Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water

Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm ) is applied to comb...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 55; no. 24; pp. 16283 - 16298
Main Authors Augsburger, Nicolas, Rachmadi, Andri Taruna, Zaouri, Noor, Lee, Yunho, Hong, Pei-Ying
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm ) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm ) needed for 4-log inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H O (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm , respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm , respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H O or TiO . The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.
AbstractList Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm²) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm²) needed for 4-log₁₀ inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H₂O₂ (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm², respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm², respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H₂O₂ or TiO₂. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log₁₀ inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.
Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.
Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm ) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm ) needed for 4-log inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H O (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm , respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm , respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H O or TiO . The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.
Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.
Author Augsburger, Nicolas
Zaouri, Noor
Rachmadi, Andri Taruna
Hong, Pei-Ying
Lee, Yunho
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Augsburger
  fullname: Augsburger, Nicolas
  organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 2
  givenname: Andri Taruna
  surname: Rachmadi
  fullname: Rachmadi, Andri Taruna
  organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Noor
  surname: Zaouri
  fullname: Zaouri, Noor
  organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 4
  givenname: Yunho
  orcidid: 0000-0001-5923-4897
  surname: Lee
  fullname: Lee, Yunho
  organization: School of Earth Science and Environmental Engineering, Gwangju Institute and Technology (GIST), Gwangju 61005, Republic of Korea
– sequence: 5
  givenname: Pei-Ying
  orcidid: 0000-0002-4474-6600
  surname: Hong
  fullname: Hong, Pei-Ying
  organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia, Biological and Environmental Science Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34881878$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1LXDEUxYModbRdu5OAm27eeJO8j2Qp49gWBEE60-5CzLvByJu8Mclb-N83g-NCoeAqXPI75ybnnJDDMAYk5IzBnAFnl8amOaY8ZxYEKH5AZqzhUDWyYYdkBsBEpUT795icpPQEAFyA_EKORS0lk52cEXePFkOmq21vMtIx0NWaXvvkg0ObfZnzSG-mwflhoPkR398tIvY-07UZJqRujHQZMkZv6drHKWGiPtA_xTd-JUfODAm_7c9TsrpZ_l78rG7vfvxaXN1WVjQyVw472wunZAPMdgI6Z6FuFX8QqjdcMKgl5zU6www6ywxTlkPftkY4gUpxcUq-v_pu4_g8lWT0xieLw2ACjlPSvBVtDaru4BMoyLq8o965XnxAn8YphvKRQrG2EZJBW6jzPTU9bLDX2-g3Jr7ot7AL0LwCNo4pRXTa-mx2QeZo_KAZ6F2pupSqd0v2pRbd5Qfdm_X_FP8AiDmkdA
CitedBy_id crossref_primary_10_1016_j_watres_2024_121798
crossref_primary_10_3390_microorganisms11041038
crossref_primary_10_1016_j_watres_2024_121888
crossref_primary_10_1039_D3DT01740K
crossref_primary_10_1016_j_jece_2024_112861
crossref_primary_10_1016_j_watres_2024_122216
crossref_primary_10_1021_acs_est_4c12583
crossref_primary_10_3389_fmicb_2022_991856
crossref_primary_10_3390_w15071257
crossref_primary_10_3390_biomimetics7030094
crossref_primary_10_1016_j_jwpe_2023_103598
crossref_primary_10_1080_09603123_2023_2203906
crossref_primary_10_1002_aws2_1368
crossref_primary_10_1016_j_dwt_2024_100361
crossref_primary_10_1016_j_jhazmat_2022_128619
crossref_primary_10_1016_j_cej_2025_161837
crossref_primary_10_1016_j_watbs_2022_100062
crossref_primary_10_1016_j_buildenv_2024_112324
crossref_primary_10_1016_j_jhazmat_2022_130036
crossref_primary_10_1016_j_jclepro_2024_140706
crossref_primary_10_3390_su16114709
crossref_primary_10_1016_j_watres_2023_120482
crossref_primary_10_1016_j_foodres_2024_115454
crossref_primary_10_1007_s12560_023_09577_w
Cites_doi 10.1021/acs.est.8b02308
10.1016/j.scitotenv.2018.11.265
10.1021/es301336u
10.1128/AEM.02436-19
10.1146/annurev.physchem.59.032607.093719
10.1016/j.ijfoodmicro.2015.08.015
10.1061/(ASCE)0733-9372(2003)129:3(209)
10.1016/j.watres.2015.05.018
10.1021/ac0613737
10.1128/AEM.02199-08
10.1061/(ASCE)EE.1943-7870.0001061
10.1021/acs.est.5b06097
10.1128/AEM.68.10.5167-5169.2002
10.1016/j.watres.2016.11.024
10.1016/j.scitotenv.2017.12.173
10.1111/jam.12169
10.2166/wst.1993.0371
10.1016/j.scitotenv.2020.144573
10.1128/MMBR.69.2.357-371.2005
10.1126/science.aaf5211
10.1128/AEM.02442-07
10.1016/j.watres.2005.06.013
10.1016/j.envres.2020.110479
10.1039/a806666c
10.1016/j.watres.2017.10.034
10.1016/j.watres.2003.10.029
10.1080/10934520802329919
10.1016/j.coviro.2011.11.003
10.1128/jcm.20.3.365-372.1984
10.1073/pnas.0711757105
10.1093/femsle/fnv216
10.2175/106143003X140944
10.1021/es403850b
10.1080/10934529.2014.854607
10.1128/aem.49.6.1361-1365.1985
10.1016/0043-1354(87)90080-7
10.1080/10643380601174764
10.4319/lo.1993.38.7.1562
10.1016/j.mrrev.2007.09.001
10.1061/(ASCE)0733-9372(1997)123:11(1142)
10.1128/AEM.02049-07
10.1021/acs.estlett.8b00249
10.1021/acs.est.7b05440
10.1016/j.watres.2012.08.036
10.1016/j.scitotenv.2016.02.039
10.1007/s11814-008-0011-8
10.1061/(ASCE)0733-9372(2007)133:1(95)
10.1021/es104240v
10.1084/jem.100.1.53
10.1016/j.cej.2018.03.020
10.2175/106143017X14839994523028
10.1016/j.jenvman.2018.04.103
10.1016/j.watres.2019.01.006
10.2166/9781780407197
10.1159/000484899
10.1016/j.jhazmat.2007.04.050
10.1128/AEM.00185-10
10.1139/s04-036
10.1016/j.watres.2005.10.030
10.1021/acs.est.7b06082
10.1128/AEM.01106-06
10.1021/acs.est.9b05747
10.1016/j.watres.2013.06.035
10.1021/es100435a
10.1021/es981218c
10.1016/S1473-3099(18)30362-1
10.1016/j.jece.2017.07.080
10.3390/w11061131
10.4137/MBI.S31441
10.1021/es00056a009
10.1128/AEM.01587-07
10.1007/s12560-009-9020-y
10.1016/j.jenvman.2018.04.064
10.2166/ws.2019.022
10.3354/ame01363
10.1039/b201230h
10.1080/01919510701759181
10.1093/femsle/fny194
10.1016/1011-1344(94)07068-7
10.1128/AEM.70.9.5089-5093.2004
10.1046/j.1365-2672.2001.01470.x
10.2166/wst.1995.0584
10.2166/wst.2006.452
10.1128/AEM.00403-10
10.1021/acs.est.8b00586
10.1007/s00705-013-1709-4
10.1021/acs.est.6b01142
10.1016/S0043-1354(96)00179-0
10.1016/j.watres.2009.03.044
10.2965/jwet.2014.511
10.4315/0362-028X.JFP-12-361
10.1128/AEM.69.1.577-582.2003
10.2175/193864709793847717
10.1002/j.1551-8833.2009.tb09876.x
10.1021/es3029473
10.1016/S0043-1354(02)00458-X
10.1016/j.desal.2013.08.014
10.1016/0042-6822(88)90582-X
10.1128/AEM.70.8.4538-4543.2004
10.1016/j.watres.2016.03.003
10.1111/j.1472-765X.2010.02982.x
ContentType Journal Article
Copyright Copyright American Chemical Society Dec 21, 2021
Copyright_xml – notice: Copyright American Chemical Society Dec 21, 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.1c03092
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Biotechnology Research Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 16298
ExternalDocumentID 34881878
10_1021_acs_est_1c03092
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CITATION
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
XZL
YZZ
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
VQA
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c358t-fe7cd3f98501c7307fc04692b39da231048224efa1aefc1a19c20d66a3f3e9923
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 16:31:09 EDT 2025
Fri Jul 11 05:58:48 EDT 2025
Mon Jun 30 11:45:59 EDT 2025
Wed Feb 19 02:27:20 EST 2025
Thu Apr 24 22:51:18 EDT 2025
Tue Jul 01 04:10:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Advanced oxidation processes
UV-LED
Ultraviolet
RNA virus
DNA virus
4-log10 inactivation
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-fe7cd3f98501c7307fc04692b39da231048224efa1aefc1a19c20d66a3f3e9923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4474-6600
0000-0001-5923-4897
PMID 34881878
PQID 2616538106
PQPubID 45412
PageCount 16
ParticipantIDs proquest_miscellaneous_2636409470
proquest_miscellaneous_2608450142
proquest_journals_2616538106
pubmed_primary_34881878
crossref_citationtrail_10_1021_acs_est_1c03092
crossref_primary_10_1021_acs_est_1c03092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-21
PublicationDateYYYYMMDD 2021-12-21
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ Sci Technol
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Kowalski W. (ref66/cit66) 2010
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
Sommer R. (ref51/cit51) 1989; 189
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
(ref1/cit1) 2015
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
Malayeri A. H. (ref105/cit105) 2016; 18
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
Crook J. (ref5/cit5) 2013
ref7/cit7
References_xml – ident: ref76/cit76
  doi: 10.1021/acs.est.8b02308
– ident: ref100/cit100
  doi: 10.1016/j.scitotenv.2018.11.265
– ident: ref107/cit107
  doi: 10.1021/es301336u
– ident: ref88/cit88
  doi: 10.1128/AEM.02436-19
– ident: ref81/cit81
  doi: 10.1146/annurev.physchem.59.032607.093719
– ident: ref30/cit30
  doi: 10.1016/j.ijfoodmicro.2015.08.015
– ident: ref36/cit36
  doi: 10.1061/(ASCE)0733-9372(2003)129:3(209)
– ident: ref112/cit112
  doi: 10.1016/j.watres.2015.05.018
– ident: ref94/cit94
  doi: 10.1021/ac0613737
– ident: ref17/cit17
  doi: 10.1128/AEM.02199-08
– ident: ref64/cit64
  doi: 10.1061/(ASCE)EE.1943-7870.0001061
– ident: ref90/cit90
  doi: 10.1021/acs.est.5b06097
– ident: ref19/cit19
– ident: ref44/cit44
  doi: 10.1128/AEM.68.10.5167-5169.2002
– ident: ref63/cit63
  doi: 10.1016/j.watres.2016.11.024
– ident: ref106/cit106
  doi: 10.1016/j.scitotenv.2017.12.173
– ident: ref22/cit22
– ident: ref87/cit87
  doi: 10.1111/jam.12169
– ident: ref8/cit8
– ident: ref53/cit53
  doi: 10.2166/wst.1993.0371
– ident: ref113/cit113
  doi: 10.1016/j.scitotenv.2020.144573
– ident: ref3/cit3
  doi: 10.1128/MMBR.69.2.357-371.2005
– ident: ref33/cit33
  doi: 10.1126/science.aaf5211
– ident: ref40/cit40
  doi: 10.1128/AEM.02442-07
– ident: ref62/cit62
  doi: 10.1016/j.watres.2005.06.013
– ident: ref114/cit114
  doi: 10.1016/j.envres.2020.110479
– ident: ref93/cit93
  doi: 10.1039/a806666c
– ident: ref6/cit6
  doi: 10.1016/j.watres.2017.10.034
– ident: ref97/cit97
  doi: 10.1016/j.watres.2003.10.029
– ident: ref55/cit55
  doi: 10.1080/10934520802329919
– ident: ref73/cit73
  doi: 10.1016/j.coviro.2011.11.003
– ident: ref78/cit78
  doi: 10.1128/jcm.20.3.365-372.1984
– ident: ref79/cit79
  doi: 10.1073/pnas.0711757105
– ident: ref109/cit109
  doi: 10.1093/femsle/fnv216
– ident: ref2/cit2
– ident: ref50/cit50
  doi: 10.2175/106143003X140944
– ident: ref60/cit60
  doi: 10.1021/es403850b
– ident: ref99/cit99
  doi: 10.1080/10934529.2014.854607
– ident: ref43/cit43
  doi: 10.1128/aem.49.6.1361-1365.1985
– ident: ref45/cit45
  doi: 10.1016/0043-1354(87)90080-7
– ident: ref111/cit111
  doi: 10.1080/10643380601174764
– ident: ref108/cit108
  doi: 10.4319/lo.1993.38.7.1562
– ident: ref9/cit9
  doi: 10.1016/j.mrrev.2007.09.001
– ident: ref37/cit37
  doi: 10.1061/(ASCE)0733-9372(1997)123:11(1142)
– ident: ref59/cit59
  doi: 10.1128/AEM.02049-07
– ident: ref91/cit91
  doi: 10.1021/acs.estlett.8b00249
– ident: ref10/cit10
  doi: 10.1021/acs.est.7b05440
– ident: ref29/cit29
  doi: 10.1016/j.watres.2012.08.036
– ident: ref115/cit115
  doi: 10.1016/j.scitotenv.2016.02.039
– ident: ref28/cit28
  doi: 10.1007/s11814-008-0011-8
– volume-title: Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection
  year: 2010
  ident: ref66/cit66
– ident: ref58/cit58
  doi: 10.1061/(ASCE)0733-9372(2007)133:1(95)
– ident: ref15/cit15
  doi: 10.1021/es104240v
– ident: ref77/cit77
  doi: 10.1084/jem.100.1.53
– ident: ref70/cit70
  doi: 10.1016/j.cej.2018.03.020
– ident: ref32/cit32
  doi: 10.2175/106143017X14839994523028
– ident: ref98/cit98
  doi: 10.1016/j.jenvman.2018.04.103
– ident: ref71/cit71
  doi: 10.1016/j.watres.2019.01.006
– ident: ref26/cit26
  doi: 10.2166/9781780407197
– ident: ref84/cit84
  doi: 10.1159/000484899
– ident: ref96/cit96
  doi: 10.1016/j.jhazmat.2007.04.050
– ident: ref83/cit83
  doi: 10.1128/AEM.00185-10
– ident: ref7/cit7
– ident: ref47/cit47
  doi: 10.1139/s04-036
– ident: ref102/cit102
  doi: 10.1016/j.watres.2005.10.030
– ident: ref86/cit86
  doi: 10.1021/acs.est.7b06082
– ident: ref48/cit48
  doi: 10.1128/AEM.01106-06
– ident: ref20/cit20
– ident: ref74/cit74
  doi: 10.1021/acs.est.9b05747
– ident: ref25/cit25
– ident: ref95/cit95
  doi: 10.1016/j.watres.2013.06.035
– ident: ref89/cit89
  doi: 10.1021/es100435a
– ident: ref11/cit11
  doi: 10.1021/es981218c
– ident: ref35/cit35
  doi: 10.1016/S1473-3099(18)30362-1
– ident: ref101/cit101
  doi: 10.1016/j.jece.2017.07.080
– ident: ref49/cit49
  doi: 10.3390/w11061131
– ident: ref92/cit92
  doi: 10.4137/MBI.S31441
– volume-title: Transforming our World: The 2030 Agenda for Sustainable Development
  year: 2015
  ident: ref1/cit1
– ident: ref12/cit12
  doi: 10.1021/es00056a009
– ident: ref56/cit56
  doi: 10.1128/AEM.01587-07
– ident: ref85/cit85
  doi: 10.1007/s12560-009-9020-y
– volume-title: Examining the Criteria for Direct Potable Reuse: Recommendations of an NWRI Independent Advisory Panel
  year: 2013
  ident: ref5/cit5
– ident: ref39/cit39
  doi: 10.1016/j.jenvman.2018.04.064
– ident: ref67/cit67
  doi: 10.2166/ws.2019.022
– ident: ref110/cit110
  doi: 10.3354/ame01363
– ident: ref18/cit18
  doi: 10.1039/b201230h
– ident: ref23/cit23
  doi: 10.1080/01919510701759181
– ident: ref65/cit65
  doi: 10.1093/femsle/fny194
– ident: ref82/cit82
  doi: 10.1016/1011-1344(94)07068-7
– ident: ref104/cit104
  doi: 10.1128/AEM.70.9.5089-5093.2004
– ident: ref4/cit4
  doi: 10.1046/j.1365-2672.2001.01470.x
– ident: ref52/cit52
  doi: 10.2166/wst.1995.0584
– ident: ref54/cit54
  doi: 10.2166/wst.2006.452
– ident: ref16/cit16
  doi: 10.1128/AEM.00403-10
– volume: 189
  start-page: 214
  issue: 3
  year: 1989
  ident: ref51/cit51
  publication-title: Int. J. Hyg. Environ. Med.
– ident: ref27/cit27
  doi: 10.1021/acs.est.8b00586
– ident: ref75/cit75
  doi: 10.1007/s00705-013-1709-4
– ident: ref13/cit13
  doi: 10.1021/acs.est.6b01142
– ident: ref24/cit24
– ident: ref46/cit46
  doi: 10.1016/S0043-1354(96)00179-0
– ident: ref31/cit31
  doi: 10.1016/j.watres.2009.03.044
– ident: ref61/cit61
  doi: 10.2965/jwet.2014.511
– ident: ref42/cit42
  doi: 10.4315/0362-028X.JFP-12-361
– ident: ref41/cit41
  doi: 10.1128/AEM.69.1.577-582.2003
– ident: ref21/cit21
  doi: 10.2175/193864709793847717
– ident: ref34/cit34
– ident: ref57/cit57
  doi: 10.1002/j.1551-8833.2009.tb09876.x
– ident: ref72/cit72
  doi: 10.1021/es3029473
– ident: ref14/cit14
  doi: 10.1016/S0043-1354(02)00458-X
– volume: 18
  start-page: 4
  issue: 3
  year: 2016
  ident: ref105/cit105
  publication-title: IUVA News
– ident: ref68/cit68
  doi: 10.1016/j.desal.2013.08.014
– ident: ref80/cit80
  doi: 10.1016/0042-6822(88)90582-X
– ident: ref103/cit103
  doi: 10.1128/AEM.70.8.4538-4543.2004
– ident: ref69/cit69
  doi: 10.1016/j.watres.2016.03.003
– ident: ref38/cit38
  doi: 10.1111/j.1472-765X.2010.02982.x
SSID ssj0002308
Score 2.5103285
SecondaryResourceType review_article
Snippet Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 16283
SubjectTerms Adenoviridae
Adenoviruses
Caliciviridae
credit
Deactivation
Disinfection
DNA
DNA viruses
Double-stranded RNA
environmental science
Fluence
Humans
Hydrogen Peroxide
Inactivation
Low pressure
Oxidation
pathogens
Picornaviridae
Radiation
Regression analysis
Rotavirus
Titanium dioxide
Treated water
Ultraviolet radiation
Ultraviolet Rays
Virus Inactivation
Viruses
Water
Water Purification
wavelengths
Title Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water
URI https://www.ncbi.nlm.nih.gov/pubmed/34881878
https://www.proquest.com/docview/2616538106
https://www.proquest.com/docview/2608450142
https://www.proquest.com/docview/2636409470
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqTu2hFFpgecmVOHBJGj9iJ0e0gBASvZTd7i1yJrYUscquNsmFX99xNhsKiJZrPI5GY8_4m8zkMyFnIJRxKegAJM8DmcfocyLKg0InhhmtgIOv6N79VDcTeTuLZ09k0S8r-Jz9MFCHGCBDBr4a0EVbLT1L_sX41xBzEUgnm7sKUqFmA4nPq_nPz583QGV3uFxvr9uy6o6T0PeUPIRtk4fw-Jqx8f96fyGfe4hJL9Z7Yod8sNUu-fQX8eAu2bt6-r8NRXsHr78ShzASn9HJ0n8JoIuKTqb0sqw3PVsVbRYU01ZXzucUsePzsfEKj8KGTs28tRTRMO1aDkqg03LV1ramZUV_43tX38jk-up-fBP0VzEEIOKkCZzVUAiXJnHEAIOCduATa56LtDAeIkrfjWodrq91wAxLgUeFUkY4YVMEkXtkq1pU9oDQQjDFQblIaiELXSTKxKowJpUmwmwKRiTcLFAGPU-5vy5jnnX1cs4ytGyGls16y47I-TBhuaboeFv0eLPiWe-rdYY5pIo90Zkake_DMHqZL52Yyi5aLxMl0pdg-b9khPLZso5GZH-9mwZ9BMZJlujk8P26HpGP3PfPMB5wdky2mlVrTxAANflpt_f_AHc6AaQ
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Update+on+UV+Disinfection+to+Fulfill+the+Disinfection+Credit+Value+for+Enteric+Viruses+in+Water&rft.jtitle=Environmental+science+%26+technology&rft.au=Augsburger%2C+Nicolas&rft.au=Rachmadi%2C+Andri+Taruna&rft.au=Zaouri%2C+Noor&rft.au=Lee%2C+Yunho&rft.date=2021-12-21&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=55&rft.issue=24&rft.spage=16283&rft.epage=16298&rft_id=info:doi/10.1021%2Facs.est.1c03092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_1c03092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon