Analytical fragility assessment using unscaled ground motion records
Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleg...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 46; no. 15; pp. 2639 - 2663 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior. |
---|---|
AbstractList | Summary
It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior. Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so-called collapse cases. To formally consider the collapse cases, a 5-parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum-compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear-, shear-flexure-, and flexure-dominant behavior. It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior. |
Author | Jalayer, Fatemeh Miano, Andrea Manfredi, Gaetano Sezen, Halil Ebrahimian, Hossein |
Author_xml | – sequence: 1 givenname: Fatemeh orcidid: 0000-0002-7580-8309 surname: Jalayer fullname: Jalayer, Fatemeh email: fatemeh.jalayer@unina.it organization: University of Naples Federico II – sequence: 2 givenname: Hossein surname: Ebrahimian fullname: Ebrahimian, Hossein organization: University of Naples Federico II – sequence: 3 givenname: Andrea surname: Miano fullname: Miano, Andrea organization: University of Naples Federico II – sequence: 4 givenname: Gaetano surname: Manfredi fullname: Manfredi, Gaetano organization: University of Naples Federico II – sequence: 5 givenname: Halil surname: Sezen fullname: Sezen, Halil organization: Ohio State University |
BookMark | eNp1kE1LAzEQhoMo2FbBn7DgxcvW2TS7SY6l1g8oiNB7SLOTkrJN2mQX2X_v1noSPc3APO_w8ozJpQ8eCbkrYFoA0Ec84pRKSi_IqABZ5VKw8pKMAKTIhWD8moxT2gHArAI-Ik9zr5u-dUY3mY166xrX9plOCVPao2-zLjm_zTqfBgLrbBtD5-tsH1oXfBbRhFinG3JldZPw9mdOyPp5uV685qv3l7fFfJWbWSlpLjVntWEzLgzjII2pGYhNVVpRGoHM2BIRObM4LHa41ZRXhrHKFhtLtZ5NyP357SGGY4epVbvQxaF_UoUsJQCjvBio6ZkyMaQU0SrjWn2q20btGlWAOolSgyh1EjUEHn4FDtHtdez_QvMz-uka7P_l1PJj-c1_Aeb0enA |
CitedBy_id | crossref_primary_10_1007_s10518_018_0381_1 crossref_primary_10_1177_8755293020919425 crossref_primary_10_1016_j_jobe_2024_109147 crossref_primary_10_1002_eer2_64 crossref_primary_10_1590_s1983_41952024000100005 crossref_primary_10_1016_j_istruc_2024_106726 crossref_primary_10_1016_j_strusafe_2020_101956 crossref_primary_10_1016_j_oceaneng_2020_108538 crossref_primary_10_1016_j_soildyn_2021_106770 crossref_primary_10_1016_j_asej_2024_102989 crossref_primary_10_3390_app11178253 crossref_primary_10_1680_jgeot_19_SiP_024 crossref_primary_10_1016_j_tust_2019_01_025 crossref_primary_10_3390_su12125106 crossref_primary_10_1002_eqe_3648 crossref_primary_10_1016_j_oceaneng_2023_115594 crossref_primary_10_1007_s40996_022_01019_0 crossref_primary_10_1016_j_engstruct_2020_110900 crossref_primary_10_1016_j_soildyn_2023_107966 crossref_primary_10_1016_j_soildyn_2022_107351 crossref_primary_10_1016_j_soildyn_2025_109238 crossref_primary_10_1007_s10518_020_00952_7 crossref_primary_10_1016_j_istruc_2024_106393 crossref_primary_10_1080_13632469_2024_2368159 crossref_primary_10_1002_eqe_3761 crossref_primary_10_1002_eqe_3734 crossref_primary_10_1061__ASCE_EM_1943_7889_0001864 crossref_primary_10_1016_j_engstruct_2024_118888 crossref_primary_10_1016_j_engstruct_2022_114910 crossref_primary_10_1080_13632469_2022_2030432 crossref_primary_10_3390_ma15072673 crossref_primary_10_1016_j_soildyn_2023_108370 crossref_primary_10_1016_j_engstruct_2022_115570 crossref_primary_10_1080_13632469_2024_2406527 crossref_primary_10_1177_87552930231220376 crossref_primary_10_1016_j_istruc_2023_03_179 crossref_primary_10_1007_s10518_023_01840_6 crossref_primary_10_3390_buildings13010004 crossref_primary_10_1016_j_strusafe_2024_102497 crossref_primary_10_1155_2018_7270137 crossref_primary_10_1016_j_jobe_2025_112267 crossref_primary_10_1007_s10518_020_01024_6 crossref_primary_10_1016_j_istruc_2024_106618 crossref_primary_10_3390_su16104318 crossref_primary_10_1016_j_soildyn_2023_107821 crossref_primary_10_1016_j_istruc_2024_107944 crossref_primary_10_1016_j_ijdrr_2021_102748 crossref_primary_10_1016_j_soildyn_2022_107253 crossref_primary_10_1177_87552930241262044 crossref_primary_10_3390_su12030892 crossref_primary_10_1016_j_soildyn_2020_106483 crossref_primary_10_37636_recit_v52234250 crossref_primary_10_1016_j_jcsr_2021_106877 crossref_primary_10_3389_feart_2022_910118 crossref_primary_10_1016_j_strusafe_2023_102324 crossref_primary_10_1016_j_oceaneng_2023_114972 crossref_primary_10_1002_stc_2331 crossref_primary_10_1016_j_istruc_2024_107338 crossref_primary_10_3390_buildings11060238 crossref_primary_10_1007_s10518_024_02084_8 crossref_primary_10_1016_j_compstruc_2023_106991 crossref_primary_10_1016_j_engstruct_2022_114980 crossref_primary_10_1016_j_compstruc_2019_03_004 crossref_primary_10_1080_13632469_2024_2382474 crossref_primary_10_1016_j_engstruct_2022_115273 crossref_primary_10_1002_eqe_3552 crossref_primary_10_1007_s11803_023_2164_1 crossref_primary_10_1016_j_jcsr_2022_107200 crossref_primary_10_1007_s10518_023_01635_9 crossref_primary_10_3390_app12168231 crossref_primary_10_1016_j_istruc_2021_08_097 crossref_primary_10_1016_j_engstruct_2023_117165 crossref_primary_10_1016_j_engstruct_2024_118554 crossref_primary_10_1007_s10518_022_01345_8 crossref_primary_10_1080_13632469_2020_1750508 crossref_primary_10_1016_j_soildyn_2023_107924 crossref_primary_10_1016_j_soildyn_2023_107925 crossref_primary_10_3390_buildings14123734 crossref_primary_10_3389_fbuil_2023_1183699 crossref_primary_10_1016_j_soildyn_2022_107705 crossref_primary_10_1007_s10518_020_00950_9 crossref_primary_10_1016_j_soildyn_2024_109058 crossref_primary_10_1016_j_engstruct_2021_113367 crossref_primary_10_1016_j_engstruct_2022_114077 crossref_primary_10_1016_j_engstruct_2022_114073 crossref_primary_10_35453_NEDJR_STMECH_2017_0012 crossref_primary_10_1080_23789689_2022_2028595 crossref_primary_10_1007_s40996_020_00394_w crossref_primary_10_1016_j_engstruct_2021_113473 crossref_primary_10_1016_j_istruc_2021_07_031 crossref_primary_10_5194_nhess_23_909_2023 crossref_primary_10_1016_j_soildyn_2024_109023 crossref_primary_10_1002_eqe_3668 crossref_primary_10_1061_JBENF2_BEENG_7123 crossref_primary_10_1177_8755293019891717 crossref_primary_10_1007_s10518_023_01783_y crossref_primary_10_1007_s10518_024_01923_y crossref_primary_10_1016_j_soildyn_2025_109335 crossref_primary_10_1007_s10518_021_01061_9 crossref_primary_10_1080_15732479_2021_1956551 crossref_primary_10_1002_eqe_4193 crossref_primary_10_1145_3590957 crossref_primary_10_1007_s10518_021_01277_9 crossref_primary_10_21595_vp_2023_23433 crossref_primary_10_1016_j_tust_2024_105957 crossref_primary_10_1080_13632469_2019_1657989 crossref_primary_10_1016_j_jobe_2021_103648 crossref_primary_10_1002_eqe_3542 crossref_primary_10_1016_j_jobe_2022_105184 crossref_primary_10_1016_j_engstruct_2025_119950 crossref_primary_10_1002_eqe_3918 crossref_primary_10_29130_dubited_1180533 crossref_primary_10_1177_87552930221078324 crossref_primary_10_1007_s10518_020_00945_6 crossref_primary_10_3390_app11219844 crossref_primary_10_1016_j_prostr_2023_01_037 crossref_primary_10_1016_j_soildyn_2019_03_020 crossref_primary_10_1002_eqe_4324 crossref_primary_10_3390_infrastructures5030022 crossref_primary_10_1002_eqe_3597 crossref_primary_10_1002_eqe_3009 crossref_primary_10_1016_j_engstruct_2024_119442 crossref_primary_10_1016_j_engstruct_2024_118595 crossref_primary_10_1007_s10518_020_01006_8 crossref_primary_10_1007_s10518_022_01575_w crossref_primary_10_1016_j_soildyn_2022_107624 crossref_primary_10_1016_j_engstruct_2020_110620 crossref_primary_10_1016_j_engstruct_2021_113832 crossref_primary_10_1016_j_istruc_2021_12_058 crossref_primary_10_3389_fbuil_2021_660103 crossref_primary_10_1177_87552930221103290 crossref_primary_10_1016_j_engstruct_2019_01_134 crossref_primary_10_3390_app12073687 crossref_primary_10_1002_eqe_3247 crossref_primary_10_1016_j_prostr_2023_01_265 crossref_primary_10_1007_s10518_019_00678_1 crossref_primary_10_1016_j_istruc_2020_09_049 crossref_primary_10_1016_j_engstruct_2024_119578 crossref_primary_10_1016_j_soildyn_2021_106829 crossref_primary_10_1007_s00500_023_09495_w crossref_primary_10_3390_buildings14123863 crossref_primary_10_1016_j_aei_2020_101126 crossref_primary_10_1016_j_engappai_2023_107834 crossref_primary_10_1016_j_ress_2023_109104 crossref_primary_10_1080_15732479_2024_2319111 crossref_primary_10_1002_eqe_3576 crossref_primary_10_1007_s00024_025_03672_8 crossref_primary_10_3390_buildings14051263 crossref_primary_10_1016_j_engstruct_2022_114889 crossref_primary_10_1007_s10518_024_01955_4 crossref_primary_10_1016_j_rineng_2024_101826 crossref_primary_10_1016_j_soildyn_2023_108088 crossref_primary_10_1061__ASCE_ST_1943_541X_0002953 crossref_primary_10_3389_fbuil_2020_00022 crossref_primary_10_1061_AJRUA6_0001131 crossref_primary_10_1002_eqe_3222 crossref_primary_10_1007_s10518_022_01393_0 crossref_primary_10_1002_eqe_3955 crossref_primary_10_3208_jgssp_v10_OS_39_03 crossref_primary_10_1016_j_engstruct_2024_117853 crossref_primary_10_1016_j_oceaneng_2022_113083 crossref_primary_10_1016_j_soildyn_2022_107414 crossref_primary_10_1016_j_engstruct_2022_115436 crossref_primary_10_1016_j_engstruct_2022_114348 crossref_primary_10_1002_eqe_3393 crossref_primary_10_1016_j_compstruc_2020_106355 crossref_primary_10_1080_13632469_2020_1835753 crossref_primary_10_1590_s1983_41952022000100010 crossref_primary_10_1002_eqe_3276 crossref_primary_10_1007_s10518_022_01605_7 crossref_primary_10_1002_eqe_4242 crossref_primary_10_1007_s42417_023_01240_9 crossref_primary_10_3390_buildings12010072 crossref_primary_10_1177_8755293020919451 crossref_primary_10_1016_j_ijdrr_2022_103391 crossref_primary_10_3389_fbuil_2019_00023 crossref_primary_10_1016_j_istruc_2025_108303 crossref_primary_10_1016_j_strusafe_2020_101980 crossref_primary_10_1016_j_tust_2021_103981 crossref_primary_10_1007_s10518_021_01114_z crossref_primary_10_1016_j_engstruct_2018_07_087 crossref_primary_10_1061__ASCE_ST_1943_541X_0002419 crossref_primary_10_1007_s42107_022_00533_w crossref_primary_10_1016_j_engstruct_2020_111120 crossref_primary_10_1002_eqe_3044 crossref_primary_10_1002_eqe_4253 crossref_primary_10_1016_j_soildyn_2019_106023 crossref_primary_10_1002_eqe_3720 crossref_primary_10_1002_eqe_4259 crossref_primary_10_3390_su142012994 crossref_primary_10_1002_tal_1901 crossref_primary_10_1016_j_istruc_2025_108211 crossref_primary_10_1016_j_ijdrr_2023_103668 crossref_primary_10_1111_mice_13061 crossref_primary_10_3390_su15054185 crossref_primary_10_1007_s13349_020_00416_1 crossref_primary_10_1016_j_prostr_2024_09_096 crossref_primary_10_1016_j_engstruct_2021_112421 crossref_primary_10_1016_j_jobe_2024_108907 crossref_primary_10_1016_j_ijdrr_2020_101844 crossref_primary_10_1016_j_engstruct_2023_116383 crossref_primary_10_1016_j_engstruct_2024_119387 crossref_primary_10_1177_8755293020919430 crossref_primary_10_1016_j_engstruct_2022_113918 crossref_primary_10_1016_j_ijdrr_2024_104822 crossref_primary_10_1177_13694332251325919 crossref_primary_10_1002_eqe_3949 crossref_primary_10_1016_j_engstruct_2021_113732 crossref_primary_10_1080_13632469_2021_1961938 crossref_primary_10_1016_j_probengmech_2020_103081 crossref_primary_10_1016_j_engstruct_2022_114576 crossref_primary_10_1007_s10518_021_01065_5 crossref_primary_10_1061__ASCE_ST_1943_541X_0002998 crossref_primary_10_1142_S1793431122400048 crossref_primary_10_1002_eqe_3387 crossref_primary_10_1186_s43065_022_00061_6 |
Cites_doi | 10.1061/(ASCE)0733-9399(2002)128:4(380) 10.1002/eqe.2792 10.1061/(ASCE)0733-9445(2001)127:2(219) 10.1016/j.strusafe.2006.03.003 10.1002/eqe.141 10.1016/S0266-8920(00)00012-6 10.1016/j.engstruct.2011.10.019 10.1002/eqe.693 10.1007/BF00162521 10.1193/1.1586011 10.1093/biomet/57.1.97 10.1080/13632469.2010.501193 10.1063/1.1699114 10.1002/eqe.2575 10.1080/13632460701673076 10.1002/eqe.2444 10.1002/eqe.2300 10.1193/1.2932078 10.1193/070913EQS197M 10.1016/j.soildyn.2012.03.004 10.1016/j.engstruct.2015.10.007 10.1016/j.compstruc.2014.07.019 10.1002/eqe.1081 10.1016/S0167-4730(99)00014-4 10.1007/s10518-010-9230-6 10.1061/(ASCE)EM.1943-7889.0000327 10.1193/053115EQS080M 10.1016/j.soildyn.2010.07.003 10.1193/1.2723158 10.1061/(ASCE)0733-9399(2000)126:12(1224) 10.1061/(ASCE)0733-9445(2002)128:4(526) 10.1785/0120110293 10.1193/021113EQS025M 10.1061/(ASCE)ST.1943-541X.0000215 10.1061/(ASCE)0733-9445(1996)122:12(1459) 10.1193/080613EQS225M 10.1007/s10518-015-9755-9 10.1016/j.strusafe.2007.05.004 10.1002/eqe.571 10.1007/s10518-014-9692-z 10.12989/sem.2008.28.1.039 10.1002/eqe.704 10.1193/1.2857546 10.1002/eqe.474 10.1016/j.strusafe.2009.04.003 10.1061/(ASCE)0733-9445(2004)130:11(1692) 10.1016/j.strusafe.2010.02.004 10.1002/eqe.702 10.1061/(ASCE)0733-9445(2007)133:1(57) 10.1002/(SICI)1099-1794(199609)5:3<151::AID-TAL76>3.0.CO;2-4 10.1061/(ASCE)0733-9445(2006)132:2(244) 10.1061/(ASCE)ST.1943-541X.0001224 10.1061/40944(249)22 10.1007/s10518-013-9571-z 10.1061/(ASCE)0733-9445(1998)124:11(1281) 10.1002/eqe.876 10.1193/1.3608002 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.2922 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 2663 |
ExternalDocumentID | 10_1002_eqe_2922 EQE2922 |
Genre | article |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c3592-9a74dc4378c4709ccd408b65f85c8e4cf5eee74fef5efd40d276c446f1bf2aa3 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Sun Jul 13 03:22:17 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Wed Jan 22 17:05:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3592-9a74dc4378c4709ccd408b65f85c8e4cf5eee74fef5efd40d276c446f1bf2aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7580-8309 |
PQID | 1959004271 |
PQPubID | 866380 |
PageCount | 25 |
ParticipantIDs | proquest_journals_1959004271 crossref_citationtrail_10_1002_eqe_2922 crossref_primary_10_1002_eqe_2922 wiley_primary_10_1002_eqe_2922_EQE2922 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 141 2006; 35 2000; 3 2015; 31 2016; 32 2006; 132 2016; 106 2011; 15 2008; 30 2007; 36 2007; 29 2001 2000 2000; 126 2005; 102 2004; 130 2007; 133 2015; 44 2008; 28 2008; 24 1983 1973 1973 2001; 16 1980 1996; 5 2011; 27 1998; 124 2012; 138 2007; 23 2010; 30 2014; 12 2005; 34 2016; 46 1953; 21 1998; 14 1996; 6 2015; 13 2011; 137 2010; 32 2012 2002; 31 2011 2013; 42 2011; 40 1998 2009 2008; 12 2013; 103 1996 2007 1999; 21 1994 1996; 122 2005 1993 2012; 39 2004 2003 2012; 34 2014; 43 1999 2001; 127 2011; 9 1970; 57 2002; 128 2016 2015 2014 2013 2014; 30 2014; 144 2009; 38 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_13_1 e_1_2_6_36_1 Radu AC (e_1_2_6_40_1) 2015 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Elwood KJ (e_1_2_6_73_1) 2005; 102 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 Gerin M (e_1_2_6_72_1) 2004 Cornell CA (e_1_2_6_7_1) 2000; 3 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 (e_1_2_6_5_1) 2012 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 Kannan AE (e_1_2_6_8_1) 1973 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 Prakash V (e_1_2_6_9_1) 1993 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 (e_1_2_6_4_1) 2000 Krawinkler H (e_1_2_6_43_1) 2005 Luco N (e_1_2_6_19_1) 1998 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 (e_1_2_6_79_1) 2011 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_82_1 Bertero VV (e_1_2_6_15_1) 1980 Carr AJ (e_1_2_6_10_1) 2001 Lin T (e_1_2_6_21_1) 2013 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 Ditlevsen O (e_1_2_6_49_1) 1996 e_1_2_6_69_1 |
References_xml | – year: 2011 – year: 2009 – volume: 126 start-page: 1224 issue: 12 year: 2000 end-page: 1231 article-title: Statistical analysis of fragility curves publication-title: J Eng Mech (ASCE) – volume: 38 start-page: 951 issue: 8 year: 2009 end-page: 972 article-title: Alternative non‐linear demand estimation methods for probability‐based seismic assessments publication-title: Earthq Eng Struct Dyn – year: 2005 – volume: 144 start-page: 103 year: 2014 end-page: 118 article-title: Sample‐based evaluation of global probabilistic sensitivity measures publication-title: Comput Struct – year: 2001 – volume: 3 start-page: 1 issue: 2 year: 2000 end-page: 2 article-title: Progress and challenges in seismic performance assessment publication-title: PEER Center News – volume: 21 start-page: 135 issue: 2 year: 1999 end-page: 158 article-title: A new adaptive importance sampling scheme for reliability calculations publication-title: Struct Saf – volume: 34 start-page: 527 year: 2012 end-page: 537 article-title: Probabilistic seismic performance assessment of code‐compliant multi‐story RC buildings publication-title: Eng Struct – volume: 130 start-page: 1692 issue: 11 year: 2004 end-page: 1703 article-title: Shear strength model for lightly reinforced concrete columns publication-title: J Struct Eng – volume: 16 start-page: 103 issue: 2 year: 2001 end-page: 113 article-title: Updating robust reliability using structural test data publication-title: Probab Eng Mech – volume: 24 start-page: 493 issue: 2 year: 2008 end-page: 511 article-title: Model for the lateral behavior of reinforced concrete columns including shear deformations publication-title: Earthq Spectra – start-page: 188 year: 1980 end-page: 237 – volume: 138 start-page: 307 issue: 3 year: 2012 end-page: 316 article-title: Analyzing the sufficiency of alternative scalar and vector intensity measures of ground shaking based on information theory publication-title: J Eng Mech – volume: 102 start-page: 578 issue: 4 year: 2005 end-page: 587 article-title: Axial capacity model for shear‐damaged columns publication-title: ACI Struct J – volume: 40 start-page: 1163 issue: 10 year: 2011 end-page: 1179 article-title: Multi‐hazard upgrade decision making for critical infrastructure based on life‐cycle cost criteria publication-title: Earthq Eng Struct Dyn – volume: 46 start-page: 369 year: 2016 end-page: 389 article-title: Seismic risk assessment considering cumulative damage due to aftershocks publication-title: Earthq Eng Struct Dyn – year: 1994 – volume: 44 start-page: 2057 issue: 12 year: 2015 end-page: 2073 article-title: Average spectral acceleration as an intensity measure for collapse risk assessment publication-title: Earthq Eng Struct Dyn – year: 2014 – year: 1998 – volume: 141 issue: 11 year: 2015 article-title: Multiphase performance assessment of structural response to seismic excitations publication-title: J Struct Eng ASCE – volume: 30 start-page: 320 issue: 4 year: 2008 end-page: 336 article-title: Improved seismic fragility modeling from empirical data publication-title: Struct Saf – volume: 133 start-page: 57 issue: 1 year: 2007 end-page: 66 article-title: Methods to assess the seismic collapse capacity of building structures: state of the art publication-title: J Struct Eng – volume: 36 start-page: 1935 issue: 13 year: 2007 end-page: 1952 article-title: Fragility assessment of building structural systems in mid‐America publication-title: Earthq Eng Struct Dyn 2007 – volume: 31 start-page: 491 issue: 3 year: 2002 end-page: 514 article-title: Incremental Dynamic Analysis publication-title: Earthq Eng Struct Dyn – volume: 13 start-page: 2805 issue: 10 year: 2015 end-page: 2840 article-title: Preliminary ranking of alternative scalar and vector intensity measures of ground shaking publication-title: Bull Earthq Eng – volume: 127 start-page: 219 issue: 2 year: 2001 end-page: 228 article-title: Seismic fragility of RC structural walls: displacement approach publication-title: J Struct Eng ASCE – volume: 5 start-page: 151 issue: 3 year: 1996 end-page: 182 article-title: Analysis of the Northridge earthquake response of a damaged non‐ductile concrete frame building publication-title: Struct Des Tall Build – year: 2004 – volume: 6 start-page: 113 issue: 2 year: 1996 end-page: 119 article-title: Metropolized independent sampling with comparisons to rejection sampling and importance sampling publication-title: Stat Comput – volume: 15 start-page: 362 issue: 3 year: 2011 end-page: 389 article-title: Knowledge‐based performance assessment of existing RC buildings publication-title: J Earthq Eng – volume: 132 start-page: 244 issue: 2 year: 2006 end-page: 252 article-title: Plastic hinge integration methods for force‐based beam–column elements publication-title: J Struct Eng – volume: 27 start-page: 797 issue: 3 year: 2011 end-page: 815 article-title: A computationally efficient ground‐motion selection algorithm for matching a target response spectrum mean and variance publication-title: Earthq Spectra – volume: 43 start-page: 2179 issue: 14 year: 2014 end-page: 2197 article-title: A performance‐based framework for adaptive seismic aftershock risk assessment publication-title: Earthq Eng Struct Dyn – year: 1993 – year: 1973 1973 – year: 1983 – volume: 39 start-page: 61 issue: 1 year: 2012 end-page: 77 article-title: The exact and approximate conditional spectra in the multi‐seismic‐sources regions publication-title: Int J Soil Dyn Earthquake Eng – volume: 30 start-page: 989 issue: 3 year: 2014 end-page: 1005 article-title: NGA‐West2 database publication-title: Earthq Spectra – volume: 13 start-page: 1183 issue: 4 year: 2015 end-page: 1203 article-title: Bayesian Cloud Analysis: efficient structural fragility assessment using linear regression publication-title: Bull Earthq Eng – volume: 9 start-page: 997 issue: 4 year: 2011 end-page: 1014 article-title: A decision support system for post‐earthquake reliability assessment of structures subjected to aftershocks: an application to L'Aquila earthquake, 2009 publication-title: Bull Earthq Eng – volume: 31 start-page: 579 issue: 1 year: 2015 end-page: 599 article-title: Efficient analytical fragility function fitting using dynamic structural analysis publication-title: Earthq Spectra – volume: 32 start-page: 1507 issue: 3 year: 2016 end-page: 1524 article-title: Vector and scalar IMs in structural response estimation, Part I: hazard analysis publication-title: Earthq Spectra – year: 2007 – volume: 12 start-page: 1725 issue: 4 year: 2014 end-page: 1753 article-title: Vector fragility surfaces for reinforced concrete frames in Europe publication-title: Bull Earthq Eng – year: 2003 – year: 2000 – year: 1996 – volume: 23 start-page: 357 issue: 2 year: 2007 end-page: 392 article-title: Structure‐specific scalar intensity measures for near‐source and ordinary earthquake ground motions publication-title: Earthq Spectra – volume: 42 start-page: 1827 issue: 12 year: 2013 end-page: 1845 article-title: Alternative closed‐form solutions for the mean rate of exceedance of structural limit states publication-title: Earthq Eng Struct Dyn – volume: 31 start-page: 1991 issue: 4 year: 2015 end-page: 2006 article-title: Development of collapse indicators for risk assessment of older‐type reinforced concrete buildings publication-title: Earthq Spectra – volume: 128 start-page: 380 issue: 4 year: 2002 end-page: 391 article-title: Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation publication-title: J Eng Mech (ASCE) – year: 2016 – volume: 30 start-page: 1513 issue: 2 year: 2010 end-page: 1527 article-title: Disaggregation‐based response weighting scheme for seismic risk assessment of structures publication-title: Soil Dyn Earthq Eng – volume: 32 start-page: 220 issue: 3 year: 2010 end-page: 228 article-title: Structural modeling uncertainties and their influence on seismic assessment of existing RC structures publication-title: Struct Saf – volume: 24 start-page: 139 issue: 1 year: 2008 end-page: 171 article-title: NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s publication-title: Earthq Spectra – year: 2012 – volume: 34 start-page: 1193 issue: 10 year: 2005 end-page: 1217 article-title: A vector‐valued ground motion intensity measure consisting of spectral acceleration and epsilon publication-title: Earthq Eng Struct Dyn – volume: 28 start-page: 39 issue: 1 year: 2008 end-page: 52 article-title: Shear deformation model for reinforced concrete columns publication-title: Struct Eng Mech – volume: 32 start-page: 1 issue: 1 year: 2010 end-page: 12 article-title: Seismic fragilities for non‐ductile reinforced concrete frames—role of aleatoric and epistemic uncertainties publication-title: Struct Saf – volume: 29 start-page: 132 issue: 2 year: 2007 end-page: 145 article-title: Improved probabilistic quantification of drift demands for seismic evaluation publication-title: Struct Saf – volume: 137 start-page: 322 issue: 3 year: 2011 end-page: 331 article-title: Conditional mean spectrum: tool for ground motion selection publication-title: J Struct Eng ASCE – volume: 128 start-page: 526 issue: 4 year: 2002 end-page: 533 article-title: Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines publication-title: J Struct Eng ASCE – start-page: 225 year: 2015 end-page: 235 – volume: 106 start-page: 109 year: 2016 end-page: 123 article-title: Performance‐based flood safety‐checking for non‐engineered masonry structures publication-title: Eng Struct – volume: 21 start-page: 1087 issue: 6 year: 1953 end-page: 1092 article-title: Equations of state calculations by fast computing machines publication-title: J Chem Phys – volume: 14 start-page: 469 issue: 3 year: 1998 end-page: 500 article-title: Earthquakes, records, and nonlinear responses publication-title: Earthq Spectra – volume: 122 start-page: 1459 issue: 12 year: 1996 end-page: 1467 article-title: Method for probabilistic evaluation of seismic structural damage publication-title: J Struct Eng – volume: 36 start-page: 2059 issue: 13 year: 2007 end-page: 2079 article-title: A scalar damage measure for seismic reliability analysis of RC frames publication-title: Earthq Eng Struct Dyn – volume: 57 start-page: 97 issue: 1 year: 1970 end-page: 109 article-title: Monte‐Carlo sampling methods using Markov Chains and their applications publication-title: Biometrika – volume: 12 start-page: 534 issue: 4 year: 2008 end-page: 554 article-title: Vector‐valued intensity measures incorporating spectral shape for prediction of structural response publication-title: J Earthq Eng – volume: 35 start-page: 1077 issue: 9 year: 2006 end-page: 1095 article-title: Spectral shape, epsilon and record selection publication-title: Earthq Eng Struct Dyn – volume: 36 start-page: 1901 issue: 13 year: 2007 end-page: 1914 article-title: Assessment of probability of collapse and design for collapse safety publication-title: Earthq Eng Struct Dyn – volume: 103 start-page: 1103 issue: 2A year: 2013 end-page: 1116 article-title: Conditional spectrum computation incorporating multiple causal earthquakes and ground motion prediction models publication-title: Bull Seismol Soc Am – volume: 124 start-page: 1281 issue: 11 year: 1998 end-page: 1289 article-title: Three proposals for characterizing MDOF nonlinear seismic response publication-title: J Struct Eng ASCE – year: 1999 – year: 2013 – ident: e_1_2_6_61_1 doi: 10.1061/(ASCE)0733-9399(2002)128:4(380) – volume-title: Ruaumoko. Computer Program Library, Department of Civil Engineering year: 2001 ident: e_1_2_6_10_1 – start-page: 188 volume-title: Structural Engineering and Structural Mechanics, A Volume Honoring Edgar P. Popov year: 1980 ident: e_1_2_6_15_1 – ident: e_1_2_6_59_1 doi: 10.1002/eqe.2792 – ident: e_1_2_6_38_1 doi: 10.1061/(ASCE)0733-9445(2001)127:2(219) – ident: e_1_2_6_58_1 doi: 10.1016/j.strusafe.2006.03.003 – ident: e_1_2_6_11_1 doi: 10.1002/eqe.141 – ident: e_1_2_6_60_1 doi: 10.1016/S0266-8920(00)00012-6 – start-page: 225 volume-title: Bayesian Statistics: Applications to Earthquake Engineering year: 2015 ident: e_1_2_6_40_1 – ident: e_1_2_6_33_1 doi: 10.1016/j.engstruct.2011.10.019 – ident: e_1_2_6_45_1 – volume-title: Structural Engineering World Wide year: 1998 ident: e_1_2_6_19_1 – ident: e_1_2_6_30_1 doi: 10.1002/eqe.693 – ident: e_1_2_6_83_1 doi: 10.1007/BF00162521 – ident: e_1_2_6_75_1 – ident: e_1_2_6_18_1 doi: 10.1193/1.1586011 – ident: e_1_2_6_82_1 doi: 10.1093/biomet/57.1.97 – ident: e_1_2_6_63_1 doi: 10.1080/13632469.2010.501193 – ident: e_1_2_6_81_1 doi: 10.1063/1.1699114 – ident: e_1_2_6_46_1 doi: 10.1002/eqe.2575 – ident: e_1_2_6_44_1 – ident: e_1_2_6_26_1 doi: 10.1080/13632460701673076 – ident: e_1_2_6_53_1 doi: 10.1002/eqe.2444 – volume: 102 start-page: 578 issue: 4 year: 2005 ident: e_1_2_6_73_1 article-title: Axial capacity model for shear‐damaged columns publication-title: ACI Struct J – ident: e_1_2_6_35_1 doi: 10.1002/eqe.2300 – ident: e_1_2_6_66_1 – ident: e_1_2_6_69_1 doi: 10.1193/1.2932078 – ident: e_1_2_6_76_1 doi: 10.1193/070913EQS197M – ident: e_1_2_6_29_1 doi: 10.1016/j.soildyn.2012.03.004 – ident: e_1_2_6_64_1 doi: 10.1016/j.engstruct.2015.10.007 – ident: e_1_2_6_3_1 – ident: e_1_2_6_6_1 – ident: e_1_2_6_84_1 doi: 10.1016/j.compstruc.2014.07.019 – ident: e_1_2_6_51_1 doi: 10.1002/eqe.1081 – ident: e_1_2_6_85_1 doi: 10.1016/S0167-4730(99)00014-4 – ident: e_1_2_6_52_1 doi: 10.1007/s10518-010-9230-6 – volume-title: FEMA P‐58‐1 Seismic Performance Assessment of Buildings Volume 1‐Methodology year: 2012 ident: e_1_2_6_5_1 – ident: e_1_2_6_12_1 – ident: e_1_2_6_23_1 doi: 10.1061/(ASCE)EM.1943-7889.0000327 – volume-title: Earthquake Engineering Research Center (EERC) 73–6 year: 1973 ident: e_1_2_6_8_1 – ident: e_1_2_6_47_1 doi: 10.1193/053115EQS080M – ident: e_1_2_6_32_1 doi: 10.1016/j.soildyn.2010.07.003 – ident: e_1_2_6_22_1 doi: 10.1193/1.2723158 – ident: e_1_2_6_39_1 doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224) – ident: e_1_2_6_14_1 doi: 10.1061/(ASCE)0733-9445(2002)128:4(526) – ident: e_1_2_6_28_1 doi: 10.1785/0120110293 – ident: e_1_2_6_80_1 doi: 10.1193/021113EQS025M – ident: e_1_2_6_27_1 doi: 10.1061/(ASCE)ST.1943-541X.0000215 – ident: e_1_2_6_42_1 – ident: e_1_2_6_16_1 doi: 10.1061/(ASCE)0733-9445(1996)122:12(1459) – ident: e_1_2_6_50_1 doi: 10.1193/080613EQS225M – ident: e_1_2_6_24_1 doi: 10.1007/s10518-015-9755-9 – ident: e_1_2_6_65_1 doi: 10.1016/j.strusafe.2007.05.004 – ident: e_1_2_6_74_1 – volume-title: Pacific Earthquake Engineering Research Center (PEER) year: 2005 ident: e_1_2_6_43_1 – volume: 3 start-page: 1 issue: 2 year: 2000 ident: e_1_2_6_7_1 article-title: Progress and challenges in seismic performance assessment publication-title: PEER Center News – ident: e_1_2_6_20_1 doi: 10.1002/eqe.571 – volume-title: Proceedings of the 11th International Conference on Structural Safety and Reliability (ICOSSAR 2013) year: 2013 ident: e_1_2_6_21_1 – ident: e_1_2_6_34_1 doi: 10.1007/s10518-014-9692-z – ident: e_1_2_6_71_1 doi: 10.12989/sem.2008.28.1.039 – ident: e_1_2_6_48_1 doi: 10.1002/eqe.704 – ident: e_1_2_6_78_1 doi: 10.1193/1.2857546 – volume-title: Selecting and Scaling Earthquake Ground Motions for Performing Response‐history Analyses year: 2011 ident: e_1_2_6_79_1 – ident: e_1_2_6_25_1 doi: 10.1002/eqe.474 – ident: e_1_2_6_31_1 doi: 10.1016/j.strusafe.2009.04.003 – ident: e_1_2_6_70_1 doi: 10.1061/(ASCE)0733-9445(2004)130:11(1692) – ident: e_1_2_6_41_1 – ident: e_1_2_6_62_1 doi: 10.1016/j.strusafe.2010.02.004 – ident: e_1_2_6_2_1 – ident: e_1_2_6_56_1 doi: 10.1002/eqe.702 – volume-title: Structural Reliability Methods year: 1996 ident: e_1_2_6_49_1 – volume-title: FEMA‐350 Recommended Seismic Design Criteria for New Steel Moment‐Frame Buildings year: 2000 ident: e_1_2_6_4_1 – ident: e_1_2_6_55_1 doi: 10.1061/(ASCE)0733-9445(2007)133:1(57) – volume-title: DRAIN‐2DX: Basic Program Description and User Guide. Report No. UCB/SEMM‐93/17 year: 1993 ident: e_1_2_6_9_1 – ident: e_1_2_6_67_1 doi: 10.1002/(SICI)1099-1794(199609)5:3<151::AID-TAL76>3.0.CO;2-4 – volume-title: Proceedings of the 13th World Conference on Earthquake Engineering year: 2004 ident: e_1_2_6_72_1 – ident: e_1_2_6_68_1 doi: 10.1061/(ASCE)0733-9445(2006)132:2(244) – ident: e_1_2_6_37_1 doi: 10.1061/(ASCE)ST.1943-541X.0001224 – ident: e_1_2_6_54_1 doi: 10.1061/40944(249)22 – ident: e_1_2_6_36_1 doi: 10.1007/s10518-013-9571-z – ident: e_1_2_6_17_1 doi: 10.1061/(ASCE)0733-9445(1998)124:11(1281) – ident: e_1_2_6_57_1 – ident: e_1_2_6_13_1 doi: 10.1002/eqe.876 – ident: e_1_2_6_77_1 doi: 10.1193/1.3608002 |
SSID | ssj0003607 |
Score | 2.6147776 |
Snippet | Summary
It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of... It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple... Summary It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2639 |
SubjectTerms | Bayesian parameter estimation Capacity Cloud Analysis Clouds Collapse Computer simulation Confidence intervals Demand analysis Dynamic analysis Flexing Fragility Ground motion Markov chains Monte Carlo simulation Nonlinear analysis nonlinear dynamic analysis performance‐based earthquake engineering Records record‐to‐record variability regression Regression analysis Reinforced concrete Shear Simulation Statistical analysis Statistical methods Unity |
Title | Analytical fragility assessment using unscaled ground motion records |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2922 https://www.proquest.com/docview/1959004271 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCD7KQHv8XplAiip25dkrbpUXRjCArKhIGHks8dlKrrdtC_3ry03aYoiKcG-gJtPl5eXl5-D6FTqSXlTgsG1BIbMK1ZIBIjA07h2IrFbljBie7NbTx4YNejaFRFVcJdmJIPMXe4wczw-homuJBFZwENNW-mTVIC6hdCtcAeul-Qo2gcznGZ3Gngmjsbkk5d8etKtDAvl41Uv8r0N9Bj_X1lcMlTezaVbfXxDd34vx_YROuV8YkvytGyhVZMvo3WlpCEO-jKU0q8gxvbiRhD6Ow7FnN-J4ZA-TGe5YWTMBrDrZBc4zIZEC5dPsUuGvZ7w8tBUGVaCBSNUhKkImFaMZpwxZIwVUqzkMs4sjxS3DBlI2NMwqxxBeveaZLEym0kbVdaIgTdQ438JTf7CHPDbRRSGVrpdp5a88jKxLhNUVc4w0yLJjqvGz1TFYUckmE8ZyU_mWSuWTJoliY6mUu-luSNH2Radb9l1dwrMsDl-BQi3SY68x3wa_2sd9eD58FfBQ_RKoF13ceztFBjOpmZI2eVTOWxH3-fvxPf1g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEIAHqQf14FusVl1B9JQ23WySDZ5EW6q2BaVCD0LIvnpQovZx0F_v7iZpqyiIpwQygWQfszOzs98AnDDBPKq1oOMprBwiBHGSUDKHembbigR6WJkd3U43aD2Qm77fX4Dz4ixMxoeYBtzMzLD62kxwE5Cuzaih8k1WcYS1_l00Bb2tP3U_Y0d5gTsFZlKtgwvyrItrxZtf16KZgTlvptp1prkGj8UXZuklT9XJmFX5xzd44z9_YR1Wc_sTXWQDZgMWZLoJK3NUwi24sqASG-NGapgMTPbsO0qmCE9kcuUHaJKOtIQUyBwMSQXK6gGhLOoz2oZes9G7bDl5sQWHe36EnSgJieDECyknoRtxLohLWeAr6nMqCVe-lDIkSuobpZ8JHAZc-5KqzhROEm8HSulLKncBUUmV73rMVUw7n0JQX7FQar-onmjbTCRlOCtaPeY5iNzUw3iOM4QyjnWzxKZZynA8lXzN4Bs_yFSKjovz6TeKDTHHVhGpl-HU9sCv78eNu4a57v1V8AiWWr1OO25fd2_3YRmbZd6mt1SgNB5O5IE2Usbs0A7GT7hZ4_E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEICDVBA9-BarVSOInrbdJtnd7FFsS30VlQoFDyHPHpS19nHQX2-yj7aKgnjawE5gN5lMJsnkGwBOhBKYWivoYYOMR5QiHo-08Ch2x1YktGrlTnRvO2H7kVz1gl4eVenuwmR8iOmGmxsZqb12A3ygTG0GDdVvuopiZM3vIgl96jS68TBDR-HQn_IyqTXBBXjWR7Wi5tepaOZfznup6TTTWgNPxQdm0SXP1clYVOXHN3bj__5gHazm3ic8z9RlAyzoZBOszDEJt0AjxZSkO9zQDHnfxc6-Qz4FeEIXKd-Hk2RkJbSC7lpIomCWDQhmez6jbdBtNbsXbS9PteBJHMTIi3lElCQ4opJEfiylIj4VYWBoIKkm0gRa64gYbQvGvlMoCqVdSZq6MIhzvANKyWuidwGkmprAx8I3wi49laKBEZG2q6I6t56Z4mVwVjQ6kzmG3GXDeGEZQBkx2yzMNUsZHE8lBxl64weZStFvLB98I-Z4OWkOkXoZnKYd8Gt91rxvuufeXwWPwNJdo8VuLjvX-2AZuTk-jW2pgNJ4ONEH1kMZi8NUFT8BRxviqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+fragility+assessment+using+unscaled+ground+motion+records&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Jalayer%2C+Fatemeh&rft.au=Ebrahimian%2C+Hossein&rft.au=Miano%2C+Andrea&rft.au=Manfredi%2C+Gaetano&rft.date=2017-12-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=46&rft.issue=15&rft.spage=2639&rft.epage=2663&rft_id=info:doi/10.1002%2Feqe.2922&rft.externalDBID=10.1002%252Feqe.2922&rft.externalDocID=EQE2922 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |