Analytical fragility assessment using unscaled ground motion records

Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleg...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 46; no. 15; pp. 2639 - 2663
Main Authors Jalayer, Fatemeh, Ebrahimian, Hossein, Miano, Andrea, Manfredi, Gaetano, Sezen, Halil
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior.
AbstractList Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior.
Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so-called collapse cases. To formally consider the collapse cases, a 5-parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum-compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear-, shear-flexure-, and flexure-dominant behavior.
It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior.
Author Jalayer, Fatemeh
Miano, Andrea
Manfredi, Gaetano
Sezen, Halil
Ebrahimian, Hossein
Author_xml – sequence: 1
  givenname: Fatemeh
  orcidid: 0000-0002-7580-8309
  surname: Jalayer
  fullname: Jalayer, Fatemeh
  email: fatemeh.jalayer@unina.it
  organization: University of Naples Federico II
– sequence: 2
  givenname: Hossein
  surname: Ebrahimian
  fullname: Ebrahimian, Hossein
  organization: University of Naples Federico II
– sequence: 3
  givenname: Andrea
  surname: Miano
  fullname: Miano, Andrea
  organization: University of Naples Federico II
– sequence: 4
  givenname: Gaetano
  surname: Manfredi
  fullname: Manfredi, Gaetano
  organization: University of Naples Federico II
– sequence: 5
  givenname: Halil
  surname: Sezen
  fullname: Sezen, Halil
  organization: Ohio State University
BookMark eNp1kE1LAzEQhoMo2FbBn7DgxcvW2TS7SY6l1g8oiNB7SLOTkrJN2mQX2X_v1noSPc3APO_w8ozJpQ8eCbkrYFoA0Ec84pRKSi_IqABZ5VKw8pKMAKTIhWD8moxT2gHArAI-Ik9zr5u-dUY3mY166xrX9plOCVPao2-zLjm_zTqfBgLrbBtD5-tsH1oXfBbRhFinG3JldZPw9mdOyPp5uV685qv3l7fFfJWbWSlpLjVntWEzLgzjII2pGYhNVVpRGoHM2BIRObM4LHa41ZRXhrHKFhtLtZ5NyP357SGGY4epVbvQxaF_UoUsJQCjvBio6ZkyMaQU0SrjWn2q20btGlWAOolSgyh1EjUEHn4FDtHtdez_QvMz-uka7P_l1PJj-c1_Aeb0enA
CitedBy_id crossref_primary_10_1007_s10518_018_0381_1
crossref_primary_10_1177_8755293020919425
crossref_primary_10_1016_j_jobe_2024_109147
crossref_primary_10_1002_eer2_64
crossref_primary_10_1590_s1983_41952024000100005
crossref_primary_10_1016_j_istruc_2024_106726
crossref_primary_10_1016_j_strusafe_2020_101956
crossref_primary_10_1016_j_oceaneng_2020_108538
crossref_primary_10_1016_j_soildyn_2021_106770
crossref_primary_10_1016_j_asej_2024_102989
crossref_primary_10_3390_app11178253
crossref_primary_10_1680_jgeot_19_SiP_024
crossref_primary_10_1016_j_tust_2019_01_025
crossref_primary_10_3390_su12125106
crossref_primary_10_1002_eqe_3648
crossref_primary_10_1016_j_oceaneng_2023_115594
crossref_primary_10_1007_s40996_022_01019_0
crossref_primary_10_1016_j_engstruct_2020_110900
crossref_primary_10_1016_j_soildyn_2023_107966
crossref_primary_10_1016_j_soildyn_2022_107351
crossref_primary_10_1016_j_soildyn_2025_109238
crossref_primary_10_1007_s10518_020_00952_7
crossref_primary_10_1016_j_istruc_2024_106393
crossref_primary_10_1080_13632469_2024_2368159
crossref_primary_10_1002_eqe_3761
crossref_primary_10_1002_eqe_3734
crossref_primary_10_1061__ASCE_EM_1943_7889_0001864
crossref_primary_10_1016_j_engstruct_2024_118888
crossref_primary_10_1016_j_engstruct_2022_114910
crossref_primary_10_1080_13632469_2022_2030432
crossref_primary_10_3390_ma15072673
crossref_primary_10_1016_j_soildyn_2023_108370
crossref_primary_10_1016_j_engstruct_2022_115570
crossref_primary_10_1080_13632469_2024_2406527
crossref_primary_10_1177_87552930231220376
crossref_primary_10_1016_j_istruc_2023_03_179
crossref_primary_10_1007_s10518_023_01840_6
crossref_primary_10_3390_buildings13010004
crossref_primary_10_1016_j_strusafe_2024_102497
crossref_primary_10_1155_2018_7270137
crossref_primary_10_1016_j_jobe_2025_112267
crossref_primary_10_1007_s10518_020_01024_6
crossref_primary_10_1016_j_istruc_2024_106618
crossref_primary_10_3390_su16104318
crossref_primary_10_1016_j_soildyn_2023_107821
crossref_primary_10_1016_j_istruc_2024_107944
crossref_primary_10_1016_j_ijdrr_2021_102748
crossref_primary_10_1016_j_soildyn_2022_107253
crossref_primary_10_1177_87552930241262044
crossref_primary_10_3390_su12030892
crossref_primary_10_1016_j_soildyn_2020_106483
crossref_primary_10_37636_recit_v52234250
crossref_primary_10_1016_j_jcsr_2021_106877
crossref_primary_10_3389_feart_2022_910118
crossref_primary_10_1016_j_strusafe_2023_102324
crossref_primary_10_1016_j_oceaneng_2023_114972
crossref_primary_10_1002_stc_2331
crossref_primary_10_1016_j_istruc_2024_107338
crossref_primary_10_3390_buildings11060238
crossref_primary_10_1007_s10518_024_02084_8
crossref_primary_10_1016_j_compstruc_2023_106991
crossref_primary_10_1016_j_engstruct_2022_114980
crossref_primary_10_1016_j_compstruc_2019_03_004
crossref_primary_10_1080_13632469_2024_2382474
crossref_primary_10_1016_j_engstruct_2022_115273
crossref_primary_10_1002_eqe_3552
crossref_primary_10_1007_s11803_023_2164_1
crossref_primary_10_1016_j_jcsr_2022_107200
crossref_primary_10_1007_s10518_023_01635_9
crossref_primary_10_3390_app12168231
crossref_primary_10_1016_j_istruc_2021_08_097
crossref_primary_10_1016_j_engstruct_2023_117165
crossref_primary_10_1016_j_engstruct_2024_118554
crossref_primary_10_1007_s10518_022_01345_8
crossref_primary_10_1080_13632469_2020_1750508
crossref_primary_10_1016_j_soildyn_2023_107924
crossref_primary_10_1016_j_soildyn_2023_107925
crossref_primary_10_3390_buildings14123734
crossref_primary_10_3389_fbuil_2023_1183699
crossref_primary_10_1016_j_soildyn_2022_107705
crossref_primary_10_1007_s10518_020_00950_9
crossref_primary_10_1016_j_soildyn_2024_109058
crossref_primary_10_1016_j_engstruct_2021_113367
crossref_primary_10_1016_j_engstruct_2022_114077
crossref_primary_10_1016_j_engstruct_2022_114073
crossref_primary_10_35453_NEDJR_STMECH_2017_0012
crossref_primary_10_1080_23789689_2022_2028595
crossref_primary_10_1007_s40996_020_00394_w
crossref_primary_10_1016_j_engstruct_2021_113473
crossref_primary_10_1016_j_istruc_2021_07_031
crossref_primary_10_5194_nhess_23_909_2023
crossref_primary_10_1016_j_soildyn_2024_109023
crossref_primary_10_1002_eqe_3668
crossref_primary_10_1061_JBENF2_BEENG_7123
crossref_primary_10_1177_8755293019891717
crossref_primary_10_1007_s10518_023_01783_y
crossref_primary_10_1007_s10518_024_01923_y
crossref_primary_10_1016_j_soildyn_2025_109335
crossref_primary_10_1007_s10518_021_01061_9
crossref_primary_10_1080_15732479_2021_1956551
crossref_primary_10_1002_eqe_4193
crossref_primary_10_1145_3590957
crossref_primary_10_1007_s10518_021_01277_9
crossref_primary_10_21595_vp_2023_23433
crossref_primary_10_1016_j_tust_2024_105957
crossref_primary_10_1080_13632469_2019_1657989
crossref_primary_10_1016_j_jobe_2021_103648
crossref_primary_10_1002_eqe_3542
crossref_primary_10_1016_j_jobe_2022_105184
crossref_primary_10_1016_j_engstruct_2025_119950
crossref_primary_10_1002_eqe_3918
crossref_primary_10_29130_dubited_1180533
crossref_primary_10_1177_87552930221078324
crossref_primary_10_1007_s10518_020_00945_6
crossref_primary_10_3390_app11219844
crossref_primary_10_1016_j_prostr_2023_01_037
crossref_primary_10_1016_j_soildyn_2019_03_020
crossref_primary_10_1002_eqe_4324
crossref_primary_10_3390_infrastructures5030022
crossref_primary_10_1002_eqe_3597
crossref_primary_10_1002_eqe_3009
crossref_primary_10_1016_j_engstruct_2024_119442
crossref_primary_10_1016_j_engstruct_2024_118595
crossref_primary_10_1007_s10518_020_01006_8
crossref_primary_10_1007_s10518_022_01575_w
crossref_primary_10_1016_j_soildyn_2022_107624
crossref_primary_10_1016_j_engstruct_2020_110620
crossref_primary_10_1016_j_engstruct_2021_113832
crossref_primary_10_1016_j_istruc_2021_12_058
crossref_primary_10_3389_fbuil_2021_660103
crossref_primary_10_1177_87552930221103290
crossref_primary_10_1016_j_engstruct_2019_01_134
crossref_primary_10_3390_app12073687
crossref_primary_10_1002_eqe_3247
crossref_primary_10_1016_j_prostr_2023_01_265
crossref_primary_10_1007_s10518_019_00678_1
crossref_primary_10_1016_j_istruc_2020_09_049
crossref_primary_10_1016_j_engstruct_2024_119578
crossref_primary_10_1016_j_soildyn_2021_106829
crossref_primary_10_1007_s00500_023_09495_w
crossref_primary_10_3390_buildings14123863
crossref_primary_10_1016_j_aei_2020_101126
crossref_primary_10_1016_j_engappai_2023_107834
crossref_primary_10_1016_j_ress_2023_109104
crossref_primary_10_1080_15732479_2024_2319111
crossref_primary_10_1002_eqe_3576
crossref_primary_10_1007_s00024_025_03672_8
crossref_primary_10_3390_buildings14051263
crossref_primary_10_1016_j_engstruct_2022_114889
crossref_primary_10_1007_s10518_024_01955_4
crossref_primary_10_1016_j_rineng_2024_101826
crossref_primary_10_1016_j_soildyn_2023_108088
crossref_primary_10_1061__ASCE_ST_1943_541X_0002953
crossref_primary_10_3389_fbuil_2020_00022
crossref_primary_10_1061_AJRUA6_0001131
crossref_primary_10_1002_eqe_3222
crossref_primary_10_1007_s10518_022_01393_0
crossref_primary_10_1002_eqe_3955
crossref_primary_10_3208_jgssp_v10_OS_39_03
crossref_primary_10_1016_j_engstruct_2024_117853
crossref_primary_10_1016_j_oceaneng_2022_113083
crossref_primary_10_1016_j_soildyn_2022_107414
crossref_primary_10_1016_j_engstruct_2022_115436
crossref_primary_10_1016_j_engstruct_2022_114348
crossref_primary_10_1002_eqe_3393
crossref_primary_10_1016_j_compstruc_2020_106355
crossref_primary_10_1080_13632469_2020_1835753
crossref_primary_10_1590_s1983_41952022000100010
crossref_primary_10_1002_eqe_3276
crossref_primary_10_1007_s10518_022_01605_7
crossref_primary_10_1002_eqe_4242
crossref_primary_10_1007_s42417_023_01240_9
crossref_primary_10_3390_buildings12010072
crossref_primary_10_1177_8755293020919451
crossref_primary_10_1016_j_ijdrr_2022_103391
crossref_primary_10_3389_fbuil_2019_00023
crossref_primary_10_1016_j_istruc_2025_108303
crossref_primary_10_1016_j_strusafe_2020_101980
crossref_primary_10_1016_j_tust_2021_103981
crossref_primary_10_1007_s10518_021_01114_z
crossref_primary_10_1016_j_engstruct_2018_07_087
crossref_primary_10_1061__ASCE_ST_1943_541X_0002419
crossref_primary_10_1007_s42107_022_00533_w
crossref_primary_10_1016_j_engstruct_2020_111120
crossref_primary_10_1002_eqe_3044
crossref_primary_10_1002_eqe_4253
crossref_primary_10_1016_j_soildyn_2019_106023
crossref_primary_10_1002_eqe_3720
crossref_primary_10_1002_eqe_4259
crossref_primary_10_3390_su142012994
crossref_primary_10_1002_tal_1901
crossref_primary_10_1016_j_istruc_2025_108211
crossref_primary_10_1016_j_ijdrr_2023_103668
crossref_primary_10_1111_mice_13061
crossref_primary_10_3390_su15054185
crossref_primary_10_1007_s13349_020_00416_1
crossref_primary_10_1016_j_prostr_2024_09_096
crossref_primary_10_1016_j_engstruct_2021_112421
crossref_primary_10_1016_j_jobe_2024_108907
crossref_primary_10_1016_j_ijdrr_2020_101844
crossref_primary_10_1016_j_engstruct_2023_116383
crossref_primary_10_1016_j_engstruct_2024_119387
crossref_primary_10_1177_8755293020919430
crossref_primary_10_1016_j_engstruct_2022_113918
crossref_primary_10_1016_j_ijdrr_2024_104822
crossref_primary_10_1177_13694332251325919
crossref_primary_10_1002_eqe_3949
crossref_primary_10_1016_j_engstruct_2021_113732
crossref_primary_10_1080_13632469_2021_1961938
crossref_primary_10_1016_j_probengmech_2020_103081
crossref_primary_10_1016_j_engstruct_2022_114576
crossref_primary_10_1007_s10518_021_01065_5
crossref_primary_10_1061__ASCE_ST_1943_541X_0002998
crossref_primary_10_1142_S1793431122400048
crossref_primary_10_1002_eqe_3387
crossref_primary_10_1186_s43065_022_00061_6
Cites_doi 10.1061/(ASCE)0733-9399(2002)128:4(380)
10.1002/eqe.2792
10.1061/(ASCE)0733-9445(2001)127:2(219)
10.1016/j.strusafe.2006.03.003
10.1002/eqe.141
10.1016/S0266-8920(00)00012-6
10.1016/j.engstruct.2011.10.019
10.1002/eqe.693
10.1007/BF00162521
10.1193/1.1586011
10.1093/biomet/57.1.97
10.1080/13632469.2010.501193
10.1063/1.1699114
10.1002/eqe.2575
10.1080/13632460701673076
10.1002/eqe.2444
10.1002/eqe.2300
10.1193/1.2932078
10.1193/070913EQS197M
10.1016/j.soildyn.2012.03.004
10.1016/j.engstruct.2015.10.007
10.1016/j.compstruc.2014.07.019
10.1002/eqe.1081
10.1016/S0167-4730(99)00014-4
10.1007/s10518-010-9230-6
10.1061/(ASCE)EM.1943-7889.0000327
10.1193/053115EQS080M
10.1016/j.soildyn.2010.07.003
10.1193/1.2723158
10.1061/(ASCE)0733-9399(2000)126:12(1224)
10.1061/(ASCE)0733-9445(2002)128:4(526)
10.1785/0120110293
10.1193/021113EQS025M
10.1061/(ASCE)ST.1943-541X.0000215
10.1061/(ASCE)0733-9445(1996)122:12(1459)
10.1193/080613EQS225M
10.1007/s10518-015-9755-9
10.1016/j.strusafe.2007.05.004
10.1002/eqe.571
10.1007/s10518-014-9692-z
10.12989/sem.2008.28.1.039
10.1002/eqe.704
10.1193/1.2857546
10.1002/eqe.474
10.1016/j.strusafe.2009.04.003
10.1061/(ASCE)0733-9445(2004)130:11(1692)
10.1016/j.strusafe.2010.02.004
10.1002/eqe.702
10.1061/(ASCE)0733-9445(2007)133:1(57)
10.1002/(SICI)1099-1794(199609)5:3<151::AID-TAL76>3.0.CO;2-4
10.1061/(ASCE)0733-9445(2006)132:2(244)
10.1061/(ASCE)ST.1943-541X.0001224
10.1061/40944(249)22
10.1007/s10518-013-9571-z
10.1061/(ASCE)0733-9445(1998)124:11(1281)
10.1002/eqe.876
10.1193/1.3608002
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.2922
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 2663
ExternalDocumentID 10_1002_eqe_2922
EQE2922
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c3592-9a74dc4378c4709ccd408b65f85c8e4cf5eee74fef5efd40d276c446f1bf2aa3
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Sun Jul 13 03:22:17 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Tue Jul 01 02:21:57 EDT 2025
Wed Jan 22 17:05:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3592-9a74dc4378c4709ccd408b65f85c8e4cf5eee74fef5efd40d276c446f1bf2aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7580-8309
PQID 1959004271
PQPubID 866380
PageCount 25
ParticipantIDs proquest_journals_1959004271
crossref_citationtrail_10_1002_eqe_2922
crossref_primary_10_1002_eqe_2922
wiley_primary_10_1002_eqe_2922_EQE2922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 141
2006; 35
2000; 3
2015; 31
2016; 32
2006; 132
2016; 106
2011; 15
2008; 30
2007; 36
2007; 29
2001
2000
2000; 126
2005; 102
2004; 130
2007; 133
2015; 44
2008; 28
2008; 24
1983
1973 1973
2001; 16
1980
1996; 5
2011; 27
1998; 124
2012; 138
2007; 23
2010; 30
2014; 12
2005; 34
2016; 46
1953; 21
1998; 14
1996; 6
2015; 13
2011; 137
2010; 32
2012
2002; 31
2011
2013; 42
2011; 40
1998
2009
2008; 12
2013; 103
1996
2007
1999; 21
1994
1996; 122
2005
1993
2012; 39
2004
2003
2012; 34
2014; 43
1999
2001; 127
2011; 9
1970; 57
2002; 128
2016
2015
2014
2013
2014; 30
2014; 144
2009; 38
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_36_1
Radu AC (e_1_2_6_40_1) 2015
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
Elwood KJ (e_1_2_6_73_1) 2005; 102
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
Gerin M (e_1_2_6_72_1) 2004
Cornell CA (e_1_2_6_7_1) 2000; 3
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
(e_1_2_6_5_1) 2012
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
Kannan AE (e_1_2_6_8_1) 1973
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
Prakash V (e_1_2_6_9_1) 1993
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
(e_1_2_6_4_1) 2000
Krawinkler H (e_1_2_6_43_1) 2005
Luco N (e_1_2_6_19_1) 1998
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
(e_1_2_6_79_1) 2011
e_1_2_6_80_1
e_1_2_6_61_1
e_1_2_6_82_1
Bertero VV (e_1_2_6_15_1) 1980
Carr AJ (e_1_2_6_10_1) 2001
Lin T (e_1_2_6_21_1) 2013
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
Ditlevsen O (e_1_2_6_49_1) 1996
e_1_2_6_69_1
References_xml – year: 2011
– year: 2009
– volume: 126
  start-page: 1224
  issue: 12
  year: 2000
  end-page: 1231
  article-title: Statistical analysis of fragility curves
  publication-title: J Eng Mech (ASCE)
– volume: 38
  start-page: 951
  issue: 8
  year: 2009
  end-page: 972
  article-title: Alternative non‐linear demand estimation methods for probability‐based seismic assessments
  publication-title: Earthq Eng Struct Dyn
– year: 2005
– volume: 144
  start-page: 103
  year: 2014
  end-page: 118
  article-title: Sample‐based evaluation of global probabilistic sensitivity measures
  publication-title: Comput Struct
– year: 2001
– volume: 3
  start-page: 1
  issue: 2
  year: 2000
  end-page: 2
  article-title: Progress and challenges in seismic performance assessment
  publication-title: PEER Center News
– volume: 21
  start-page: 135
  issue: 2
  year: 1999
  end-page: 158
  article-title: A new adaptive importance sampling scheme for reliability calculations
  publication-title: Struct Saf
– volume: 34
  start-page: 527
  year: 2012
  end-page: 537
  article-title: Probabilistic seismic performance assessment of code‐compliant multi‐story RC buildings
  publication-title: Eng Struct
– volume: 130
  start-page: 1692
  issue: 11
  year: 2004
  end-page: 1703
  article-title: Shear strength model for lightly reinforced concrete columns
  publication-title: J Struct Eng
– volume: 16
  start-page: 103
  issue: 2
  year: 2001
  end-page: 113
  article-title: Updating robust reliability using structural test data
  publication-title: Probab Eng Mech
– volume: 24
  start-page: 493
  issue: 2
  year: 2008
  end-page: 511
  article-title: Model for the lateral behavior of reinforced concrete columns including shear deformations
  publication-title: Earthq Spectra
– start-page: 188
  year: 1980
  end-page: 237
– volume: 138
  start-page: 307
  issue: 3
  year: 2012
  end-page: 316
  article-title: Analyzing the sufficiency of alternative scalar and vector intensity measures of ground shaking based on information theory
  publication-title: J Eng Mech
– volume: 102
  start-page: 578
  issue: 4
  year: 2005
  end-page: 587
  article-title: Axial capacity model for shear‐damaged columns
  publication-title: ACI Struct J
– volume: 40
  start-page: 1163
  issue: 10
  year: 2011
  end-page: 1179
  article-title: Multi‐hazard upgrade decision making for critical infrastructure based on life‐cycle cost criteria
  publication-title: Earthq Eng Struct Dyn
– volume: 46
  start-page: 369
  year: 2016
  end-page: 389
  article-title: Seismic risk assessment considering cumulative damage due to aftershocks
  publication-title: Earthq Eng Struct Dyn
– year: 1994
– volume: 44
  start-page: 2057
  issue: 12
  year: 2015
  end-page: 2073
  article-title: Average spectral acceleration as an intensity measure for collapse risk assessment
  publication-title: Earthq Eng Struct Dyn
– year: 2014
– year: 1998
– volume: 141
  issue: 11
  year: 2015
  article-title: Multiphase performance assessment of structural response to seismic excitations
  publication-title: J Struct Eng ASCE
– volume: 30
  start-page: 320
  issue: 4
  year: 2008
  end-page: 336
  article-title: Improved seismic fragility modeling from empirical data
  publication-title: Struct Saf
– volume: 133
  start-page: 57
  issue: 1
  year: 2007
  end-page: 66
  article-title: Methods to assess the seismic collapse capacity of building structures: state of the art
  publication-title: J Struct Eng
– volume: 36
  start-page: 1935
  issue: 13
  year: 2007
  end-page: 1952
  article-title: Fragility assessment of building structural systems in mid‐America
  publication-title: Earthq Eng Struct Dyn 2007
– volume: 31
  start-page: 491
  issue: 3
  year: 2002
  end-page: 514
  article-title: Incremental Dynamic Analysis
  publication-title: Earthq Eng Struct Dyn
– volume: 13
  start-page: 2805
  issue: 10
  year: 2015
  end-page: 2840
  article-title: Preliminary ranking of alternative scalar and vector intensity measures of ground shaking
  publication-title: Bull Earthq Eng
– volume: 127
  start-page: 219
  issue: 2
  year: 2001
  end-page: 228
  article-title: Seismic fragility of RC structural walls: displacement approach
  publication-title: J Struct Eng ASCE
– volume: 5
  start-page: 151
  issue: 3
  year: 1996
  end-page: 182
  article-title: Analysis of the Northridge earthquake response of a damaged non‐ductile concrete frame building
  publication-title: Struct Des Tall Build
– year: 2004
– volume: 6
  start-page: 113
  issue: 2
  year: 1996
  end-page: 119
  article-title: Metropolized independent sampling with comparisons to rejection sampling and importance sampling
  publication-title: Stat Comput
– volume: 15
  start-page: 362
  issue: 3
  year: 2011
  end-page: 389
  article-title: Knowledge‐based performance assessment of existing RC buildings
  publication-title: J Earthq Eng
– volume: 132
  start-page: 244
  issue: 2
  year: 2006
  end-page: 252
  article-title: Plastic hinge integration methods for force‐based beam–column elements
  publication-title: J Struct Eng
– volume: 27
  start-page: 797
  issue: 3
  year: 2011
  end-page: 815
  article-title: A computationally efficient ground‐motion selection algorithm for matching a target response spectrum mean and variance
  publication-title: Earthq Spectra
– volume: 43
  start-page: 2179
  issue: 14
  year: 2014
  end-page: 2197
  article-title: A performance‐based framework for adaptive seismic aftershock risk assessment
  publication-title: Earthq Eng Struct Dyn
– year: 1993
– year: 1973 1973
– year: 1983
– volume: 39
  start-page: 61
  issue: 1
  year: 2012
  end-page: 77
  article-title: The exact and approximate conditional spectra in the multi‐seismic‐sources regions
  publication-title: Int J Soil Dyn Earthquake Eng
– volume: 30
  start-page: 989
  issue: 3
  year: 2014
  end-page: 1005
  article-title: NGA‐West2 database
  publication-title: Earthq Spectra
– volume: 13
  start-page: 1183
  issue: 4
  year: 2015
  end-page: 1203
  article-title: Bayesian Cloud Analysis: efficient structural fragility assessment using linear regression
  publication-title: Bull Earthq Eng
– volume: 9
  start-page: 997
  issue: 4
  year: 2011
  end-page: 1014
  article-title: A decision support system for post‐earthquake reliability assessment of structures subjected to aftershocks: an application to L'Aquila earthquake, 2009
  publication-title: Bull Earthq Eng
– volume: 31
  start-page: 579
  issue: 1
  year: 2015
  end-page: 599
  article-title: Efficient analytical fragility function fitting using dynamic structural analysis
  publication-title: Earthq Spectra
– volume: 32
  start-page: 1507
  issue: 3
  year: 2016
  end-page: 1524
  article-title: Vector and scalar IMs in structural response estimation, Part I: hazard analysis
  publication-title: Earthq Spectra
– year: 2007
– volume: 12
  start-page: 1725
  issue: 4
  year: 2014
  end-page: 1753
  article-title: Vector fragility surfaces for reinforced concrete frames in Europe
  publication-title: Bull Earthq Eng
– year: 2003
– year: 2000
– year: 1996
– volume: 23
  start-page: 357
  issue: 2
  year: 2007
  end-page: 392
  article-title: Structure‐specific scalar intensity measures for near‐source and ordinary earthquake ground motions
  publication-title: Earthq Spectra
– volume: 42
  start-page: 1827
  issue: 12
  year: 2013
  end-page: 1845
  article-title: Alternative closed‐form solutions for the mean rate of exceedance of structural limit states
  publication-title: Earthq Eng Struct Dyn
– volume: 31
  start-page: 1991
  issue: 4
  year: 2015
  end-page: 2006
  article-title: Development of collapse indicators for risk assessment of older‐type reinforced concrete buildings
  publication-title: Earthq Spectra
– volume: 128
  start-page: 380
  issue: 4
  year: 2002
  end-page: 391
  article-title: Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation
  publication-title: J Eng Mech (ASCE)
– year: 2016
– volume: 30
  start-page: 1513
  issue: 2
  year: 2010
  end-page: 1527
  article-title: Disaggregation‐based response weighting scheme for seismic risk assessment of structures
  publication-title: Soil Dyn Earthq Eng
– volume: 32
  start-page: 220
  issue: 3
  year: 2010
  end-page: 228
  article-title: Structural modeling uncertainties and their influence on seismic assessment of existing RC structures
  publication-title: Struct Saf
– volume: 24
  start-page: 139
  issue: 1
  year: 2008
  end-page: 171
  article-title: NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s
  publication-title: Earthq Spectra
– year: 2012
– volume: 34
  start-page: 1193
  issue: 10
  year: 2005
  end-page: 1217
  article-title: A vector‐valued ground motion intensity measure consisting of spectral acceleration and epsilon
  publication-title: Earthq Eng Struct Dyn
– volume: 28
  start-page: 39
  issue: 1
  year: 2008
  end-page: 52
  article-title: Shear deformation model for reinforced concrete columns
  publication-title: Struct Eng Mech
– volume: 32
  start-page: 1
  issue: 1
  year: 2010
  end-page: 12
  article-title: Seismic fragilities for non‐ductile reinforced concrete frames—role of aleatoric and epistemic uncertainties
  publication-title: Struct Saf
– volume: 29
  start-page: 132
  issue: 2
  year: 2007
  end-page: 145
  article-title: Improved probabilistic quantification of drift demands for seismic evaluation
  publication-title: Struct Saf
– volume: 137
  start-page: 322
  issue: 3
  year: 2011
  end-page: 331
  article-title: Conditional mean spectrum: tool for ground motion selection
  publication-title: J Struct Eng ASCE
– volume: 128
  start-page: 526
  issue: 4
  year: 2002
  end-page: 533
  article-title: Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines
  publication-title: J Struct Eng ASCE
– start-page: 225
  year: 2015
  end-page: 235
– volume: 106
  start-page: 109
  year: 2016
  end-page: 123
  article-title: Performance‐based flood safety‐checking for non‐engineered masonry structures
  publication-title: Eng Struct
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  end-page: 1092
  article-title: Equations of state calculations by fast computing machines
  publication-title: J Chem Phys
– volume: 14
  start-page: 469
  issue: 3
  year: 1998
  end-page: 500
  article-title: Earthquakes, records, and nonlinear responses
  publication-title: Earthq Spectra
– volume: 122
  start-page: 1459
  issue: 12
  year: 1996
  end-page: 1467
  article-title: Method for probabilistic evaluation of seismic structural damage
  publication-title: J Struct Eng
– volume: 36
  start-page: 2059
  issue: 13
  year: 2007
  end-page: 2079
  article-title: A scalar damage measure for seismic reliability analysis of RC frames
  publication-title: Earthq Eng Struct Dyn
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  end-page: 109
  article-title: Monte‐Carlo sampling methods using Markov Chains and their applications
  publication-title: Biometrika
– volume: 12
  start-page: 534
  issue: 4
  year: 2008
  end-page: 554
  article-title: Vector‐valued intensity measures incorporating spectral shape for prediction of structural response
  publication-title: J Earthq Eng
– volume: 35
  start-page: 1077
  issue: 9
  year: 2006
  end-page: 1095
  article-title: Spectral shape, epsilon and record selection
  publication-title: Earthq Eng Struct Dyn
– volume: 36
  start-page: 1901
  issue: 13
  year: 2007
  end-page: 1914
  article-title: Assessment of probability of collapse and design for collapse safety
  publication-title: Earthq Eng Struct Dyn
– volume: 103
  start-page: 1103
  issue: 2A
  year: 2013
  end-page: 1116
  article-title: Conditional spectrum computation incorporating multiple causal earthquakes and ground motion prediction models
  publication-title: Bull Seismol Soc Am
– volume: 124
  start-page: 1281
  issue: 11
  year: 1998
  end-page: 1289
  article-title: Three proposals for characterizing MDOF nonlinear seismic response
  publication-title: J Struct Eng ASCE
– year: 1999
– year: 2013
– ident: e_1_2_6_61_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:4(380)
– volume-title: Ruaumoko. Computer Program Library, Department of Civil Engineering
  year: 2001
  ident: e_1_2_6_10_1
– start-page: 188
  volume-title: Structural Engineering and Structural Mechanics, A Volume Honoring Edgar P. Popov
  year: 1980
  ident: e_1_2_6_15_1
– ident: e_1_2_6_59_1
  doi: 10.1002/eqe.2792
– ident: e_1_2_6_38_1
  doi: 10.1061/(ASCE)0733-9445(2001)127:2(219)
– ident: e_1_2_6_58_1
  doi: 10.1016/j.strusafe.2006.03.003
– ident: e_1_2_6_11_1
  doi: 10.1002/eqe.141
– ident: e_1_2_6_60_1
  doi: 10.1016/S0266-8920(00)00012-6
– start-page: 225
  volume-title: Bayesian Statistics: Applications to Earthquake Engineering
  year: 2015
  ident: e_1_2_6_40_1
– ident: e_1_2_6_33_1
  doi: 10.1016/j.engstruct.2011.10.019
– ident: e_1_2_6_45_1
– volume-title: Structural Engineering World Wide
  year: 1998
  ident: e_1_2_6_19_1
– ident: e_1_2_6_30_1
  doi: 10.1002/eqe.693
– ident: e_1_2_6_83_1
  doi: 10.1007/BF00162521
– ident: e_1_2_6_75_1
– ident: e_1_2_6_18_1
  doi: 10.1193/1.1586011
– ident: e_1_2_6_82_1
  doi: 10.1093/biomet/57.1.97
– ident: e_1_2_6_63_1
  doi: 10.1080/13632469.2010.501193
– ident: e_1_2_6_81_1
  doi: 10.1063/1.1699114
– ident: e_1_2_6_46_1
  doi: 10.1002/eqe.2575
– ident: e_1_2_6_44_1
– ident: e_1_2_6_26_1
  doi: 10.1080/13632460701673076
– ident: e_1_2_6_53_1
  doi: 10.1002/eqe.2444
– volume: 102
  start-page: 578
  issue: 4
  year: 2005
  ident: e_1_2_6_73_1
  article-title: Axial capacity model for shear‐damaged columns
  publication-title: ACI Struct J
– ident: e_1_2_6_35_1
  doi: 10.1002/eqe.2300
– ident: e_1_2_6_66_1
– ident: e_1_2_6_69_1
  doi: 10.1193/1.2932078
– ident: e_1_2_6_76_1
  doi: 10.1193/070913EQS197M
– ident: e_1_2_6_29_1
  doi: 10.1016/j.soildyn.2012.03.004
– ident: e_1_2_6_64_1
  doi: 10.1016/j.engstruct.2015.10.007
– ident: e_1_2_6_3_1
– ident: e_1_2_6_6_1
– ident: e_1_2_6_84_1
  doi: 10.1016/j.compstruc.2014.07.019
– ident: e_1_2_6_51_1
  doi: 10.1002/eqe.1081
– ident: e_1_2_6_85_1
  doi: 10.1016/S0167-4730(99)00014-4
– ident: e_1_2_6_52_1
  doi: 10.1007/s10518-010-9230-6
– volume-title: FEMA P‐58‐1 Seismic Performance Assessment of Buildings Volume 1‐Methodology
  year: 2012
  ident: e_1_2_6_5_1
– ident: e_1_2_6_12_1
– ident: e_1_2_6_23_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000327
– volume-title: Earthquake Engineering Research Center (EERC) 73–6
  year: 1973
  ident: e_1_2_6_8_1
– ident: e_1_2_6_47_1
  doi: 10.1193/053115EQS080M
– ident: e_1_2_6_32_1
  doi: 10.1016/j.soildyn.2010.07.003
– ident: e_1_2_6_22_1
  doi: 10.1193/1.2723158
– ident: e_1_2_6_39_1
  doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224)
– ident: e_1_2_6_14_1
  doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
– ident: e_1_2_6_28_1
  doi: 10.1785/0120110293
– ident: e_1_2_6_80_1
  doi: 10.1193/021113EQS025M
– ident: e_1_2_6_27_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000215
– ident: e_1_2_6_42_1
– ident: e_1_2_6_16_1
  doi: 10.1061/(ASCE)0733-9445(1996)122:12(1459)
– ident: e_1_2_6_50_1
  doi: 10.1193/080613EQS225M
– ident: e_1_2_6_24_1
  doi: 10.1007/s10518-015-9755-9
– ident: e_1_2_6_65_1
  doi: 10.1016/j.strusafe.2007.05.004
– ident: e_1_2_6_74_1
– volume-title: Pacific Earthquake Engineering Research Center (PEER)
  year: 2005
  ident: e_1_2_6_43_1
– volume: 3
  start-page: 1
  issue: 2
  year: 2000
  ident: e_1_2_6_7_1
  article-title: Progress and challenges in seismic performance assessment
  publication-title: PEER Center News
– ident: e_1_2_6_20_1
  doi: 10.1002/eqe.571
– volume-title: Proceedings of the 11th International Conference on Structural Safety and Reliability (ICOSSAR 2013)
  year: 2013
  ident: e_1_2_6_21_1
– ident: e_1_2_6_34_1
  doi: 10.1007/s10518-014-9692-z
– ident: e_1_2_6_71_1
  doi: 10.12989/sem.2008.28.1.039
– ident: e_1_2_6_48_1
  doi: 10.1002/eqe.704
– ident: e_1_2_6_78_1
  doi: 10.1193/1.2857546
– volume-title: Selecting and Scaling Earthquake Ground Motions for Performing Response‐history Analyses
  year: 2011
  ident: e_1_2_6_79_1
– ident: e_1_2_6_25_1
  doi: 10.1002/eqe.474
– ident: e_1_2_6_31_1
  doi: 10.1016/j.strusafe.2009.04.003
– ident: e_1_2_6_70_1
  doi: 10.1061/(ASCE)0733-9445(2004)130:11(1692)
– ident: e_1_2_6_41_1
– ident: e_1_2_6_62_1
  doi: 10.1016/j.strusafe.2010.02.004
– ident: e_1_2_6_2_1
– ident: e_1_2_6_56_1
  doi: 10.1002/eqe.702
– volume-title: Structural Reliability Methods
  year: 1996
  ident: e_1_2_6_49_1
– volume-title: FEMA‐350 Recommended Seismic Design Criteria for New Steel Moment‐Frame Buildings
  year: 2000
  ident: e_1_2_6_4_1
– ident: e_1_2_6_55_1
  doi: 10.1061/(ASCE)0733-9445(2007)133:1(57)
– volume-title: DRAIN‐2DX: Basic Program Description and User Guide. Report No. UCB/SEMM‐93/17
  year: 1993
  ident: e_1_2_6_9_1
– ident: e_1_2_6_67_1
  doi: 10.1002/(SICI)1099-1794(199609)5:3<151::AID-TAL76>3.0.CO;2-4
– volume-title: Proceedings of the 13th World Conference on Earthquake Engineering
  year: 2004
  ident: e_1_2_6_72_1
– ident: e_1_2_6_68_1
  doi: 10.1061/(ASCE)0733-9445(2006)132:2(244)
– ident: e_1_2_6_37_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001224
– ident: e_1_2_6_54_1
  doi: 10.1061/40944(249)22
– ident: e_1_2_6_36_1
  doi: 10.1007/s10518-013-9571-z
– ident: e_1_2_6_17_1
  doi: 10.1061/(ASCE)0733-9445(1998)124:11(1281)
– ident: e_1_2_6_57_1
– ident: e_1_2_6_13_1
  doi: 10.1002/eqe.876
– ident: e_1_2_6_77_1
  doi: 10.1193/1.3608002
SSID ssj0003607
Score 2.6147776
Snippet Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of...
It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple...
Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2639
SubjectTerms Bayesian parameter estimation
Capacity
Cloud Analysis
Clouds
Collapse
Computer simulation
Confidence intervals
Demand analysis
Dynamic analysis
Flexing
Fragility
Ground motion
Markov chains
Monte Carlo simulation
Nonlinear analysis
nonlinear dynamic analysis
performance‐based earthquake engineering
Records
record‐to‐record variability
regression
Regression analysis
Reinforced concrete
Shear
Simulation
Statistical analysis
Statistical methods
Unity
Title Analytical fragility assessment using unscaled ground motion records
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2922
https://www.proquest.com/docview/1959004271
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCD7KQHv8XplAiip25dkrbpUXRjCArKhIGHks8dlKrrdtC_3ry03aYoiKcG-gJtPl5eXl5-D6FTqSXlTgsG1BIbMK1ZIBIjA07h2IrFbljBie7NbTx4YNejaFRFVcJdmJIPMXe4wczw-homuJBFZwENNW-mTVIC6hdCtcAeul-Qo2gcznGZ3Gngmjsbkk5d8etKtDAvl41Uv8r0N9Bj_X1lcMlTezaVbfXxDd34vx_YROuV8YkvytGyhVZMvo3WlpCEO-jKU0q8gxvbiRhD6Ow7FnN-J4ZA-TGe5YWTMBrDrZBc4zIZEC5dPsUuGvZ7w8tBUGVaCBSNUhKkImFaMZpwxZIwVUqzkMs4sjxS3DBlI2NMwqxxBeveaZLEym0kbVdaIgTdQ438JTf7CHPDbRRSGVrpdp5a88jKxLhNUVc4w0yLJjqvGz1TFYUckmE8ZyU_mWSuWTJoliY6mUu-luSNH2Radb9l1dwrMsDl-BQi3SY68x3wa_2sd9eD58FfBQ_RKoF13ceztFBjOpmZI2eVTOWxH3-fvxPf1g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEIAHqQf14FusVl1B9JQ23WySDZ5EW6q2BaVCD0LIvnpQovZx0F_v7iZpqyiIpwQygWQfszOzs98AnDDBPKq1oOMprBwiBHGSUDKHembbigR6WJkd3U43aD2Qm77fX4Dz4ixMxoeYBtzMzLD62kxwE5Cuzaih8k1WcYS1_l00Bb2tP3U_Y0d5gTsFZlKtgwvyrItrxZtf16KZgTlvptp1prkGj8UXZuklT9XJmFX5xzd44z9_YR1Wc_sTXWQDZgMWZLoJK3NUwi24sqASG-NGapgMTPbsO0qmCE9kcuUHaJKOtIQUyBwMSQXK6gGhLOoz2oZes9G7bDl5sQWHe36EnSgJieDECyknoRtxLohLWeAr6nMqCVe-lDIkSuobpZ8JHAZc-5KqzhROEm8HSulLKncBUUmV73rMVUw7n0JQX7FQar-onmjbTCRlOCtaPeY5iNzUw3iOM4QyjnWzxKZZynA8lXzN4Bs_yFSKjovz6TeKDTHHVhGpl-HU9sCv78eNu4a57v1V8AiWWr1OO25fd2_3YRmbZd6mt1SgNB5O5IE2Usbs0A7GT7hZ4_E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEICDVBA9-BarVSOInrbdJtnd7FFsS30VlQoFDyHPHpS19nHQX2-yj7aKgnjawE5gN5lMJsnkGwBOhBKYWivoYYOMR5QiHo-08Ch2x1YktGrlTnRvO2H7kVz1gl4eVenuwmR8iOmGmxsZqb12A3ygTG0GDdVvuopiZM3vIgl96jS68TBDR-HQn_IyqTXBBXjWR7Wi5tepaOZfznup6TTTWgNPxQdm0SXP1clYVOXHN3bj__5gHazm3ic8z9RlAyzoZBOszDEJt0AjxZSkO9zQDHnfxc6-Qz4FeEIXKd-Hk2RkJbSC7lpIomCWDQhmez6jbdBtNbsXbS9PteBJHMTIi3lElCQ4opJEfiylIj4VYWBoIKkm0gRa64gYbQvGvlMoCqVdSZq6MIhzvANKyWuidwGkmprAx8I3wi49laKBEZG2q6I6t56Z4mVwVjQ6kzmG3GXDeGEZQBkx2yzMNUsZHE8lBxl64weZStFvLB98I-Z4OWkOkXoZnKYd8Gt91rxvuufeXwWPwNJdo8VuLjvX-2AZuTk-jW2pgNJ4ONEH1kMZi8NUFT8BRxviqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+fragility+assessment+using+unscaled+ground+motion+records&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Jalayer%2C+Fatemeh&rft.au=Ebrahimian%2C+Hossein&rft.au=Miano%2C+Andrea&rft.au=Manfredi%2C+Gaetano&rft.date=2017-12-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=46&rft.issue=15&rft.spage=2639&rft.epage=2663&rft_id=info:doi/10.1002%2Feqe.2922&rft.externalDBID=10.1002%252Feqe.2922&rft.externalDocID=EQE2922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon