Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water
Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm ) is applied to comb...
Saved in:
Published in | Environmental science & technology Vol. 55; no. 24; pp. 16283 - 16298 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm
) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm
) needed for 4-log
inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H
O
(10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm
, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm
, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H
O
or TiO
. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log
inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations. |
---|---|
AbstractList | Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm²) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm²) needed for 4-log₁₀ inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H₂O₂ (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm², respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm², respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H₂O₂ or TiO₂. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log₁₀ inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations. Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations. Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm ) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm ) needed for 4-log inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H O (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm , respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm , respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H O or TiO . The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations. Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations. |
Author | Augsburger, Nicolas Zaouri, Noor Rachmadi, Andri Taruna Hong, Pei-Ying Lee, Yunho |
Author_xml | – sequence: 1 givenname: Nicolas surname: Augsburger fullname: Augsburger, Nicolas organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 2 givenname: Andri Taruna surname: Rachmadi fullname: Rachmadi, Andri Taruna organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 3 givenname: Noor surname: Zaouri fullname: Zaouri, Noor organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 4 givenname: Yunho orcidid: 0000-0001-5923-4897 surname: Lee fullname: Lee, Yunho organization: School of Earth Science and Environmental Engineering, Gwangju Institute and Technology (GIST), Gwangju 61005, Republic of Korea – sequence: 5 givenname: Pei-Ying orcidid: 0000-0002-4474-6600 surname: Hong fullname: Hong, Pei-Ying organization: Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia, Biological and Environmental Science Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34881878$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1LXDEUxYModbRdu5OAm27eeJO8j2Qp49gWBEE60-5CzLvByJu8Mclb-N83g-NCoeAqXPI75ybnnJDDMAYk5IzBnAFnl8amOaY8ZxYEKH5AZqzhUDWyYYdkBsBEpUT795icpPQEAFyA_EKORS0lk52cEXePFkOmq21vMtIx0NWaXvvkg0ObfZnzSG-mwflhoPkR398tIvY-07UZJqRujHQZMkZv6drHKWGiPtA_xTd-JUfODAm_7c9TsrpZ_l78rG7vfvxaXN1WVjQyVw472wunZAPMdgI6Z6FuFX8QqjdcMKgl5zU6www6ywxTlkPftkY4gUpxcUq-v_pu4_g8lWT0xieLw2ACjlPSvBVtDaru4BMoyLq8o965XnxAn8YphvKRQrG2EZJBW6jzPTU9bLDX2-g3Jr7ot7AL0LwCNo4pRXTa-mx2QeZo_KAZ6F2pupSqd0v2pRbd5Qfdm_X_FP8AiDmkdA |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_121798 crossref_primary_10_3390_microorganisms11041038 crossref_primary_10_1016_j_watres_2024_121888 crossref_primary_10_1039_D3DT01740K crossref_primary_10_1016_j_jece_2024_112861 crossref_primary_10_1016_j_watres_2024_122216 crossref_primary_10_1021_acs_est_4c12583 crossref_primary_10_3389_fmicb_2022_991856 crossref_primary_10_3390_w15071257 crossref_primary_10_3390_biomimetics7030094 crossref_primary_10_1016_j_jwpe_2023_103598 crossref_primary_10_1080_09603123_2023_2203906 crossref_primary_10_1002_aws2_1368 crossref_primary_10_1016_j_dwt_2024_100361 crossref_primary_10_1016_j_jhazmat_2022_128619 crossref_primary_10_1016_j_cej_2025_161837 crossref_primary_10_1016_j_watbs_2022_100062 crossref_primary_10_1016_j_buildenv_2024_112324 crossref_primary_10_1016_j_jhazmat_2022_130036 crossref_primary_10_1016_j_jclepro_2024_140706 crossref_primary_10_3390_su16114709 crossref_primary_10_1016_j_watres_2023_120482 crossref_primary_10_1016_j_foodres_2024_115454 crossref_primary_10_1007_s12560_023_09577_w |
Cites_doi | 10.1021/acs.est.8b02308 10.1016/j.scitotenv.2018.11.265 10.1021/es301336u 10.1128/AEM.02436-19 10.1146/annurev.physchem.59.032607.093719 10.1016/j.ijfoodmicro.2015.08.015 10.1061/(ASCE)0733-9372(2003)129:3(209) 10.1016/j.watres.2015.05.018 10.1021/ac0613737 10.1128/AEM.02199-08 10.1061/(ASCE)EE.1943-7870.0001061 10.1021/acs.est.5b06097 10.1128/AEM.68.10.5167-5169.2002 10.1016/j.watres.2016.11.024 10.1016/j.scitotenv.2017.12.173 10.1111/jam.12169 10.2166/wst.1993.0371 10.1016/j.scitotenv.2020.144573 10.1128/MMBR.69.2.357-371.2005 10.1126/science.aaf5211 10.1128/AEM.02442-07 10.1016/j.watres.2005.06.013 10.1016/j.envres.2020.110479 10.1039/a806666c 10.1016/j.watres.2017.10.034 10.1016/j.watres.2003.10.029 10.1080/10934520802329919 10.1016/j.coviro.2011.11.003 10.1128/jcm.20.3.365-372.1984 10.1073/pnas.0711757105 10.1093/femsle/fnv216 10.2175/106143003X140944 10.1021/es403850b 10.1080/10934529.2014.854607 10.1128/aem.49.6.1361-1365.1985 10.1016/0043-1354(87)90080-7 10.1080/10643380601174764 10.4319/lo.1993.38.7.1562 10.1016/j.mrrev.2007.09.001 10.1061/(ASCE)0733-9372(1997)123:11(1142) 10.1128/AEM.02049-07 10.1021/acs.estlett.8b00249 10.1021/acs.est.7b05440 10.1016/j.watres.2012.08.036 10.1016/j.scitotenv.2016.02.039 10.1007/s11814-008-0011-8 10.1061/(ASCE)0733-9372(2007)133:1(95) 10.1021/es104240v 10.1084/jem.100.1.53 10.1016/j.cej.2018.03.020 10.2175/106143017X14839994523028 10.1016/j.jenvman.2018.04.103 10.1016/j.watres.2019.01.006 10.2166/9781780407197 10.1159/000484899 10.1016/j.jhazmat.2007.04.050 10.1128/AEM.00185-10 10.1139/s04-036 10.1016/j.watres.2005.10.030 10.1021/acs.est.7b06082 10.1128/AEM.01106-06 10.1021/acs.est.9b05747 10.1016/j.watres.2013.06.035 10.1021/es100435a 10.1021/es981218c 10.1016/S1473-3099(18)30362-1 10.1016/j.jece.2017.07.080 10.3390/w11061131 10.4137/MBI.S31441 10.1021/es00056a009 10.1128/AEM.01587-07 10.1007/s12560-009-9020-y 10.1016/j.jenvman.2018.04.064 10.2166/ws.2019.022 10.3354/ame01363 10.1039/b201230h 10.1080/01919510701759181 10.1093/femsle/fny194 10.1016/1011-1344(94)07068-7 10.1128/AEM.70.9.5089-5093.2004 10.1046/j.1365-2672.2001.01470.x 10.2166/wst.1995.0584 10.2166/wst.2006.452 10.1128/AEM.00403-10 10.1021/acs.est.8b00586 10.1007/s00705-013-1709-4 10.1021/acs.est.6b01142 10.1016/S0043-1354(96)00179-0 10.1016/j.watres.2009.03.044 10.2965/jwet.2014.511 10.4315/0362-028X.JFP-12-361 10.1128/AEM.69.1.577-582.2003 10.2175/193864709793847717 10.1002/j.1551-8833.2009.tb09876.x 10.1021/es3029473 10.1016/S0043-1354(02)00458-X 10.1016/j.desal.2013.08.014 10.1016/0042-6822(88)90582-X 10.1128/AEM.70.8.4538-4543.2004 10.1016/j.watres.2016.03.003 10.1111/j.1472-765X.2010.02982.x |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Dec 21, 2021 |
Copyright_xml | – notice: Copyright American Chemical Society Dec 21, 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.1c03092 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 16298 |
ExternalDocumentID | 34881878 10_1021_acs_est_1c03092 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 53G 55A 5GY 5VS 6TJ 7~N 85S AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV ADUKH AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CITATION CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW XZL YZZ ZCA CGR CUY CVF ECM EIF NPM VQA YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c358t-fe7cd3f98501c7307fc04692b39da231048224efa1aefc1a19c20d66a3f3e9923 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 16:31:09 EDT 2025 Fri Jul 11 05:58:48 EDT 2025 Mon Jun 30 11:45:59 EDT 2025 Wed Feb 19 02:27:20 EST 2025 Thu Apr 24 22:51:18 EDT 2025 Tue Jul 01 04:10:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Advanced oxidation processes UV-LED Ultraviolet RNA virus DNA virus 4-log10 inactivation |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-fe7cd3f98501c7307fc04692b39da231048224efa1aefc1a19c20d66a3f3e9923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4474-6600 0000-0001-5923-4897 |
PMID | 34881878 |
PQID | 2616538106 |
PQPubID | 45412 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636409470 proquest_miscellaneous_2608450142 proquest_journals_2616538106 pubmed_primary_34881878 crossref_citationtrail_10_1021_acs_est_1c03092 crossref_primary_10_1021_acs_est_1c03092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-21 |
PublicationDateYYYYMMDD | 2021-12-21 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ Sci Technol |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 Kowalski W. (ref66/cit66) 2010 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 Sommer R. (ref51/cit51) 1989; 189 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 (ref1/cit1) 2015 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 Malayeri A. H. (ref105/cit105) 2016; 18 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 Crook J. (ref5/cit5) 2013 ref7/cit7 |
References_xml | – ident: ref76/cit76 doi: 10.1021/acs.est.8b02308 – ident: ref100/cit100 doi: 10.1016/j.scitotenv.2018.11.265 – ident: ref107/cit107 doi: 10.1021/es301336u – ident: ref88/cit88 doi: 10.1128/AEM.02436-19 – ident: ref81/cit81 doi: 10.1146/annurev.physchem.59.032607.093719 – ident: ref30/cit30 doi: 10.1016/j.ijfoodmicro.2015.08.015 – ident: ref36/cit36 doi: 10.1061/(ASCE)0733-9372(2003)129:3(209) – ident: ref112/cit112 doi: 10.1016/j.watres.2015.05.018 – ident: ref94/cit94 doi: 10.1021/ac0613737 – ident: ref17/cit17 doi: 10.1128/AEM.02199-08 – ident: ref64/cit64 doi: 10.1061/(ASCE)EE.1943-7870.0001061 – ident: ref90/cit90 doi: 10.1021/acs.est.5b06097 – ident: ref19/cit19 – ident: ref44/cit44 doi: 10.1128/AEM.68.10.5167-5169.2002 – ident: ref63/cit63 doi: 10.1016/j.watres.2016.11.024 – ident: ref106/cit106 doi: 10.1016/j.scitotenv.2017.12.173 – ident: ref22/cit22 – ident: ref87/cit87 doi: 10.1111/jam.12169 – ident: ref8/cit8 – ident: ref53/cit53 doi: 10.2166/wst.1993.0371 – ident: ref113/cit113 doi: 10.1016/j.scitotenv.2020.144573 – ident: ref3/cit3 doi: 10.1128/MMBR.69.2.357-371.2005 – ident: ref33/cit33 doi: 10.1126/science.aaf5211 – ident: ref40/cit40 doi: 10.1128/AEM.02442-07 – ident: ref62/cit62 doi: 10.1016/j.watres.2005.06.013 – ident: ref114/cit114 doi: 10.1016/j.envres.2020.110479 – ident: ref93/cit93 doi: 10.1039/a806666c – ident: ref6/cit6 doi: 10.1016/j.watres.2017.10.034 – ident: ref97/cit97 doi: 10.1016/j.watres.2003.10.029 – ident: ref55/cit55 doi: 10.1080/10934520802329919 – ident: ref73/cit73 doi: 10.1016/j.coviro.2011.11.003 – ident: ref78/cit78 doi: 10.1128/jcm.20.3.365-372.1984 – ident: ref79/cit79 doi: 10.1073/pnas.0711757105 – ident: ref109/cit109 doi: 10.1093/femsle/fnv216 – ident: ref2/cit2 – ident: ref50/cit50 doi: 10.2175/106143003X140944 – ident: ref60/cit60 doi: 10.1021/es403850b – ident: ref99/cit99 doi: 10.1080/10934529.2014.854607 – ident: ref43/cit43 doi: 10.1128/aem.49.6.1361-1365.1985 – ident: ref45/cit45 doi: 10.1016/0043-1354(87)90080-7 – ident: ref111/cit111 doi: 10.1080/10643380601174764 – ident: ref108/cit108 doi: 10.4319/lo.1993.38.7.1562 – ident: ref9/cit9 doi: 10.1016/j.mrrev.2007.09.001 – ident: ref37/cit37 doi: 10.1061/(ASCE)0733-9372(1997)123:11(1142) – ident: ref59/cit59 doi: 10.1128/AEM.02049-07 – ident: ref91/cit91 doi: 10.1021/acs.estlett.8b00249 – ident: ref10/cit10 doi: 10.1021/acs.est.7b05440 – ident: ref29/cit29 doi: 10.1016/j.watres.2012.08.036 – ident: ref115/cit115 doi: 10.1016/j.scitotenv.2016.02.039 – ident: ref28/cit28 doi: 10.1007/s11814-008-0011-8 – volume-title: Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection year: 2010 ident: ref66/cit66 – ident: ref58/cit58 doi: 10.1061/(ASCE)0733-9372(2007)133:1(95) – ident: ref15/cit15 doi: 10.1021/es104240v – ident: ref77/cit77 doi: 10.1084/jem.100.1.53 – ident: ref70/cit70 doi: 10.1016/j.cej.2018.03.020 – ident: ref32/cit32 doi: 10.2175/106143017X14839994523028 – ident: ref98/cit98 doi: 10.1016/j.jenvman.2018.04.103 – ident: ref71/cit71 doi: 10.1016/j.watres.2019.01.006 – ident: ref26/cit26 doi: 10.2166/9781780407197 – ident: ref84/cit84 doi: 10.1159/000484899 – ident: ref96/cit96 doi: 10.1016/j.jhazmat.2007.04.050 – ident: ref83/cit83 doi: 10.1128/AEM.00185-10 – ident: ref7/cit7 – ident: ref47/cit47 doi: 10.1139/s04-036 – ident: ref102/cit102 doi: 10.1016/j.watres.2005.10.030 – ident: ref86/cit86 doi: 10.1021/acs.est.7b06082 – ident: ref48/cit48 doi: 10.1128/AEM.01106-06 – ident: ref20/cit20 – ident: ref74/cit74 doi: 10.1021/acs.est.9b05747 – ident: ref25/cit25 – ident: ref95/cit95 doi: 10.1016/j.watres.2013.06.035 – ident: ref89/cit89 doi: 10.1021/es100435a – ident: ref11/cit11 doi: 10.1021/es981218c – ident: ref35/cit35 doi: 10.1016/S1473-3099(18)30362-1 – ident: ref101/cit101 doi: 10.1016/j.jece.2017.07.080 – ident: ref49/cit49 doi: 10.3390/w11061131 – ident: ref92/cit92 doi: 10.4137/MBI.S31441 – volume-title: Transforming our World: The 2030 Agenda for Sustainable Development year: 2015 ident: ref1/cit1 – ident: ref12/cit12 doi: 10.1021/es00056a009 – ident: ref56/cit56 doi: 10.1128/AEM.01587-07 – ident: ref85/cit85 doi: 10.1007/s12560-009-9020-y – volume-title: Examining the Criteria for Direct Potable Reuse: Recommendations of an NWRI Independent Advisory Panel year: 2013 ident: ref5/cit5 – ident: ref39/cit39 doi: 10.1016/j.jenvman.2018.04.064 – ident: ref67/cit67 doi: 10.2166/ws.2019.022 – ident: ref110/cit110 doi: 10.3354/ame01363 – ident: ref18/cit18 doi: 10.1039/b201230h – ident: ref23/cit23 doi: 10.1080/01919510701759181 – ident: ref65/cit65 doi: 10.1093/femsle/fny194 – ident: ref82/cit82 doi: 10.1016/1011-1344(94)07068-7 – ident: ref104/cit104 doi: 10.1128/AEM.70.9.5089-5093.2004 – ident: ref4/cit4 doi: 10.1046/j.1365-2672.2001.01470.x – ident: ref52/cit52 doi: 10.2166/wst.1995.0584 – ident: ref54/cit54 doi: 10.2166/wst.2006.452 – ident: ref16/cit16 doi: 10.1128/AEM.00403-10 – volume: 189 start-page: 214 issue: 3 year: 1989 ident: ref51/cit51 publication-title: Int. J. Hyg. Environ. Med. – ident: ref27/cit27 doi: 10.1021/acs.est.8b00586 – ident: ref75/cit75 doi: 10.1007/s00705-013-1709-4 – ident: ref13/cit13 doi: 10.1021/acs.est.6b01142 – ident: ref24/cit24 – ident: ref46/cit46 doi: 10.1016/S0043-1354(96)00179-0 – ident: ref31/cit31 doi: 10.1016/j.watres.2009.03.044 – ident: ref61/cit61 doi: 10.2965/jwet.2014.511 – ident: ref42/cit42 doi: 10.4315/0362-028X.JFP-12-361 – ident: ref41/cit41 doi: 10.1128/AEM.69.1.577-582.2003 – ident: ref21/cit21 doi: 10.2175/193864709793847717 – ident: ref34/cit34 – ident: ref57/cit57 doi: 10.1002/j.1551-8833.2009.tb09876.x – ident: ref72/cit72 doi: 10.1021/es3029473 – ident: ref14/cit14 doi: 10.1016/S0043-1354(02)00458-X – volume: 18 start-page: 4 issue: 3 year: 2016 ident: ref105/cit105 publication-title: IUVA News – ident: ref68/cit68 doi: 10.1016/j.desal.2013.08.014 – ident: ref80/cit80 doi: 10.1016/0042-6822(88)90582-X – ident: ref103/cit103 doi: 10.1128/AEM.70.8.4538-4543.2004 – ident: ref69/cit69 doi: 10.1016/j.watres.2016.03.003 – ident: ref38/cit38 doi: 10.1111/j.1472-765X.2010.02982.x |
SSID | ssj0002308 |
Score | 2.5103285 |
SecondaryResourceType | review_article |
Snippet | Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 16283 |
SubjectTerms | Adenoviridae Adenoviruses Caliciviridae credit Deactivation Disinfection DNA DNA viruses Double-stranded RNA environmental science Fluence Humans Hydrogen Peroxide Inactivation Low pressure Oxidation pathogens Picornaviridae Radiation Regression analysis Rotavirus Titanium dioxide Treated water Ultraviolet radiation Ultraviolet Rays Virus Inactivation Viruses Water Water Purification wavelengths |
Title | Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34881878 https://www.proquest.com/docview/2616538106 https://www.proquest.com/docview/2608450142 https://www.proquest.com/docview/2636409470 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqTu2hFFpgecmVOHBJGj9iJ0e0gBASvZTd7i1yJrYUscquNsmFX99xNhsKiJZrPI5GY8_4m8zkMyFnIJRxKegAJM8DmcfocyLKg0InhhmtgIOv6N79VDcTeTuLZ09k0S8r-Jz9MFCHGCBDBr4a0EVbLT1L_sX41xBzEUgnm7sKUqFmA4nPq_nPz583QGV3uFxvr9uy6o6T0PeUPIRtk4fw-Jqx8f96fyGfe4hJL9Z7Yod8sNUu-fQX8eAu2bt6-r8NRXsHr78ShzASn9HJ0n8JoIuKTqb0sqw3PVsVbRYU01ZXzucUsePzsfEKj8KGTs28tRTRMO1aDkqg03LV1ramZUV_43tX38jk-up-fBP0VzEEIOKkCZzVUAiXJnHEAIOCduATa56LtDAeIkrfjWodrq91wAxLgUeFUkY4YVMEkXtkq1pU9oDQQjDFQblIaiELXSTKxKowJpUmwmwKRiTcLFAGPU-5vy5jnnX1cs4ytGyGls16y47I-TBhuaboeFv0eLPiWe-rdYY5pIo90Zkake_DMHqZL52Yyi5aLxMl0pdg-b9khPLZso5GZH-9mwZ9BMZJlujk8P26HpGP3PfPMB5wdky2mlVrTxAANflpt_f_AHc6AaQ |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Update+on+UV+Disinfection+to+Fulfill+the+Disinfection+Credit+Value+for+Enteric+Viruses+in+Water&rft.jtitle=Environmental+science+%26+technology&rft.au=Augsburger%2C+Nicolas&rft.au=Rachmadi%2C+Andri+Taruna&rft.au=Zaouri%2C+Noor&rft.au=Lee%2C+Yunho&rft.date=2021-12-21&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=55&rft.issue=24&rft.spage=16283&rft.epage=16298&rft_id=info:doi/10.1021%2Facs.est.1c03092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_1c03092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |