Multimode cable vibration control using a viscous‐shear damper: Case studies on the Sutong Bridge
Summary This study investigates multimode damping effects of a long cable attached with a viscous‐shear damper (VSD). A typical VSD comprises a casing box containing viscous medium and shearing plates with parts submerged in the medium. It dissipates vibration energy through shear deformation of the...
Saved in:
Published in | Structural control and health monitoring Vol. 27; no. 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-2255 1545-2263 |
DOI | 10.1002/stc.2536 |
Cover
Loading…
Abstract | Summary
This study investigates multimode damping effects of a long cable attached with a viscous‐shear damper (VSD). A typical VSD comprises a casing box containing viscous medium and shearing plates with parts submerged in the medium. It dissipates vibration energy through shear deformation of the viscous medium. The VSD is low‐cost and invulnerable to leakage or increasing joint play and hence requires low maintenance effort. For studying its damping effects on long cables, three VSDs were designed respectively for three long cables of the Sutong Bridge, a cable‐stayed bridge with a main span of 1,088 m, and then tested in laboratory under forced sinusoidal displacements with various frequencies and amplitudes. Their dynamic behaviors were found to be accurately modeled using a viscous damper with intrinsic stiffness, while the viscous and stiffness coefficients depend on frequency and amplitude. The VSDs were subsequently attached to the cables respectively, and modal damping ratios of in‐plane modes of each cable without dampers and with the VSD were measured by free‐decay testing. The measurements obtained for most in‐plane modes with frequency less than 3 Hz show that the VSD provides satisfactory multimode damping effects with efficiency factors between 30% and 50% as compared to an ideal viscous damper and the damping decreases slightly for higher modes. The measurements are also found consistent with the results of complex modal analysis of a shallow cable with a Kelvin–Voigt damper considering frequency‐ and amplitude‐dependent damper properties. Particularly, analytical prediction using the damper properties tested under small deformation amplitude provides the lower bound of the damping effect. |
---|---|
AbstractList | This study investigates multimode damping effects of a long cable attached with a viscous‐shear damper (VSD). A typical VSD comprises a casing box containing viscous medium and shearing plates with parts submerged in the medium. It dissipates vibration energy through shear deformation of the viscous medium. The VSD is low‐cost and invulnerable to leakage or increasing joint play and hence requires low maintenance effort. For studying its damping effects on long cables, three VSDs were designed respectively for three long cables of the Sutong Bridge, a cable‐stayed bridge with a main span of 1,088 m, and then tested in laboratory under forced sinusoidal displacements with various frequencies and amplitudes. Their dynamic behaviors were found to be accurately modeled using a viscous damper with intrinsic stiffness, while the viscous and stiffness coefficients depend on frequency and amplitude. The VSDs were subsequently attached to the cables respectively, and modal damping ratios of in‐plane modes of each cable without dampers and with the VSD were measured by free‐decay testing. The measurements obtained for most in‐plane modes with frequency less than 3 Hz show that the VSD provides satisfactory multimode damping effects with efficiency factors between 30% and 50% as compared to an ideal viscous damper and the damping decreases slightly for higher modes. The measurements are also found consistent with the results of complex modal analysis of a shallow cable with a Kelvin–Voigt damper considering frequency‐ and amplitude‐dependent damper properties. Particularly, analytical prediction using the damper properties tested under small deformation amplitude provides the lower bound of the damping effect. Summary This study investigates multimode damping effects of a long cable attached with a viscous‐shear damper (VSD). A typical VSD comprises a casing box containing viscous medium and shearing plates with parts submerged in the medium. It dissipates vibration energy through shear deformation of the viscous medium. The VSD is low‐cost and invulnerable to leakage or increasing joint play and hence requires low maintenance effort. For studying its damping effects on long cables, three VSDs were designed respectively for three long cables of the Sutong Bridge, a cable‐stayed bridge with a main span of 1,088 m, and then tested in laboratory under forced sinusoidal displacements with various frequencies and amplitudes. Their dynamic behaviors were found to be accurately modeled using a viscous damper with intrinsic stiffness, while the viscous and stiffness coefficients depend on frequency and amplitude. The VSDs were subsequently attached to the cables respectively, and modal damping ratios of in‐plane modes of each cable without dampers and with the VSD were measured by free‐decay testing. The measurements obtained for most in‐plane modes with frequency less than 3 Hz show that the VSD provides satisfactory multimode damping effects with efficiency factors between 30% and 50% as compared to an ideal viscous damper and the damping decreases slightly for higher modes. The measurements are also found consistent with the results of complex modal analysis of a shallow cable with a Kelvin–Voigt damper considering frequency‐ and amplitude‐dependent damper properties. Particularly, analytical prediction using the damper properties tested under small deformation amplitude provides the lower bound of the damping effect. |
Author | Sun, Limin Wang, Lujun Xu, Yingmei Chen, Lin Di, Fangdian Xu, Yuyuan |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0002-3570-234X surname: Chen fullname: Chen, Lin organization: Tongji University – sequence: 2 givenname: Fangdian surname: Di fullname: Di, Fangdian organization: Tongji University – sequence: 3 givenname: Yuyuan surname: Xu fullname: Xu, Yuyuan organization: Tongji University – sequence: 4 givenname: Limin surname: Sun fullname: Sun, Limin email: lmsun@tongji.edu.cn organization: Tongji University – sequence: 5 givenname: Yingmei surname: Xu fullname: Xu, Yingmei organization: Jiangsu Sutong Bridge Co., Ltd – sequence: 6 givenname: Lujun surname: Wang fullname: Wang, Lujun organization: Wuxi Grand Valley Shock Control Technology Co., Ltd |
BookMark | eNp1kE1OwzAQRi1UJNqCxBEssWGTYiexk7CDiD-piEXL2rLjaesqjYvtgLrjCJyRk5C2iAWC1Yw07_tGegPUa2wDCJ1SMqKExBc-VKOYJfwA9SlLWRTHPOn97IwdoYH3y47kcc76qHps62BWVgOupKoBvxrlZDC2wZVtgrM1br1p5lh2F1_Z1n--f_gFSIe1XK3BXeJSesA-tNqAx10uLABP2mC70LUzeg7H6HAmaw8n33OInm9vpuV9NH66eyivxlGVsIJHSs20zhgQShJZKA0KZEo4V0xnRMecSZJCJoHkCUieZoxRmkMKKS2U4gUkQ3S27107-9KCD2JpW9d0L0Wc5DlnhPGio873VOWs9w5mYu3MSrqNoERsFYpOodgq7NDRL7QyYScnOGnqvwLRPvBmatj8Wywm03LHfwH7M4XT |
CitedBy_id | crossref_primary_10_1061__ASCE_ST_1943_541X_0003472 crossref_primary_10_3390_modelling4020011 crossref_primary_10_1002_stc_2755 crossref_primary_10_1002_stc_2717 crossref_primary_10_1142_S0219455424502377 crossref_primary_10_1142_S0219455424502134 crossref_primary_10_3390_app13053356 crossref_primary_10_1016_j_measurement_2022_112148 crossref_primary_10_1016_j_engstruct_2020_111226 crossref_primary_10_1016_j_istruc_2024_106429 crossref_primary_10_1007_s11831_021_09632_4 crossref_primary_10_1016_j_engstruct_2022_114319 crossref_primary_10_3390_eng3020017 crossref_primary_10_1016_j_engstruct_2022_115527 crossref_primary_10_1061__ASCE_BE_1943_5592_0001970 crossref_primary_10_1177_14613484221130330 crossref_primary_10_1016_j_engstruct_2023_115731 crossref_primary_10_1155_2021_5322548 crossref_primary_10_1016_j_jsv_2020_115814 crossref_primary_10_1142_S0219455421500589 crossref_primary_10_1016_j_apm_2023_03_006 crossref_primary_10_1016_j_apm_2023_03_007 crossref_primary_10_1016_j_jobe_2024_111699 crossref_primary_10_1177_13694332221132316 crossref_primary_10_1002_stc_2989 crossref_primary_10_1016_j_engstruct_2024_118015 crossref_primary_10_1016_j_istruc_2022_03_053 crossref_primary_10_1016_j_ymssp_2021_107627 crossref_primary_10_1142_S0219455425500014 crossref_primary_10_3390_applmech5040046 crossref_primary_10_1016_j_ijmecsci_2021_106903 crossref_primary_10_1002_stc_3015 crossref_primary_10_1016_j_ymssp_2021_108454 crossref_primary_10_1016_j_engstruct_2021_112495 crossref_primary_10_3390_computation11090169 crossref_primary_10_1016_j_jobe_2021_103840 crossref_primary_10_1016_j_jsv_2020_115769 crossref_primary_10_1002_stc_3085 crossref_primary_10_1016_j_engstruct_2021_113069 crossref_primary_10_1155_stc_5810450 crossref_primary_10_1142_S0219455422501358 crossref_primary_10_1177_14613484231182487 crossref_primary_10_1061_JSENDH_STENG_12635 crossref_primary_10_1155_2023_9748991 crossref_primary_10_1016_j_ymssp_2023_110397 |
Cites_doi | 10.1016/j.ymssp.2019.01.026 10.12989/sss.2015.15.3.627 10.1016/j.compstruc.2018.07.010 10.1016/j.apm.2019.11.008 10.1061/(ASCE)1084-0702(2001)6:6(385) 10.1061/(ASCE)0733-9445(2008)134:2(269) 10.1061/(ASCE)BE.1943-5592.0000562 10.1117/12.472567 10.1061/(ASCE)BE.1943-5592.0001387 10.1016/j.engstruct.2019.109305 10.1016/j.engstruct.2009.06.020 10.1061/(ASCE)ST.1943-541X.0001645 10.1002/stc.1809 10.1098/rspa.1974.0189 10.2208/jscej.1989.410_455 10.1115/1.1322037 10.2749/222137804796291520 10.1061/40988(323)197 10.2749/sed009 10.1016/j.jsv.2014.09.016 10.1016/j.engstruct.2017.08.009 10.1016/S0022-460X(02)01455-4 10.1061/(ASCE)BE.1943-5592.0001088 10.1098/rspa.2001.0879 10.1002/stc.1986 10.1007/978-4-431-54046-5 10.1016/j.compstruct.2017.11.010 10.1061/(ASCE)0733-9399(2002)128:10(1062) 10.1061/(ASCE)0733-9399(2005)131:4(340) 10.1061/(ASCE)1084-0702(2000)5:2(114) 10.1061/(ASCE)0733-9399(2007)133:4(369) 10.1177/1475921718773954 10.1061/(ASCE)EM.1943-7889.0000878 10.1016/j.jsv.2016.04.028 10.1002/stc.2421 10.1260/1369-4332.17.2.265 10.1142/S0219455419501530 10.1061/(ASCE)EM.1943-7889.0000252 10.1002/stc.1671 10.3151/coj1975.32.5_23 10.1002/stc.2435 10.1061/(ASCE)0733-9445(1993)119:6(1961) 10.2208/jscej.1993.480_77 10.1002/stc.2236 10.3390/app9112271 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2536 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2536 STC2536 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51608390 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c3596-bbfdd75e0103a9bdebea4066b5d70d265a04e7ae083ea64755118e4e419bb69e3 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Wed Aug 13 04:52:19 EDT 2025 Tue Jul 01 01:26:31 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Wed Jan 22 16:33:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3596-bbfdd75e0103a9bdebea4066b5d70d265a04e7ae083ea64755118e4e419bb69e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3570-234X |
PQID | 2388650569 |
PQPubID | 2034347 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2388650569 crossref_primary_10_1002_stc_2536 crossref_citationtrail_10_1002_stc_2536 wiley_primary_10_1002_stc_2536_STC2536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2005; 131 2006; 34 2000; 5 1989; 1989 2019; 19 2019; 124 2019; 18 2017; 151 2018; 208 2010; Tokyo, Japan: 5WCSCM‐168 1974; 341 1993; 1993 2013; 19 2018; 5 2001 2015; 335 2019; 24 2007; 133 2019; 26 1981 2014; 17 2019; 196 1994; 32 2004; 88 2011; 137 2018; 185 2015; 15 2002; 4696 2019; 9 2012 2000; 67 2010 2017; 22 2017; 24 2020; 80 2002; 458 2008 2007 2005 2018; 25 1993; 119 2009; 31 2001; 6 2015; 22 2002; 128 2016; 377 1994; 18 2017; 143 2008; 134 2014; 141 2007; 45 2003; 265 2016; 23 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Irvine HM (e_1_2_7_54_1) 1981 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_35_1 Maślanka M (e_1_2_7_40_1) 2007; 45 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Yoneda M (e_1_2_7_21_1) 1994; 18 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Zhou Y (e_1_2_7_17_1) 2006; 34 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Zhou H (e_1_2_7_42_1) 2018; 5 Sá Caetano E. (e_1_2_7_3_1) 2007 |
References_xml | – volume: 18 start-page: 778 issue: 3 year: 2019 end-page: 791 article-title: Insights into temperature effects on structural deformation of a cable‐stayed bridge based on structural health monitoring publication-title: Struct Health Monit – volume: 24 issue: 5 year: 2019 article-title: Modeling and separation of thermal effects from cable‐stayed bridge response publication-title: J Bridge Eng – volume: 24 issue: 10 year: 2017 article-title: Inertial mass damper for mitigating cable vibration publication-title: Struct Control Health Monit – year: 1981 – volume: 88 start-page: 31 year: 2004 end-page: 36 – year: 2005 – volume: 45 start-page: 893 year: 2007 end-page: 917 article-title: Experimental study of vibration control of a cable with an attached MR damper publication-title: J Theor Appl Mech – volume: 17 start-page: 265 issue: 2 year: 2014 end-page: 274 article-title: Damping of full‐scale stay cable with viscous damper: experiment and analysis publication-title: Adv Struct Eng – volume: 119 start-page: 1961 issue: 6 year: 1993 end-page: 1979 article-title: Estimation curve for modal damping in stay cables with viscous damper publication-title: J Struct Eng – volume: 32 start-page: 23 issue: 5 year: 1994 end-page: 30 article-title: Wind‐induced cable vibrations and countermeasures of cables of PC cable‐stayed bridge publication-title: Concrete J – volume: 141 issue: 5 year: 2014 article-title: Laboratory‐scale experimental setup for studying cable dampers publication-title: J Eng Mech – volume: 131 start-page: 340 issue: 4 year: 2005 end-page: 348 article-title: Damping of cables by a transverse force publication-title: J Eng Mech – volume: 137 start-page: 512 issue: 7 year: 2011 end-page: 518 article-title: Damping of taut‐cable systems: effects of linear elastic spring support publication-title: J Eng Mech – volume: 19 issue: 4 year: 2013 article-title: Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations publication-title: J Bridge Eng – start-page: 235 year: 2001 end-page: 242 – volume: 1993 start-page: 77 issue: 480 year: 1993 end-page: 86 article-title: Effects of elasticity on the damping characteristics of viscous shearing damper and estimation curve for modal damping in stay cables with this type of dampers publication-title: Doboku Gakkai Ronbunshu – volume: 15 start-page: 627 issue: 3 year: 2015 end-page: 643 article-title: Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics publication-title: Smart Struct Syst – volume: 134 start-page: 269 issue: 2 year: 2008 end-page: 278 article-title: Design formulas for damping of a stay cable with a damper publication-title: J Struct Eng – volume: 6 start-page: 385 issue: 6 year: 2001 end-page: 397 article-title: Evaluation of viscous dampers for stay‐cable vibration mitigation publication-title: J Bridge Eng – volume: 208 start-page: 143 year: 2018 end-page: 150 article-title: Extension of dynamic stiffness method to complicated damped structures publication-title: Comput Struct – volume: 5 start-page: 489 issue: 4 year: 2018 end-page: 506 article-title: Full‐scale test of dampers for stay cable vibration mitigation and improvement measures publication-title: Struct Monit Maint – volume: 128 start-page: 1062 issue: 10 year: 2002 end-page: 1071 article-title: Free vibrations of taut cable with attached damper. I: linear viscous damper publication-title: J Eng Mech – volume: 124 start-page: 330 year: 2019 end-page: 348 article-title: A comprehensive study of the thermal response of a long‐span cable‐stayed bridge: from monitoring phenomena to underlying mechanisms publication-title: Mech Syst Signal Proc – volume: 25 issue: 10 year: 2018 article-title: Refined damper design formula for a cable equipped with a positive or negative stiffness damper publication-title: Struct Control Health Monit – volume: 23 start-page: 764 issue: 4 year: 2016 end-page: 782 article-title: Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations publication-title: Struct Control Health Monit – start-page: 1 year: 2008 end-page: 10 – volume: 22 issue: 9 year: 2017 article-title: Performance comparison between passive negative‐stiffness dampers and active control in cable vibration mitigation publication-title: J Bridge Eng – year: 2007 – volume: 19 issue: 12 year: 2019 article-title: Exact dynamic analysis of shallow sagged cable system‐theory and experimental verification publication-title: Int J Struct Stab Dyn – volume: 18 start-page: 156 issue: 3 year: 1994 end-page: 159 article-title: Suppression of cable vibrations of cable‐stayed bridges by installation of viscous‐shear damper publication-title: J INCE Japan – volume: 31 start-page: 2797 issue: 11 year: 2009 end-page: 2800 article-title: Design of viscous dampers targeting multiple cable modes publication-title: Eng Struct – year: 2010; Tokyo, Japan: 5WCSCM‐168 – volume: 265 start-page: 417 issue: 2 year: 2003 end-page: 435 article-title: Whirling motion of a shallow cable with viscous dampers publication-title: J Sound Vib – volume: 133 start-page: 369 issue: 4 year: 2007 end-page: 378 article-title: Vibration of tensioned beams with intermediate damper. I: formulation, influence of damper location publication-title: J Eng Mech – volume: 26 year: 2019 article-title: In‐plane free vibrations of shallow cables with cross‐ties publication-title: Struct Control Health Monit – volume: 458 start-page: 339 issue: 2018 year: 2002 end-page: 357 article-title: Vibrations of a shallow cable with a viscous damper publication-title: Proc Royal Soc A – volume: 5 start-page: 114 issue: 2 year: 2000 end-page: 123 article-title: Design of mechanical viscous dampers for stay cables publication-title: J Bridge Eng – volume: 335 start-page: 19 year: 2015 end-page: 33 article-title: Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives publication-title: J Sound Vib – year: 2010 – year: 2012 – volume: 1989 start-page: 455 issue: 410 year: 1989 end-page: 458 article-title: A study on practical estimation method for structural damping of stay cables with dampers publication-title: Doboku Gakkai Ronbunshu – volume: 67 start-page: 772 issue: 4 year: 2000 end-page: 776 article-title: Vibrations of a taut cable with an external damper publication-title: J Appl Mech – volume: 196 year: 2019 article-title: Damping effects of nonlinear dampers on a shallow cable publication-title: Eng Struct – volume: 80 start-page: 911 year: 2020 end-page: 928 article-title: A novel analysis method for damping characteristic of a type of double‐beam systems with viscoelastic layer publication-title: App Math Model – volume: 341 start-page: 299 issue: 1626 year: 1974 end-page: 315 article-title: The linear theory of free vibrations of a suspended cable publication-title: Proc Royal Soc A – volume: 34 start-page: 7 issue: 01 year: 2006 end-page: 12 article-title: Complex modal analysis of a taut cable with three‐element Maxwell damper publication-title: J Tongji Univ (Nat Sci) – volume: 185 start-page: 584 year: 2018 end-page: 599 article-title: Analysis on the dynamic characteristic of a tensioned double‐beam system with a semi theoretical semi numerical method publication-title: Compos Struct – volume: 143 issue: 2 year: 2017 article-title: Steady‐state analysis of cable with nonlinear damper via harmonic balance method for maximizing damping publication-title: J Struct Eng – volume: 151 start-page: 57 year: 2017 end-page: 67 article-title: Cables interconnected with tuned inerter damper for vibration mitigation publication-title: Eng Struct – volume: 4696 start-page: 30 year: 2002 end-page: 40 – volume: 377 start-page: 38 year: 2016 end-page: 57 article-title: Cable vibration control with both lateral and rotational dampers attached at an intermediate location publication-title: J Sound Vib – volume: 9 issue: 11 year: 2019 article-title: Refined study on free vibration of a cable with an inertial mass damper publication-title: Appl Sci – volume: 26 year: 2019 article-title: Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation publication-title: Struct Control Health Monit – volume: 22 start-page: 237 issue: 2 year: 2015 end-page: 254 article-title: Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers publication-title: Struct Control Health Monit – ident: e_1_2_7_50_1 doi: 10.1016/j.ymssp.2019.01.026 – ident: e_1_2_7_25_1 doi: 10.12989/sss.2015.15.3.627 – ident: e_1_2_7_36_1 doi: 10.1016/j.compstruc.2018.07.010 – ident: e_1_2_7_35_1 doi: 10.1016/j.apm.2019.11.008 – ident: e_1_2_7_48_1 doi: 10.1061/(ASCE)1084-0702(2001)6:6(385) – ident: e_1_2_7_23_1 doi: 10.1061/(ASCE)0733-9445(2008)134:2(269) – ident: e_1_2_7_19_1 doi: 10.1061/(ASCE)BE.1943-5592.0000562 – ident: e_1_2_7_47_1 doi: 10.1117/12.472567 – ident: e_1_2_7_49_1 doi: 10.1061/(ASCE)BE.1943-5592.0001387 – ident: e_1_2_7_39_1 doi: 10.1016/j.engstruct.2019.109305 – ident: e_1_2_7_53_1 doi: 10.1016/j.engstruct.2009.06.020 – ident: e_1_2_7_38_1 doi: 10.1061/(ASCE)ST.1943-541X.0001645 – ident: e_1_2_7_4_1 – ident: e_1_2_7_26_1 doi: 10.1002/stc.1809 – ident: e_1_2_7_52_1 – ident: e_1_2_7_55_1 doi: 10.1098/rspa.1974.0189 – ident: e_1_2_7_44_1 doi: 10.2208/jscej.1989.410_455 – ident: e_1_2_7_2_1 – ident: e_1_2_7_8_1 doi: 10.1115/1.1322037 – volume: 18 start-page: 156 issue: 3 year: 1994 ident: e_1_2_7_21_1 article-title: Suppression of cable vibrations of cable‐stayed bridges by installation of viscous‐shear damper publication-title: J INCE Japan – ident: e_1_2_7_46_1 – ident: e_1_2_7_15_1 doi: 10.2749/222137804796291520 – ident: e_1_2_7_16_1 doi: 10.1061/40988(323)197 – volume-title: Cable Structures year: 1981 ident: e_1_2_7_54_1 – volume-title: Cable vibrations in cable‐stayed bridges year: 2007 ident: e_1_2_7_3_1 doi: 10.2749/sed009 – ident: e_1_2_7_20_1 doi: 10.1016/j.jsv.2014.09.016 – ident: e_1_2_7_29_1 doi: 10.1016/j.engstruct.2017.08.009 – ident: e_1_2_7_13_1 doi: 10.1016/S0022-460X(02)01455-4 – ident: e_1_2_7_27_1 doi: 10.1061/(ASCE)BE.1943-5592.0001088 – ident: e_1_2_7_12_1 doi: 10.1098/rspa.2001.0879 – ident: e_1_2_7_28_1 doi: 10.1002/stc.1986 – ident: e_1_2_7_6_1 doi: 10.1007/978-4-431-54046-5 – ident: e_1_2_7_37_1 doi: 10.1016/j.compstruct.2017.11.010 – ident: e_1_2_7_9_1 doi: 10.1061/(ASCE)0733-9399(2002)128:10(1062) – volume: 34 start-page: 7 issue: 01 year: 2006 ident: e_1_2_7_17_1 article-title: Complex modal analysis of a taut cable with three‐element Maxwell damper publication-title: J Tongji Univ (Nat Sci) – ident: e_1_2_7_10_1 doi: 10.1061/(ASCE)0733-9399(2005)131:4(340) – ident: e_1_2_7_11_1 doi: 10.1061/(ASCE)1084-0702(2000)5:2(114) – volume: 5 start-page: 489 issue: 4 year: 2018 ident: e_1_2_7_42_1 article-title: Full‐scale test of dampers for stay cable vibration mitigation and improvement measures publication-title: Struct Monit Maint – ident: e_1_2_7_14_1 doi: 10.1061/(ASCE)0733-9399(2007)133:4(369) – ident: e_1_2_7_51_1 doi: 10.1177/1475921718773954 – ident: e_1_2_7_43_1 doi: 10.1061/(ASCE)EM.1943-7889.0000878 – ident: e_1_2_7_30_1 doi: 10.1016/j.jsv.2016.04.028 – ident: e_1_2_7_32_1 doi: 10.1002/stc.2421 – ident: e_1_2_7_41_1 doi: 10.1260/1369-4332.17.2.265 – ident: e_1_2_7_33_1 doi: 10.1142/S0219455419501530 – volume: 45 start-page: 893 year: 2007 ident: e_1_2_7_40_1 article-title: Experimental study of vibration control of a cable with an attached MR damper publication-title: J Theor Appl Mech – ident: e_1_2_7_18_1 doi: 10.1061/(ASCE)EM.1943-7889.0000252 – ident: e_1_2_7_5_1 doi: 10.1002/stc.1671 – ident: e_1_2_7_22_1 doi: 10.3151/coj1975.32.5_23 – ident: e_1_2_7_34_1 doi: 10.1002/stc.2435 – ident: e_1_2_7_7_1 doi: 10.1061/(ASCE)0733-9445(1993)119:6(1961) – ident: e_1_2_7_45_1 doi: 10.2208/jscej.1993.480_77 – ident: e_1_2_7_24_1 doi: 10.1002/stc.2236 – ident: e_1_2_7_31_1 doi: 10.3390/app9112271 |
SSID | ssj0026285 |
Score | 2.4480896 |
Snippet | Summary
This study investigates multimode damping effects of a long cable attached with a viscous‐shear damper (VSD). A typical VSD comprises a casing box... This study investigates multimode damping effects of a long cable attached with a viscous‐shear damper (VSD). A typical VSD comprises a casing box containing... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplitudes cable vibration control Cable-stayed bridges Cables Dampers Damping ratio Deformation effects experimental study field testing Lower bounds Modal analysis Modal damping multimode damping effect Shear deformation Shearing Stiffness coefficients Vibration control viscoelastic damper viscous‐shear damper |
Title | Multimode cable vibration control using a viscous‐shear damper: Case studies on the Sutong Bridge |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2536 https://www.proquest.com/docview/2388650569 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMctVBYYeCPKS0ZCMKVNE9tp2KBQVYgyUJAqMUR-pQOoINIyMPER-Ix8Eu6cpAUEEmLKEFtJfHbuZ-vuf4Tsp5FvYwHbkijU0gMPFXpSx8azJvUV4LG0Tr64eyk6N-y8z_tFVCXmwuT6EJMDN1wZ7n-NC1yqrD4VDc1QgZCHqLaNoVrIQ1cT5agAMwOdVCrjHkxZXurO-kG97PjVE03x8jOkOi_TXiS35fvlwSV3tfFI1fTLN-nG_33AElko4JMe57NlmczY4QqZ_yRJuEq0y8jF-jhUY1YVfcZnoPVoEdVOMVR-QCXcyfTDOHt_fcuwLDY1EhD86Yi2wDHSLI9PpNAPEJP2xsCYA3ri0sPWyE377LrV8YpCDJ4OeSw8pVJjIm6xJoSMlQHDSwABobiJfBMILn1mI2kB56wULOK4bbHMskaslIhtuE4qw4eh3SCUS2aDkOlG2kiZNr6Cn0BTNIM0DWTaYFGVHJZGSXShUo7FMu6TXF85SGDYEhy2KtmbtHzMlTl-aLNd2jUp1maWAKQ0BYJfXCUHzkC_9k961y28bv614RaZC3BD7o5ptkll9DS2O0AtI7VLZo9Puxe9XTdPPwB_MO1W |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7B9lB6gFJAXboUI6FyCmQT29nACbag5fdQFokDUuS_cAAtiOxy4MQj9Bl5EmacZKEVSFVPOcSWE8-M5xtr5huA1TwJXSoxLEliowL0UHGgTGoDZ_NQIzxWztMXH5_I3hk_OBfnE7BV18KU_BDjCzeyDH9ek4HThfTGC2toQRSEIpaT8IEaepNV_vw15o6KqDbQk6VyEaDSipp5Now26pl_-qIXgPkapno_szcDF_UXluklV-ujoV43D3-RN_7nL3yG6Qp_su1SYWZhwg2-wKdXrIRzYHxRLrXIYYYKq9g9LUICZFViO6Ns-Uum8E1hbkbF0-PvgjpjM6sQhd9tsi76RlaUKYoM5yHKZKcjhJmXbMdXiM3D2d5uv9sLql4MgYlFKgOtc2sT4agthEq1RdkrxAJSC5uENpJChdwlyiGic0ryRFDk4rjj7VRrmbp4ARqDm4H7Ckwo7qKYm3bezrmxocZzoCM7UZ5HKm_zpAlrtVQyUxGVU7-M66ykWI4y3LaMtq0JK-ORtyU5xxtjWrVgs8o8iwxxSkcS9kub8MNL6N352Wm_S8_Ffx24DB97_eOj7Gj_5PAbTEUUn_tbmxY0hncjt4QgZqi_e2V9BsQ-79s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFB7oECLWF41EoJTIJvYzqa3dmHFo0WIh4TUQ-Qnh6IFkV0OnPgJ_Mb-ks44yfIQlSpOOWQsJx6P5xtr5huANZ_FLpcYlmSpURF6qDRSJreRsz7WCI-VC_TFPw_l7hnfPxfndVYl1cJU_BCjCzeyjHBek4FfW7_1SBpaEgOhSOU7mOAy7lDgtX08oo5KqDQwcKVyEeGeFQ3xbJxsNSOfu6JHfPkUpQY30_sIv5oPrLJLfm8OB3rT3L3gbnzbH0zDVI0-2bdqu8zAmOvPwocnnISfwISSXGqQwwyVVbFbmoPUx-q0dka58hdM4ZvSXA3LP_cPJfXFZlYhBr_5yrroGVlZJSgyHIcYk50MEWResO-hPuwznPV2Tru7Ud2JITKpyGWktbc2E46aQqhcW9S8QiQgtbBZbBMpVMxdphziOackzwTFLY473s61lrlL52C8f9V388CE4i5JuWn7tufGxhpPgY7sJN4nyrd51oKNRimFqWnKqVvGZVERLCcFLltBy9aC1ZHkdUXN8YrMUqPXojbOskCU0pGE_PIWrAcF_XN8cXLapefC_wp-gcmj7V7xY-_wYBHeJxSchyubJRgf3AzdMiKYgV4JW_UvKHHukw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimode+cable+vibration+control+using+a+viscous%E2%80%90shear+damper%3A+Case+studies+on+the+Sutong+Bridge&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Chen%2C+Lin&rft.au=Di%2C+Fangdian&rft.au=Xu%2C+Yuyuan&rft.au=Sun%2C+Limin&rft.date=2020-06-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=27&rft.issue=6&rft_id=info:doi/10.1002%2Fstc.2536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2536 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |