Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods

This work analyses the responses of four regression-based interpolation methods for predicting snowpack distribution to changes in the number of data points (sample size) and resolution of the employed digital elevation model (DEM). For this purpose, we used data obtained from intensive and random s...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 24; no. 14; pp. 1914 - 1928
Main Authors Moreno, J. Ignacio López, Latron, J, Lehmann, A
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work analyses the responses of four regression-based interpolation methods for predicting snowpack distribution to changes in the number of data points (sample size) and resolution of the employed digital elevation model (DEM). For this purpose, we used data obtained from intensive and random sampling of snow depth (991 measurements) in a small catchment (6 km²) in the Pyrenees, Spain. Linear regression, classification trees, generalized additive models (GAMs), and a recent method based on a correction made by applying tree classification to GAM residuals were used to calculate snow-depth distribution based on terrain characteristics under different combinations of sample size and DEM spatial resolution (grid size).The application of a tree classification to GAM residuals yielded the highest accuracy scores and the most stable models. The other tested methods yielded scores with slightly lower accuracy and varying levels of robustness under different conditions of grid and sample size. The accuracy of the model predictions declined with decreasing resolution of DEMs and sample size; however, the sensitivities of the models to the number of data points showed threshold values, which has implications (when planning fieldwork) for optimizing the relation between the effort expended in gathering data and the quality of the results. Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList This work analyses the responses of four regression‐based interpolation methods for predicting snowpack distribution to changes in the number of data points (sample size) and resolution of the employed digital elevation model (DEM). For this purpose, we used data obtained from intensive and random sampling of snow depth (991 measurements) in a small catchment (6 km2) in the Pyrenees, Spain. Linear regression, classification trees, generalized additive models (GAMs), and a recent method based on a correction made by applying tree classification to GAM residuals were used to calculate snow‐depth distribution based on terrain characteristics under different combinations of sample size and DEM spatial resolution (grid size). The application of a tree classification to GAM residuals yielded the highest accuracy scores and the most stable models. The other tested methods yielded scores with slightly lower accuracy and varying levels of robustness under different conditions of grid and sample size. The accuracy of the model predictions declined with decreasing resolution of DEMs and sample size; however, the sensitivities of the models to the number of data points showed threshold values, which has implications (when planning fieldwork) for optimizing the relation between the effort expended in gathering data and the quality of the results. Copyright © 2009 John Wiley & Sons, Ltd.
Abstract This work analyses the responses of four regression‐based interpolation methods for predicting snowpack distribution to changes in the number of data points (sample size) and resolution of the employed digital elevation model (DEM). For this purpose, we used data obtained from intensive and random sampling of snow depth (991 measurements) in a small catchment (6 km 2 ) in the Pyrenees, Spain. Linear regression, classification trees, generalized additive models (GAMs), and a recent method based on a correction made by applying tree classification to GAM residuals were used to calculate snow‐depth distribution based on terrain characteristics under different combinations of sample size and DEM spatial resolution (grid size). The application of a tree classification to GAM residuals yielded the highest accuracy scores and the most stable models. The other tested methods yielded scores with slightly lower accuracy and varying levels of robustness under different conditions of grid and sample size. The accuracy of the model predictions declined with decreasing resolution of DEMs and sample size; however, the sensitivities of the models to the number of data points showed threshold values, which has implications (when planning fieldwork) for optimizing the relation between the effort expended in gathering data and the quality of the results. Copyright © 2009 John Wiley & Sons, Ltd.
This work analyses the responses of four regression-based interpolation methods for predicting snowpack distribution to changes in the number of data points (sample size) and resolution of the employed digital elevation model (DEM). For this purpose, we used data obtained from intensive and random sampling of snow depth (991 measurements) in a small catchment (6 km²) in the Pyrenees, Spain. Linear regression, classification trees, generalized additive models (GAMs), and a recent method based on a correction made by applying tree classification to GAM residuals were used to calculate snow-depth distribution based on terrain characteristics under different combinations of sample size and DEM spatial resolution (grid size).The application of a tree classification to GAM residuals yielded the highest accuracy scores and the most stable models. The other tested methods yielded scores with slightly lower accuracy and varying levels of robustness under different conditions of grid and sample size. The accuracy of the model predictions declined with decreasing resolution of DEMs and sample size; however, the sensitivities of the models to the number of data points showed threshold values, which has implications (when planning fieldwork) for optimizing the relation between the effort expended in gathering data and the quality of the results. Copyright © 2009 John Wiley & Sons, Ltd.
This work analyses the responses of four regression-based interpolation methods for predicting snowpack distribution to changes in the number of data points (sample size) and resolution of the employed digital elevation model (DEM). For this purpose, we used data obtained from intensive and random sampling of snow depth (991 measurements) in a small catchment (6 km super(2)) in the Pyrenees, Spain. Linear regression, classification trees, generalized additive models (GAMs), and a recent method based on a correction made by applying tree classification to GAM residuals were used to calculate snow-depth distribution based on terrain characteristics under different combinations of sample size and DEM spatial resolution (grid size).
Author Lehmann, A.
Moreno, J. Ignacio López
Latron, J.
Author_xml – sequence: 1
  fullname: Moreno, J. Ignacio López
– sequence: 2
  fullname: Latron, J
– sequence: 3
  fullname: Lehmann, A
BookMark eNp10cFu1DAQBmALFYltQeINyA0uacdx7CRHqEqXqgIkKAguluOMu4ZsnHq8KuHp8bIIiQOnkfx_M4ffx-xoChMy9pTDKQeozjbLfNpIVT9gKw5dV3Jo5RFbQdvKUkHbPGLHRN8AoIYWVmy8cA5toiK4gsx2HrEw01DcRj8U5H9iEaYibfKjtbto7PI7pWR6P_q07Lci3kYk8mEqe0OY0yncF35KGOcwmpSDYotpEwZ6zB46MxI--TNP2M3ri4_n6_L63eWb85fXpRWyq8tuAERhQXEr1QBgnXM9VLaXg3KmNaLqZd1VQ9PVdefEIFDKXtlG1LyqbWXECXt-uDvHcLdDSnrryeI4mgnDjnSbN5uON1WWLw7SxkAU0ek5-q2Ji-ag933q3Kfe95lpeaD3fsTlv06vv7z_13tK-OOvN_G7Vo1opP789lIr-LT-Kq5eaZn9s4N3JmiTP4D0zYcKuADeKsG5FL8A_EmSeQ
CitedBy_id crossref_primary_10_1016_j_apgeog_2023_103125
crossref_primary_10_1016_j_coldregions_2021_103344
crossref_primary_10_1155_2019_6823921
crossref_primary_10_1002_hyp_9408
crossref_primary_10_1016_j_jhydrol_2017_05_063
crossref_primary_10_1002_hyp_9667
crossref_primary_10_1002_hyp_10823
crossref_primary_10_1016_j_proenv_2012_01_047
crossref_primary_10_1016_j_advwatres_2012_08_010
crossref_primary_10_5194_essd_9_993_2017
crossref_primary_10_1002_hyp_10245
crossref_primary_10_1002_hyp_13756
crossref_primary_10_1007_s11629_016_4086_0
crossref_primary_10_1002_hyp_13951
crossref_primary_10_1088_1748_9326_abfe8d
crossref_primary_10_1016_j_sciaf_2020_e00584
crossref_primary_10_1016_j_jhydrol_2011_01_019
crossref_primary_10_1016_j_rse_2013_07_033
crossref_primary_10_1080_02626667_2019_1660780
crossref_primary_10_1002_hyp_9355
crossref_primary_10_3390_atmos13010003
crossref_primary_10_1016_j_yqres_2015_01_010
crossref_primary_10_1016_j_coldregions_2024_104134
crossref_primary_10_5194_tc_16_3269_2022
crossref_primary_10_5194_tc_8_1989_2014
crossref_primary_10_1017_S0954102012001216
crossref_primary_10_1080_07038992_2021_1988540
crossref_primary_10_1080_17445647_2013_869268
crossref_primary_10_1016_j_jhydrol_2015_12_015
crossref_primary_10_1080_22797254_2019_1605624
crossref_primary_10_1002_joc_6050
Cites_doi 10.5194/hess-11-1481-2007
10.1016/S0304-3800(99)00023-X
10.1016/j.jhydrol.2007.09.006
10.1002/joc.1676
10.1111/j.1365-2699.2006.01465.x
10.2307/1552484
10.1890/04-0914
10.3354/cr033257
10.1029/2003WR002973
10.1016/S0079-1946(97)00143-2
10.1002/hyp.6199
10.1002/hyp.5840
10.1111/j.1752-1688.2002.tb04379.x
10.1007/BF02837966
10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K
10.1002/hyp.1319
10.1029/1999WR900251
10.1080/02693799508902047
10.1016/j.jhydrol.2007.10.018
10.1029/93WR03553
10.1002/hyp.1239
10.1016/S0304-3800(02)00195-3
10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
10.1111/j.1467-9671.2004.00169.x
10.1080/01621459.1987.10478440
10.3189/172756402781817923
10.1111/j.1752-1688.1975.tb00715.x
10.1007/978-0-387-21606-5
10.1002/hyp.5586
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
DBID FBQ
BSCLL
AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1002/hyp.7564
DatabaseName AGRIS
Istex
CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 1928
ExternalDocumentID 10_1002_hyp_7564
HYP7564
ark_67375_WNG_60VHZ3JB_5
US201301863115
Genre article
GrantInformation_xml – fundername: Spanish Commission of Science and Technology
– fundername: FEDER
– fundername: ACQWA
  funderid: FP7‐ENV‐2007‐1‐212250
– fundername: EURO‐GEOSS
  funderid: FP7‐ENV‐2008‐1‐226487
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AHBTC
BSCLL
AAHBH
AITYG
HGLYW
OIG
AAYXX
CITATION
8FD
FR3
KR7
ID FETCH-LOGICAL-c3594-9d0ee3c061c56d00cfffb02cb5d6fa8a32b5492d79449f3d3e55b6c734124c2a3
IEDL.DBID DR2
ISSN 0885-6087
1099-1085
IngestDate Fri Aug 16 09:38:59 EDT 2024
Fri Aug 23 01:53:14 EDT 2024
Sat Aug 24 01:06:15 EDT 2024
Wed Jan 17 05:01:52 EST 2024
Wed Dec 27 19:19:56 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3594-9d0ee3c061c56d00cfffb02cb5d6fa8a32b5492d79449f3d3e55b6c734124c2a3
Notes http://dx.doi.org/10.1002/hyp.7564
Spanish Commission of Science and Technology
ark:/67375/WNG-60VHZ3JB-5
istex:EA220476A4C1240A9FF111E9A6FF2B33A5223B00
ArticleID:HYP7564
FEDER
EURO-GEOSS - No. FP7-ENV-2008-1-226487
ACQWA - No. FP7-ENV-2007-1-212250
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 879479172
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_879479172
crossref_primary_10_1002_hyp_7564
wiley_primary_10_1002_hyp_7564_HYP7564
istex_primary_ark_67375_WNG_60VHZ3JB_5
fao_agris_US201301863115
PublicationCentury 2000
PublicationDate 1 July 2010
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 1 July 2010
  day: 01
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Hastie T, Tibshirani R, Friedman J. 2001. The Elements of Statistical Learning. Springer Verlag: Berlin.
Erxleben J, Elder K, Davis R. 2002. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrological Processes 16: 3627-3649.
Erickson TA, Williams M, Winstral A. 2005. Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research 41: W04014.
Willmott CT. 1982. Some comments on the evaluation of model performance. Bulletin American Meteorological Society 63(11): 1309-1313.
López-Moreno JI, Nogués-Bravo D. 2006. Interpolating snow depth data: a comparison of methods. Hydrological Processes 20(10): 2217-2232.
López-Moreno JI, Vicente-Serrano SM, Lanjeri S. 2007. Mapping of snowpack distribution over large areas using GIS and interpolation techniques. Climate Research 33: 257-270.
Hastie T, Tibshirani R. 1987. Generalised additive model: some applications. Journal of American Statisticians Association 82: 371-386.
Kienzle S. 2004. The effect of DEM Raster resolution on first order, second order and Compound Terrain derivatives. Transactions in GIS 8(1): 83-111.
Wechsler S. 2006. Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrology and Earth System Sciences 11: 1481-1500.
Sogbedji JM, Mc Isaac FM. 2002. Modelling streamflow from artificially drained watersheds in Illinois. Journal of the American Water Resources association 38(6): 1753-1765.
Anderton SP, White SM, Alvera B. 2004. Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrological Processes 18(3): 435-453.
Molotch NP, Colee MT, Bales RC, Dozier J. 2005. Estimating the spatial distribution of snow water equivalent in an alpine basing using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrological Processes 19: 1459-1479.
Lehmann A, McOverton J, Leathwick JR. 2002. GRASP: generalized regression analysis and spatial prediction. Ecological Modelling 157: 189-207.
Haefner H, Seidel K, Releer S. 1997. Applications of snow cover mapping in high mountain regions. Physics and Chemistry of the Earth 22(3-4): 275-278.
Mittaz C, Imhof M, Hoelze M, Haeberli W. 2002. Snowmelt evolution mapping using an energy balance over an alpine terrain. Arctic, Antarctic and Alpine Research 34(3): 274-281.
Stähli M, Schaper J, Papritz A. 2002. Towards a snow-depth distribution model in a heterogeneous subalpine forest using a Landsat TM image and aerial photograph. The Annals of Glaciology 34: 65-70.
Maggini R, Lehmann A, Zimmermann NE, Guisan A. 2006. Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography 33: 1729-1749.
Cohen J, Cohen P, West SG, Aiken LS. 2003. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Lawrence Earlbaum Associates: Mahwah; 537 pp.
Austin MP. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. EcologicalModelling 157: 101-118.
Elder K, Rosenthal W, Davis R. 2000. Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrological Processes 12: 1793-1808.
Caine N. 1975. An elevational control of peak snowpack variability. Water Resources Bulletin 11(3): 613-621.
López-Moreno JI, Stähli M. 2008. Statistical analysis of the snowcover variability in a subalpine watershed: assessing the role of topography and forest interactions. Journal of Hydrology 348(3-4): 379-394.
Peterson AT, Cohoon KP. 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling 117: 159-164.
Gessler PE, Moore ID, McKenzie NJ, Ryan PJ. 1995. Soil-landscape modeling and spatial prediction of soil attributes. International Journal of GIS 9(4): 421-432.
Tang G, Hui Y, Strobl J, Liu W. 2001. The impact of resolution on the accuracy of hydrologic data derived from DEMs. Journal of Geographical Sciences 11(4): 393-401.
Wagner HH, Fortin MJ. 2005. Spatial analysis of landscapes, concepts and statistics. Ecology 86: 1975-1987.
Zhang W, Montgomery DR. 1994. Digital elevation model, gris size, landscape representation and hydrologic simulations. Water Resources Research 30: 1019-1028.
Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and Regression Trees. Chapman and Hall: New York.
Pons X, Ninyerola X. 2008. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. International Journal of Climatology 28: 1821-1834.
Jost G, Weiler M, Gluns DR, Alila Y. 2007. The influence of forest and topography on snow accumulation and melt at the watershed-scale. Journal of Hydrology 347: 101-113.
Balk B, Elder K. 2000. Combining binary decision and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resources Research 36(1): 13-26.
David D, Stockwell RB, Townsend-Peterson A. 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling 148: 2-13.
López-Moreno JI, Nogués-Bravo D. 2005. A generalized additive model for modelling the spatial distribution of snowpack in the Spanish Pyrenees. Hydrological Processes 19: 3167-3176.
2002; 16
2002; 38
1995; 9
2007; 347
1997; 22
2006b
2006a
2006; 33
2006; 11
2002; 157
2004; 8
2002; 34
2005; 41
2005; 86
2008; 348
1975; 11
2003
2007; 33
2005; 19
2006; 20
2004; 18
2000; 36
1987; 82
2001
2000; 12
1982; 63
2008; 28
2002; 148
1984
1999; 117
2001; 11
1994; 30
David D (e_1_2_1_8_1) 2002; 148
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
Austin MP (e_1_2_1_3_1) 2002; 157
e_1_2_1_26_1
e_1_2_1_29_1
e_1_2_1_31_1
e_1_2_1_30_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
Breiman L (e_1_2_1_5_1) 1984
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
Cohen J (e_1_2_1_7_1) 2003
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – volume: 22
  start-page: 275
  issue: 3–4
  year: 1997
  end-page: 278
  article-title: Applications of snow cover mapping in high mountain regions
  publication-title: Physics and Chemistry of the Earth
– volume: 34
  start-page: 65
  year: 2002
  end-page: 70
  article-title: Towards a snow‐depth distribution model in a heterogeneous subalpine forest using a Landsat TM image and aerial photograph
  publication-title: The Annals of Glaciology
– volume: 16
  start-page: 3627
  year: 2002
  end-page: 3649
  article-title: Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains
  publication-title: Hydrological Processes
– volume: 28
  start-page: 1821
  year: 2008
  end-page: 1834
  article-title: Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data
  publication-title: International Journal of Climatology
– volume: 11
  start-page: 613
  issue: 3
  year: 1975
  end-page: 621
  article-title: An elevational control of peak snowpack variability
  publication-title: Water Resources Bulletin
– volume: 12
  start-page: 1793
  year: 2000
  end-page: 1808
  article-title: Estimating the spatial distribution of snow water equivalence in a montane watershed
  publication-title: Hydrological Processes
– year: 2001
– volume: 117
  start-page: 159
  year: 1999
  end-page: 164
  article-title: Sensitivity of distributional prediction algorithms to geographic data completeness
  publication-title: Ecological Modelling
– volume: 18
  start-page: 435
  issue: 3
  year: 2004
  end-page: 453
  article-title: Evaluation of spatial variability in snow water equivalent for a high mountain catchment
  publication-title: Hydrological Processes
– year: 2006a
– volume: 86
  start-page: 1975
  year: 2005
  end-page: 1987
  article-title: Spatial analysis of landscapes, concepts and statistics
  publication-title: Ecology
– volume: 63
  start-page: 1309
  issue: 11
  year: 1982
  end-page: 1313
  article-title: Some comments on the evaluation of model performance
  publication-title: Bulletin American Meteorological Society
– volume: 82
  start-page: 371
  year: 1987
  end-page: 386
  article-title: Generalised additive model: some applications
  publication-title: Journal of American Statisticians Association
– volume: 148
  start-page: 2
  year: 2002
  end-page: 13
  article-title: Effects of sample size on accuracy of species distribution models
  publication-title: Ecological Modelling
– volume: 19
  start-page: 3167
  year: 2005
  end-page: 3176
  article-title: A generalized additive model for modelling the spatial distribution of snowpack in the Spanish Pyrenees
  publication-title: Hydrological Processes
– volume: 36
  start-page: 13
  issue: 1
  year: 2000
  end-page: 26
  article-title: Combining binary decision and geostatistical methods to estimate snow distribution in a mountain watershed
  publication-title: Water Resources Research
– volume: 347
  start-page: 101
  year: 2007
  end-page: 113
  article-title: The influence of forest and topography on snow accumulation and melt at the watershed‐scale
  publication-title: Journal of Hydrology
– volume: 34
  start-page: 274
  issue: 3
  year: 2002
  end-page: 281
  article-title: Snowmelt evolution mapping using an energy balance over an alpine terrain
  publication-title: Arctic, Antarctic and Alpine Research
– volume: 20
  start-page: 2217
  issue: 10
  year: 2006
  end-page: 2232
  article-title: Interpolating snow depth data: a comparison of methods
  publication-title: Hydrological Processes
– year: 1984
– volume: 19
  start-page: 1459
  year: 2005
  end-page: 1479
  article-title: Estimating the spatial distribution of snow water equivalent in an alpine basing using binary regression tree models: the impact of digital elevation data and independent variable selection
  publication-title: Hydrological Processes
– volume: 157
  start-page: 101
  year: 2002
  end-page: 118
  article-title: Spatial prediction of species distribution: an interface between ecological theory and statistical modeling
  publication-title: EcologicalModelling
– volume: 157
  start-page: 189
  year: 2002
  end-page: 207
  article-title: GRASP: generalized regression analysis and spatial prediction
  publication-title: Ecological Modelling
– volume: 41
  start-page: W04014
  year: 2005
  article-title: Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States
  publication-title: Water Resources Research
– volume: 8
  start-page: 83
  issue: 1
  year: 2004
  end-page: 111
  article-title: The effect of DEM Raster resolution on first order, second order and Compound Terrain derivatives
  publication-title: Transactions in GIS
– volume: 30
  start-page: 1019
  year: 1994
  end-page: 1028
  article-title: Digital elevation model, gris size, landscape representation and hydrologic simulations
  publication-title: Water Resources Research
– volume: 33
  start-page: 1729
  year: 2006
  end-page: 1749
  article-title: Improving generalized regression analysis for the spatial prediction of forest communities
  publication-title: Journal of Biogeography
– start-page: 537
  year: 2003
– year: 2006b
– volume: 9
  start-page: 421
  issue: 4
  year: 1995
  end-page: 432
  article-title: Soil‐landscape modeling and spatial prediction of soil attributes
  publication-title: International Journal of GIS
– volume: 33
  start-page: 257
  year: 2007
  end-page: 270
  article-title: Mapping of snowpack distribution over large areas using GIS and interpolation techniques
  publication-title: Climate Research
– volume: 11
  start-page: 393
  issue: 4
  year: 2001
  end-page: 401
  article-title: The impact of resolution on the accuracy of hydrologic data derived from DEMs
  publication-title: Journal of Geographical Sciences
– volume: 11
  start-page: 1481
  year: 2006
  end-page: 1500
  article-title: Uncertainties associated with digital elevation models for hydrologic applications: a review
  publication-title: Hydrology and Earth System Sciences
– volume: 348
  start-page: 379
  issue: 3–4
  year: 2008
  end-page: 394
  article-title: Statistical analysis of the snowcover variability in a subalpine watershed: assessing the role of topography and forest interactions
  publication-title: Journal of Hydrology
– volume: 38
  start-page: 1753
  issue: 6
  year: 2002
  end-page: 1765
  article-title: Modelling streamflow from artificially drained watersheds in Illinois
  publication-title: Journal of the American Water Resources association
– volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_1_5_1
  contributor:
    fullname: Breiman L
– ident: e_1_2_1_34_1
  doi: 10.5194/hess-11-1481-2007
– ident: e_1_2_1_28_1
  doi: 10.1016/S0304-3800(99)00023-X
– ident: e_1_2_1_18_1
  doi: 10.1016/j.jhydrol.2007.09.006
– ident: e_1_2_1_29_1
  doi: 10.1002/joc.1676
– ident: e_1_2_1_25_1
  doi: 10.1111/j.1365-2699.2006.01465.x
– ident: e_1_2_1_26_1
  doi: 10.2307/1552484
– ident: e_1_2_1_33_1
  doi: 10.1890/04-0914
– ident: e_1_2_1_16_1
– ident: e_1_2_1_24_1
  doi: 10.3354/cr033257
– ident: e_1_2_1_10_1
  doi: 10.1029/2003WR002973
– ident: e_1_2_1_13_1
  doi: 10.1016/S0079-1946(97)00143-2
– ident: e_1_2_1_22_1
  doi: 10.1002/hyp.6199
– ident: e_1_2_1_21_1
  doi: 10.1002/hyp.5840
– start-page: 537
  volume-title: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
  year: 2003
  ident: e_1_2_1_7_1
  contributor:
    fullname: Cohen J
– ident: e_1_2_1_30_1
  doi: 10.1111/j.1752-1688.2002.tb04379.x
– ident: e_1_2_1_32_1
  doi: 10.1007/BF02837966
– ident: e_1_2_1_9_1
  doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K
– ident: e_1_2_1_2_1
  doi: 10.1002/hyp.1319
– ident: e_1_2_1_4_1
  doi: 10.1029/1999WR900251
– ident: e_1_2_1_12_1
  doi: 10.1080/02693799508902047
– ident: e_1_2_1_23_1
  doi: 10.1016/j.jhydrol.2007.10.018
– ident: e_1_2_1_17_1
– ident: e_1_2_1_36_1
  doi: 10.1029/93WR03553
– volume: 148
  start-page: 2
  year: 2002
  ident: e_1_2_1_8_1
  article-title: Effects of sample size on accuracy of species distribution models
  publication-title: Ecological Modelling
  contributor:
    fullname: David D
– ident: e_1_2_1_11_1
  doi: 10.1002/hyp.1239
– ident: e_1_2_1_20_1
  doi: 10.1016/S0304-3800(02)00195-3
– volume: 157
  start-page: 101
  year: 2002
  ident: e_1_2_1_3_1
  article-title: Spatial prediction of species distribution: an interface between ecological theory and statistical modeling
  publication-title: EcologicalModelling
  contributor:
    fullname: Austin MP
– ident: e_1_2_1_35_1
  doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
– ident: e_1_2_1_19_1
  doi: 10.1111/j.1467-9671.2004.00169.x
– ident: e_1_2_1_14_1
  doi: 10.1080/01621459.1987.10478440
– ident: e_1_2_1_31_1
  doi: 10.3189/172756402781817923
– ident: e_1_2_1_6_1
  doi: 10.1111/j.1752-1688.1975.tb00715.x
– ident: e_1_2_1_15_1
  doi: 10.1007/978-0-387-21606-5
– ident: e_1_2_1_27_1
  doi: 10.1002/hyp.5586
SSID ssj0004080
Score 2.181255
Snippet This work analyses the responses of four regression-based interpolation methods for predicting snowpack distribution to changes in the number of data points...
This work analyses the responses of four regression‐based interpolation methods for predicting snowpack distribution to changes in the number of data points...
Abstract This work analyses the responses of four regression‐based interpolation methods for predicting snowpack distribution to changes in the number of data...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Publisher
StartPage 1914
SubjectTerms Classification
Data points
DEM resolution
Discrete element method
Interpolation
Mathematical models
Regression analysis
regression-based methods
sample size
Snow
spatial interpolation
Trees
Title Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods
URI https://api.istex.fr/ark:/67375/WNG-60VHZ3JB-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.7564
https://search.proquest.com/docview/879479172
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgG9jwRh1eMhJil6knsZ2ZJaC2o0qtEDBQYGH52Y4qOVUyI5iu-AS-kS_pvfakpUhIiFUWfsi-19c-iU_OJeSFcZjzXcoCsLUvuGe2MHDOFmbEBfchlDql89k_kNMZ3zsUh2tWJf4Lk_UhLj64YWSk_RoDXJtu61I09Hh1OqyFRClQ1NFDPPTuUjmKs5Q0DWJIFJKN6153lpVbfcMrJ9H1oBvAp2ja71fA5u-QNZ05O7fJ1360mWpyMlwuzNCe_SHk-H_TuUNuraEofZXXzl1yzcd75MY6K_rx6j6JWdq4o02gnUYZYaqjo0ft3NFufuZpEyngR6qtXbbarlIpoM3Et11hq9YfZZ5t_PXjJx6YUB6bb3Ses3tlHh7NWay7B2S2s_3hzbRY52cobCUmvJg45n1lARFYIR1jNoRgWGmNcDLoMXjZoP6bg5Dnk1C5ygthpK0rzHhtYRU8JBuxiX6T0HIEEwI04qArjorvxnvYbLzk1kNXkwF53vtKnWYZDpUFl0sFllNouQHZBCcqDVbo1Ox9iXeyo7FEOaEBeZk8e9FWtyfIaKuF-nSwqyT7OP1S7b1WUJH2rlcQZ3h5oqNvlp0awyxqeLctoa_kx7-OQ00_v8Xno3-t-JjczJwEJAE_IRuLdumfAtRZmGdpUZ8DaQr7OA
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbacigXylMN5WEkxG1TZ9f2JuIEiLKUNkLQQEFIlp9tVMlb7SaC9MRP4DfySxjb2ZYiISFOe_BD9ozH89me_Qahx8qEnO-cZ4CtbUYt0ZkCP5upAWXUOpfLmM5nf8yrCd09ZIcr6Gn3L0zihzi_cAuWEffrYODhQnr7gjX0eHHaLxmnq-gKWDuL56l3F9xRlMS0aWBFLONkWHbMsyTf7lpe8kWrTtaAUINwv12Cm7-D1uh1djbQl268KdjkpD-fqb4--4PK8T8ndB1dW6JR_CwtnxtoxfqbaH2ZGP14cQv5xG7c4trhVgYmYSy9wUfN1OB2emZx7TFASCy1njdSL2IpAM4YcrsIrRp7lEJt_c_vP4LPhHJff8XTlOArheLhlMi6vY0mOy8PXlTZMkVDpgs2otnIEGsLDaBAM24I0c45RXKtmOFODkHRKlDAGbB6OnKFKSxjiuuyCEmvNSyEO2jN195uIpwPYEIASAx0RQPpu7IW9hvLqbbQ1aiHHnXKEqeJiUMkzuVcgOREkFwPbYIWhQQptGLyPg_PsoMhD4xCPfQkqva8rWxOQlBbycTH8SvByYfqc7H7XEBF3OlegKmF9xPpbT1vxRBmUcLxNoe-oiL_Og5RfXobvnf_teJDtF4d7O-JvdfjN1voagpRCDHB99DarJnb-4B8ZupBXOG_ACIz_1o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYkIAX7mjlMoyEeEuXJrbTPsK2UgZUE1AY8GD5ulWTkippBd3TfgK_kV_COXazMSQkxFMefJF9Lj5f4pPvEPJUW6z5LkQC2NolzKUm0RBnE91jnDnvMxXK-bwdi9GE7R3wg1VWJf4LE_khzj64oWeE8xodfGb91jlp6NFy1i24YGvkMhN5hha98-6cOoqloWoaOBFPRNovWuLZNNtqR14IRWteVQBQUbbfL6DN3zFrCDrDG-Rru9yYa3LcXcx115z8weT4f_u5Sa6vsCh9Ho3nFrnkytvk6qos-tHyDikjt3FDK08bhTzCVJWWHtZTS5vpiaNVSQFAUmXMolZmGVoBboaE2yWOqt1hTLQtf57-wIgJ7WX1jU5jea-YiEdjGevmLpkMdz9sj5JVgYbE5HzAkoFNncsNQALDhU1T473XaWY0t8KrPqhZIwGcBZ9nA5_b3HGuhSlyLHltwAzukfWyKt0GoVkPNgRwxMJUDCnftXNw2jjBjIOpBh3ypNWVnEUeDhkZlzMJkpMouQ7ZACVKBVJo5OR9hpeyvb5APqEOeRY0ezZW1ceY0lZw-Wn8Uor04-hLvvdCQkfaql6Co-HtiSpdtWhkH3ZRwMttBnMFPf51HXL0eR-f9_-142NyZX9nKN-8Gr9-QK7F_ARMCH5I1uf1wj0C2DPXm8G-fwEvnP4J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+sample+and+grid+size+on+the+accuracy+and+stability+of+regression%E2%80%90based+snow+interpolation+methods&rft.jtitle=Hydrological+processes&rft.au=Moreno%2C+J.+Ignacio+L%C3%B3pez&rft.au=Latron%2C+J.&rft.au=Lehmann%2C+A.&rft.date=2010-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=24&rft.issue=14&rft.spage=1914&rft.epage=1928&rft_id=info:doi/10.1002%2Fhyp.7564&rft.externalDBID=10.1002%252Fhyp.7564&rft.externalDocID=HYP7564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon