Luo%2C+Zhen&rft.date=2018-02-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=113&rft.issue=7&rft.spage=1021&rft_id=info:doi/10.1002%2Fnme.5697&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon