A two-layer graph-convolutional network for spatial interaction imputation from hierarchical functional regions

Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 134; p. 104163
Main Authors Xiao, Zeyu, Gong, Shuhui, Wang, Qirui, Di, Heyan, Jing, Changfeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous studies often used simplified grid-based or TAZ approaches that ignore the complex interactions for spatial interaction imputation, leading to limitations in accuracy. In this paper, we proposed a two-layer spatial interaction imputation framework (SIF) for accurate multi-scale spatial interaction imputation. To our knowledge, this is the first time that we impute spatial interactions in multi-scale urban areas. In the first layer, it utilised a hierarchical spatial units division algorithm inspired by Shannon’s information entropy to hierarchically classify study area using point of interest (POI) data; In the second layer, it integrates the classified areas and travel flow data into a spatial interaction graph convolutional network (SI-GCN) for spatial interaction imputation. Two case studies were conducted in Beijing, China and New York City, USA, using over eight million taxi data and one million bike-sharing data. The results showed the superior performance of SIF compared to baseline models. The results also analysed the travel behaviours in both Cities, as well as the impact of social, economic and environmental factors on passengers’ spatial choices when travelling. •A two-layer framework for accurately imputing spatial interaction.•Integrating POI data and taxi data for spatial interaction imputation.•Hierarchical improves the imputation accuracy over the regular grid method by about 9% in Beijing and NYC.•Revealing the travel patterns of different urban functional regions under different time periods.•Activity transitions are discovered spatially and temporally.
AbstractList Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous studies often used simplified grid-based or TAZ approaches that ignore the complex interactions for spatial interaction imputation, leading to limitations in accuracy. In this paper, we proposed a two-layer spatial interaction imputation framework (SIF) for accurate multi-scale spatial interaction imputation. To our knowledge, this is the first time that we impute spatial interactions in multi-scale urban areas. In the first layer, it utilised a hierarchical spatial units division algorithm inspired by Shannon’s information entropy to hierarchically classify study area using point of interest (POI) data; In the second layer, it integrates the classified areas and travel flow data into a spatial interaction graph convolutional network (SI-GCN) for spatial interaction imputation. Two case studies were conducted in Beijing, China and New York City, USA, using over eight million taxi data and one million bike-sharing data. The results showed the superior performance of SIF compared to baseline models. The results also analysed the travel behaviours in both Cities, as well as the impact of social, economic and environmental factors on passengers’ spatial choices when travelling.
Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous studies often used simplified grid-based or TAZ approaches that ignore the complex interactions for spatial interaction imputation, leading to limitations in accuracy. In this paper, we proposed a two-layer spatial interaction imputation framework (SIF) for accurate multi-scale spatial interaction imputation. To our knowledge, this is the first time that we impute spatial interactions in multi-scale urban areas. In the first layer, it utilised a hierarchical spatial units division algorithm inspired by Shannon’s information entropy to hierarchically classify study area using point of interest (POI) data; In the second layer, it integrates the classified areas and travel flow data into a spatial interaction graph convolutional network (SI-GCN) for spatial interaction imputation. Two case studies were conducted in Beijing, China and New York City, USA, using over eight million taxi data and one million bike-sharing data. The results showed the superior performance of SIF compared to baseline models. The results also analysed the travel behaviours in both Cities, as well as the impact of social, economic and environmental factors on passengers’ spatial choices when travelling. •A two-layer framework for accurately imputing spatial interaction.•Integrating POI data and taxi data for spatial interaction imputation.•Hierarchical improves the imputation accuracy over the regular grid method by about 9% in Beijing and NYC.•Revealing the travel patterns of different urban functional regions under different time periods.•Activity transitions are discovered spatially and temporally.
ArticleNumber 104163
Author Xiao, Zeyu
Gong, Shuhui
Di, Heyan
Wang, Qirui
Jing, Changfeng
Author_xml – sequence: 1
  givenname: Zeyu
  surname: Xiao
  fullname: Xiao, Zeyu
– sequence: 2
  givenname: Shuhui
  orcidid: 0000-0003-4073-8002
  surname: Gong
  fullname: Gong, Shuhui
  email: shuhui.gong@cugb.edu.cn
– sequence: 3
  givenname: Qirui
  orcidid: 0009-0005-8670-343X
  surname: Wang
  fullname: Wang, Qirui
– sequence: 4
  givenname: Heyan
  surname: Di
  fullname: Di, Heyan
– sequence: 5
  givenname: Changfeng
  orcidid: 0000-0002-1270-5353
  surname: Jing
  fullname: Jing, Changfeng
BookMark eNp9kMtuwyAQRVm0Up8f0J1_wClgzENdRVEfkSp1067RGI8TXMdE2EmVvy-Joy67YpiZewTnhlz0oUdCHhidMcrkYztrYTXjlIt0F0wWF-SaldLkWhT8itwMQ0spU0rqaxLm2fgT8g4OGLNVhO06d6Hfh243-tBDl_WY5vE7a0LMhi2MPvV8P2IEd9zI_Ga7G-FUNjFssrVPo-jW3qXFZte7MyfiKhXDHblsoBvw_nzekq-X58_FW_7-8bpczN9zV5R6zBsQsqwpGMPRgValFrQQSgtXo6CVqBiiFFXBmoqVuuJccaOVLFQp0CA3xS1ZTtw6QGu30W8gHmwAb0-NEFcW4uhdh9ZVSitjJDQmIRVWUnKJFSCjtXJQJBabWC6GYYjY_PEYtUfjtrXJuD0at5PxlHmaMpg-uU9O7OA89g5rH9GN6RX-n_Qv_sWPSQ
Cites_doi 10.1145/3292500.3330982
10.3390/urbansci2030065
10.1080/13658816.2023.2248502
10.3390/ijgi7040130
10.30932/1992-3252-2023-21-1-9
10.1007/978-1-4614-8857-6
10.3390/app132312727
10.1007/s12525-021-00475-2
10.3390/ijgi11020128
10.3390/su14137788
10.1111/j.1467-9671.2012.01344.x
10.5194/ica-abs-1-198-2019
10.1016/j.trpro.2021.01.058
10.3103/S1068798X21060137
10.1016/j.isprsjprs.2015.10.012
10.1007/s10707-019-00390-x
10.3390/ijgi12010013
10.1109/TITS.2020.3003310
10.3390/w14142211
10.3390/app11104557
10.1016/j.trc.2019.02.013
10.1109/TKDE.2020.3025580
10.1016/j.jtrangeo.2019.102565
10.14207/ejsd.2020.v9n3p51
10.3390/ijerph18010242
10.1038/s41598-023-30140-x
10.1007/s11356-021-13695-y
10.1016/j.compenvurbsys.2018.06.005
10.3390/axioms10040307
10.1109/JSTARS.2022.3183176
10.1080/13658816.2019.1641715
10.1145/3152178.3152190
10.1016/j.habitatint.2015.11.018
10.1016/j.jort.2016.06.001
10.1111/tgis.12979
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2024.104163
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_cb787996af964b7eb6626ebae10d7ca3
10_1016_j_jag_2024_104163
S1569843224005193
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AATTM
AAYWO
AAYXX
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c358t-fa465d0a992eca87584034784cde40b4b1ee64b31fb158b227298763754e9e293
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Wed Aug 27 01:30:13 EDT 2025
Tue Jul 01 02:15:27 EDT 2025
Sat Jan 25 15:58:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spatial interaction graph convolutional network (SI-GCN)
Hierarchical zoning of regions
Spatial interactions imputation
Travel behaviours analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-fa465d0a992eca87584034784cde40b4b1ee64b31fb158b227298763754e9e293
ORCID 0009-0005-8670-343X
0000-0002-1270-5353
0000-0003-4073-8002
OpenAccessLink https://doaj.org/article/cb787996af964b7eb6626ebae10d7ca3
ParticipantIDs doaj_primary_oai_doaj_org_article_cb787996af964b7eb6626ebae10d7ca3
crossref_primary_10_1016_j_jag_2024_104163
elsevier_sciencedirect_doi_10_1016_j_jag_2024_104163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jing, Zhang, Xu, Wang, Zhuo, Liu (b23) 2022; 26
Schlichtkrull, Kipf, Bloem, Berg, Welling (b40) 2018
Dong, Qu, Qin, Yi, Liu, Zhang (b11) 2022; 11
Li, Dragicevic, Castro, Sester, Winter, Coltekin, Pettit, Jiang, Haworth, Stein (b28) 2016; 115
Guo, Qian, Wu, Liu (b20) 2021
Janiesch, Zschech, Heinrich (b22) 2021; 31
Guo, Zhu, Jin, Gao, Andris (b21) 2012; 16
Gong, Qin, Xu, Cao, Liu, Jing, Hao, Yang (b17) 2023; 118
Zheng, Wang, Shang, Zheng (b49) 2023; 13
Kuftinova, Ostroukh, Karelina, Matyukhina, Akhmetzhanova (b25) 2021; 41
Lin, E., Park, J.D., Züfle, A., 2017. Real-time bayesian micro-analysis for metro traffic prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. pp. 1–4.
Amovic, Govedarica, Radulovic, Janković (b4) 2021; 11
Gong, Dong, Wang, Lei, Jia, Qin, Roadknight, Liu, Cao (b16) 2023; 122
Truong, Gkountouna, Pfoser, Züfle (b41) 2018; 2
Li, Xu, Yao (b29) 2021; 28
Fang, Pei, Song, Chen, Wang, Chen, Liu (b12) 2023; 37
Kuo, Wen (b26) 2019
Leng, Zeng, Xiong, Wan (b27) 2013
Zhang (b47) 2016; 54
Ding, Zhu, Lu (b10) 2015; 40
Lv, Duan, Kang, Li, Wang (b32) 2014; 16
Aljuaid, Sasi (b3) 2016
Zhang, Zhang, He, Xiao (b48) 2022; 15
Cai, Sha, He, Qing Yao (b7) 2023; 12
Monteiro, Pinho (b36) 2021; 15
Ding, Wang, Zhang, Sun (b9) 2011; 156
Ghorashi, Zia, Bewong, Jiang (b13) 2023
Louzada, Nascimento, Egbon (b31) 2021; 10
Ma, Y., Wang, S., Aggarwal, C.C., Tang, J., 2019. Graph convolutional networks with eigenpooling. In: In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 723–731.
Xia, Lin, Ding, Dong, Sun, Hu (b44) 2021; 18
Martynenko, Saifutdinov (b35) 2023
Yao, Gao, Zhu, Manley, Wang, Liu (b46) 2020; 22
Wang, Cao, Philip (b42) 2020; 34
Wang, Gu, Dou, Qiao (b43) 2018; 7
Abbas, Ekowati, Suhariadi, Fenitra (b1) 2023
Gong, Sun, Zuo, Bian (b18) 2022
Carvalho, Ferreira, Dias (b8) 2021; 52
Ren, Lin, Jin, Duan, Gong, Liu (b38) 2020
Xing, Meng (b45) 2018; 72
Gong, Cartlidge, Bai, Yue, Li, Qiu (b15) 2021; 25
Gonzales-Inca, Calle, Croghan, Haghighi, Marttila, Silander, Alho (b19) 2022
Gong, Cartlidge, Bai, Yue, Li, Qiu (b14) 2020; 34
Kipf, Welling (b24) 2016
Profiroiu, Bodislav, Burlacu, Rădulescu (b37) 2020; 9
Santos, Mendes, Vasco (b39) 2016; 15
Aguiar, Manzato, da Silva (b2) 2020; 82
Bachir, Khodabandelou, Gauthier, yacoubi, Puchinger (b6) 2019
Arif, Ahsan, Devisch, Schoonjans (b5) 2022
Ma, Zhao (b34) 2022
Profiroiu (10.1016/j.jag.2024.104163_b37) 2020; 9
Wang (10.1016/j.jag.2024.104163_b43) 2018; 7
Kuo (10.1016/j.jag.2024.104163_b26) 2019
Dong (10.1016/j.jag.2024.104163_b11) 2022; 11
Li (10.1016/j.jag.2024.104163_b29) 2021; 28
Gonzales-Inca (10.1016/j.jag.2024.104163_b19) 2022
Leng (10.1016/j.jag.2024.104163_b27) 2013
Martynenko (10.1016/j.jag.2024.104163_b35) 2023
Gong (10.1016/j.jag.2024.104163_b14) 2020; 34
Xia (10.1016/j.jag.2024.104163_b44) 2021; 18
10.1016/j.jag.2024.104163_b30
Fang (10.1016/j.jag.2024.104163_b12) 2023; 37
10.1016/j.jag.2024.104163_b33
Arif (10.1016/j.jag.2024.104163_b5) 2022
Ding (10.1016/j.jag.2024.104163_b9) 2011; 156
Ma (10.1016/j.jag.2024.104163_b34) 2022
Ghorashi (10.1016/j.jag.2024.104163_b13) 2023
Amovic (10.1016/j.jag.2024.104163_b4) 2021; 11
Gong (10.1016/j.jag.2024.104163_b18) 2022
Zhang (10.1016/j.jag.2024.104163_b47) 2016; 54
Yao (10.1016/j.jag.2024.104163_b46) 2020; 22
Jing (10.1016/j.jag.2024.104163_b23) 2022; 26
Cai (10.1016/j.jag.2024.104163_b7) 2023; 12
Ren (10.1016/j.jag.2024.104163_b38) 2020
Bachir (10.1016/j.jag.2024.104163_b6) 2019
Gong (10.1016/j.jag.2024.104163_b15) 2021; 25
Abbas (10.1016/j.jag.2024.104163_b1) 2023
Schlichtkrull (10.1016/j.jag.2024.104163_b40) 2018
Monteiro (10.1016/j.jag.2024.104163_b36) 2021; 15
Santos (10.1016/j.jag.2024.104163_b39) 2016; 15
Zheng (10.1016/j.jag.2024.104163_b49) 2023; 13
Xing (10.1016/j.jag.2024.104163_b45) 2018; 72
Aljuaid (10.1016/j.jag.2024.104163_b3) 2016
Wang (10.1016/j.jag.2024.104163_b42) 2020; 34
Gong (10.1016/j.jag.2024.104163_b17) 2023; 118
Louzada (10.1016/j.jag.2024.104163_b31) 2021; 10
Guo (10.1016/j.jag.2024.104163_b21) 2012; 16
Janiesch (10.1016/j.jag.2024.104163_b22) 2021; 31
Lv (10.1016/j.jag.2024.104163_b32) 2014; 16
Gong (10.1016/j.jag.2024.104163_b16) 2023; 122
Carvalho (10.1016/j.jag.2024.104163_b8) 2021; 52
Guo (10.1016/j.jag.2024.104163_b20) 2021
Zhang (10.1016/j.jag.2024.104163_b48) 2022; 15
Kipf (10.1016/j.jag.2024.104163_b24) 2016
Kuftinova (10.1016/j.jag.2024.104163_b25) 2021; 41
Li (10.1016/j.jag.2024.104163_b28) 2016; 115
Aguiar (10.1016/j.jag.2024.104163_b2) 2020; 82
Ding (10.1016/j.jag.2024.104163_b10) 2015; 40
Truong (10.1016/j.jag.2024.104163_b41) 2018; 2
References_xml – volume: 16
  start-page: 865
  year: 2014
  end-page: 873
  ident: b32
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 11
  start-page: 128
  year: 2022
  ident: b11
  article-title: A method to identify urban fringe area based on the industry density of POI
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 118
  year: 2023
  ident: b17
  article-title: Spatio-temporal parking occupancy forecasting integrating parking sensing records and street-level images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 51
  year: 2020
  ident: b37
  article-title: Challenges of sustainable urban development in the context of population growth
  publication-title: Eur. J. Sustain. Dev.
– volume: 13
  start-page: 2913
  year: 2023
  ident: b49
  article-title: Identification and prediction of mixed-use functional areas supported by POI data in Jinan City of China
  publication-title: Sci. Rep.
– volume: 122
  year: 2023
  ident: b16
  article-title: Agent-based modelling with geographically weighted calibration for intra-urban activities simulation using taxi GPS trajectories
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 52
  start-page: 493
  year: 2021
  end-page: 500
  ident: b8
  article-title: Understanding mobility patterns and user activities from geo-tagged social networks data
  publication-title: Transp. Res. Procedia
– reference: Lin, E., Park, J.D., Züfle, A., 2017. Real-time bayesian micro-analysis for metro traffic prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. pp. 1–4.
– start-page: 653
  year: 2023
  end-page: 675
  ident: b1
  article-title: Health implications, leaders societies, and climate change: a global review
  publication-title: Ecol. Footpr. Clim. Change: Adapt. Appr. Sustain.
– year: 2013
  ident: b27
  article-title: Probability tree based passenger flow prediction and its application to the Beijing subway system
  publication-title: Front. Comput. Sci. -Springer-
– volume: 15
  start-page: 1
  year: 2016
  end-page: 9
  ident: b39
  article-title: Recreational activities in urban parks: Spatial interactions among users
  publication-title: J. Outdoor Recreat. Tour.
– year: 2019
  ident: b26
  article-title: Delineating urban functional regions by considering interaction cohesiveness and function diversity
  publication-title: Abstr. ICA
– year: 2018
  ident: b40
  article-title: Modeling Relational Data with Graph Convolutional Networks
– volume: 15
  start-page: 491
  year: 2021
  end-page: 518
  ident: b36
  article-title: Comparing approaches in urban morphology
  publication-title: J. Urban.: Int. Res. Placemaking Urban Sustain.
– year: 2019
  ident: b6
  article-title: Inferring dynamic origin–destination flows by transport mode using mobile phone data
  publication-title: Transp. Res. C
– volume: 72
  start-page: 134
  year: 2018
  end-page: 145
  ident: b45
  article-title: Integrating landscape metrics and socioeconomic features for urban functional region classification
  publication-title: Comput. Environ. Urban Syst.
– year: 2022
  ident: b5
  article-title: Integrated approach to explore multidimensional urban morphology of informal settlements: The case studies of Lahore, Pakistan
  publication-title: Sustainability
– volume: 2
  start-page: 65
  year: 2018
  ident: b41
  article-title: Towards a better understanding of public transportation traffic: A case study of the Washington, DC metro
  publication-title: Urban Sci.
– year: 2021
  ident: b20
  article-title: A method for constructing geographical knowledge graph from multisource data
  publication-title: Sustainability
– year: 2022
  ident: b34
  article-title: Traffic flow prediction and analysis in smart cities based on the WND-LSTM model
  publication-title: Comput. Intell. Neurosci.
– start-page: 130
  year: 2022
  end-page: 136
  ident: b18
  article-title: Spatio-temporal travel volume prediction and spatial dependencies discovery using GRU, GCN and Bayesian probabilities
  publication-title: 2022 7th International Conference on Big Data Analytics
– volume: 156
  start-page: 979
  year: 2011
  end-page: 983
  ident: b9
  article-title: Forecasting traffic volume with space–time ARIMA model
  publication-title: Adv. Mater. Res.
– volume: 115
  start-page: 119
  year: 2016
  end-page: 133
  ident: b28
  article-title: Geospatial big data handling theory and methods: A review and research challenges
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2023
  ident: b35
  article-title: Adequacy of the gravity model of railway passenger flows
  publication-title: World Transp. Transp.
– volume: 82
  year: 2020
  ident: b2
  article-title: Combining travel and population data through a bivariate spatial analysis to define functional urban regions
  publication-title: J. Transp. Geogr.
– volume: 41
  start-page: 536
  year: 2021
  end-page: 538
  ident: b25
  article-title: Hybrid smart systems for big data analysis
  publication-title: Russ. Eng. Res.
– volume: 34
  start-page: 3681
  year: 2020
  end-page: 3700
  ident: b42
  article-title: Deep learning for spatio-temporal data mining: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 54
  start-page: 241
  year: 2016
  end-page: 252
  ident: b47
  article-title: The trends, promises and challenges of urbanisation in the world
  publication-title: Habitat Int.
– volume: 15
  start-page: 5102
  year: 2022
  end-page: 5114
  ident: b48
  article-title: Urban vitality and its influencing factors: Comparative analysis based on taxi trajectory data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2022
  ident: b19
  article-title: Geospatial artificial intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: Review of current applications and trends
  publication-title: Water
– year: 2023
  ident: b13
  article-title: An analytical review of industrial privacy frameworks and regulations for organisational data sharing
  publication-title: Appl. Sci.
– volume: 16
  start-page: 411
  year: 2012
  end-page: 429
  ident: b21
  article-title: Discovering spatial patterns in origin–destination mobility data
  publication-title: Trans. GIS
– volume: 37
  start-page: 2150
  year: 2023
  end-page: 2174
  ident: b12
  article-title: A kriging interpolation model for geographical flows
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 28
  start-page: 41191
  year: 2021
  end-page: 41206
  ident: b29
  article-title: Detecting urban landscape factors controlling seasonal land surface temperature: from the perspective of urban function zones
  publication-title: Environ. Sci. Pollut. Res.
– volume: 26
  start-page: 2691
  year: 2022
  end-page: 2715
  ident: b23
  article-title: A hierarchical spatial unit partitioning approach for fine-grained urban functional region identification
  publication-title: Trans. GIS
– volume: 7
  start-page: 130
  year: 2018
  ident: b43
  article-title: Using spatial semantics and interactions to identify urban functional regions
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 22
  start-page: 7474
  year: 2020
  end-page: 7484
  ident: b46
  article-title: Spatial origin–destination flow imputation using graph convolutional networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 18
  start-page: 242
  year: 2021
  ident: b44
  article-title: Research on the coupling coordination relationships between urban function mixing degree and urbanization development level based on information entropy
  publication-title: Int. J. Environ. Res. Public Health
– volume: 10
  start-page: 307
  year: 2021
  ident: b31
  article-title: Spatial statistical models: An overview under the Bayesian approach
  publication-title: Axioms
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: b22
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
– volume: 34
  start-page: 1210
  year: 2020
  end-page: 1234
  ident: b14
  article-title: Extracting activity patterns from taxi trajectory data: A two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 11
  start-page: 4557
  year: 2021
  ident: b4
  article-title: Big data in smart city: Management challenges
  publication-title: Appl. Sci.
– start-page: 1
  year: 2020
  end-page: 23
  ident: b38
  article-title: Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records
  publication-title: Transportation
– volume: 25
  start-page: 485
  year: 2021
  end-page: 512
  ident: b15
  article-title: Geographical and temporal huff model calibration using taxi trajectory data
  publication-title: GeoInformatica
– volume: 40
  start-page: 716
  year: 2015
  end-page: 720
  ident: b10
  article-title: An adaptive grid partition based perceptual hash algorithm for remote sensing image authentication
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– year: 2016
  ident: b24
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 12
  start-page: 13
  year: 2023
  ident: b7
  article-title: Spatial-temporal data imputation model of traffic passenger flow based on grid division
  publication-title: ISPRS Int. J. Geo Inf.
– reference: Ma, Y., Wang, S., Aggarwal, C.C., Tang, J., 2019. Graph convolutional networks with eigenpooling. In: In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 723–731.
– start-page: 1
  year: 2016
  end-page: 5
  ident: b3
  article-title: Proper imputation techniques for missing values in data sets
  publication-title: 2016 International Conference on Data Science and Engineering
– ident: 10.1016/j.jag.2024.104163_b33
  doi: 10.1145/3292500.3330982
– volume: 2
  start-page: 65
  year: 2018
  ident: 10.1016/j.jag.2024.104163_b41
  article-title: Towards a better understanding of public transportation traffic: A case study of the Washington, DC metro
  publication-title: Urban Sci.
  doi: 10.3390/urbansci2030065
– volume: 37
  start-page: 2150
  year: 2023
  ident: 10.1016/j.jag.2024.104163_b12
  article-title: A kriging interpolation model for geographical flows
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2023.2248502
– volume: 7
  start-page: 130
  year: 2018
  ident: 10.1016/j.jag.2024.104163_b43
  article-title: Using spatial semantics and interactions to identify urban functional regions
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi7040130
– start-page: 1
  year: 2020
  ident: 10.1016/j.jag.2024.104163_b38
  article-title: Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records
  publication-title: Transportation
– year: 2023
  ident: 10.1016/j.jag.2024.104163_b35
  article-title: Adequacy of the gravity model of railway passenger flows
  publication-title: World Transp. Transp.
  doi: 10.30932/1992-3252-2023-21-1-9
– year: 2013
  ident: 10.1016/j.jag.2024.104163_b27
  article-title: Probability tree based passenger flow prediction and its application to the Beijing subway system
  publication-title: Front. Comput. Sci. -Springer-
  doi: 10.1007/978-1-4614-8857-6
– year: 2023
  ident: 10.1016/j.jag.2024.104163_b13
  article-title: An analytical review of industrial privacy frameworks and regulations for organisational data sharing
  publication-title: Appl. Sci.
  doi: 10.3390/app132312727
– volume: 31
  start-page: 685
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b22
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 11
  start-page: 128
  year: 2022
  ident: 10.1016/j.jag.2024.104163_b11
  article-title: A method to identify urban fringe area based on the industry density of POI
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi11020128
– year: 2022
  ident: 10.1016/j.jag.2024.104163_b5
  article-title: Integrated approach to explore multidimensional urban morphology of informal settlements: The case studies of Lahore, Pakistan
  publication-title: Sustainability
  doi: 10.3390/su14137788
– year: 2021
  ident: 10.1016/j.jag.2024.104163_b20
  article-title: A method for constructing geographical knowledge graph from multisource data
  publication-title: Sustainability
– volume: 16
  start-page: 411
  year: 2012
  ident: 10.1016/j.jag.2024.104163_b21
  article-title: Discovering spatial patterns in origin–destination mobility data
  publication-title: Trans. GIS
  doi: 10.1111/j.1467-9671.2012.01344.x
– year: 2019
  ident: 10.1016/j.jag.2024.104163_b26
  article-title: Delineating urban functional regions by considering interaction cohesiveness and function diversity
  publication-title: Abstr. ICA
  doi: 10.5194/ica-abs-1-198-2019
– volume: 52
  start-page: 493
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b8
  article-title: Understanding mobility patterns and user activities from geo-tagged social networks data
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2021.01.058
– volume: 41
  start-page: 536
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b25
  article-title: Hybrid smart systems for big data analysis
  publication-title: Russ. Eng. Res.
  doi: 10.3103/S1068798X21060137
– volume: 115
  start-page: 119
  year: 2016
  ident: 10.1016/j.jag.2024.104163_b28
  article-title: Geospatial big data handling theory and methods: A review and research challenges
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.10.012
– volume: 122
  year: 2023
  ident: 10.1016/j.jag.2024.104163_b16
  article-title: Agent-based modelling with geographically weighted calibration for intra-urban activities simulation using taxi GPS trajectories
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 25
  start-page: 485
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b15
  article-title: Geographical and temporal huff model calibration using taxi trajectory data
  publication-title: GeoInformatica
  doi: 10.1007/s10707-019-00390-x
– start-page: 1
  year: 2016
  ident: 10.1016/j.jag.2024.104163_b3
  article-title: Proper imputation techniques for missing values in data sets
– volume: 156
  start-page: 979
  year: 2011
  ident: 10.1016/j.jag.2024.104163_b9
  article-title: Forecasting traffic volume with space–time ARIMA model
  publication-title: Adv. Mater. Res.
– volume: 12
  start-page: 13
  year: 2023
  ident: 10.1016/j.jag.2024.104163_b7
  article-title: Spatial-temporal data imputation model of traffic passenger flow based on grid division
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi12010013
– year: 2018
  ident: 10.1016/j.jag.2024.104163_b40
– year: 2016
  ident: 10.1016/j.jag.2024.104163_b24
– volume: 22
  start-page: 7474
  year: 2020
  ident: 10.1016/j.jag.2024.104163_b46
  article-title: Spatial origin–destination flow imputation using graph convolutional networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3003310
– start-page: 653
  year: 2023
  ident: 10.1016/j.jag.2024.104163_b1
  article-title: Health implications, leaders societies, and climate change: a global review
  publication-title: Ecol. Footpr. Clim. Change: Adapt. Appr. Sustain.
– volume: 40
  start-page: 716
  year: 2015
  ident: 10.1016/j.jag.2024.104163_b10
  article-title: An adaptive grid partition based perceptual hash algorithm for remote sensing image authentication
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– volume: 15
  start-page: 491
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b36
  article-title: Comparing approaches in urban morphology
  publication-title: J. Urban.: Int. Res. Placemaking Urban Sustain.
– year: 2022
  ident: 10.1016/j.jag.2024.104163_b19
  article-title: Geospatial artificial intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: Review of current applications and trends
  publication-title: Water
  doi: 10.3390/w14142211
– volume: 11
  start-page: 4557
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b4
  article-title: Big data in smart city: Management challenges
  publication-title: Appl. Sci.
  doi: 10.3390/app11104557
– volume: 118
  year: 2023
  ident: 10.1016/j.jag.2024.104163_b17
  article-title: Spatio-temporal parking occupancy forecasting integrating parking sensing records and street-level images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2019
  ident: 10.1016/j.jag.2024.104163_b6
  article-title: Inferring dynamic origin–destination flows by transport mode using mobile phone data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.02.013
– volume: 34
  start-page: 3681
  year: 2020
  ident: 10.1016/j.jag.2024.104163_b42
  article-title: Deep learning for spatio-temporal data mining: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3025580
– volume: 82
  year: 2020
  ident: 10.1016/j.jag.2024.104163_b2
  article-title: Combining travel and population data through a bivariate spatial analysis to define functional urban regions
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2019.102565
– year: 2022
  ident: 10.1016/j.jag.2024.104163_b34
  article-title: Traffic flow prediction and analysis in smart cities based on the WND-LSTM model
  publication-title: Comput. Intell. Neurosci.
– volume: 9
  start-page: 51
  year: 2020
  ident: 10.1016/j.jag.2024.104163_b37
  article-title: Challenges of sustainable urban development in the context of population growth
  publication-title: Eur. J. Sustain. Dev.
  doi: 10.14207/ejsd.2020.v9n3p51
– volume: 18
  start-page: 242
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b44
  article-title: Research on the coupling coordination relationships between urban function mixing degree and urbanization development level based on information entropy
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18010242
– start-page: 130
  year: 2022
  ident: 10.1016/j.jag.2024.104163_b18
  article-title: Spatio-temporal travel volume prediction and spatial dependencies discovery using GRU, GCN and Bayesian probabilities
– volume: 13
  start-page: 2913
  year: 2023
  ident: 10.1016/j.jag.2024.104163_b49
  article-title: Identification and prediction of mixed-use functional areas supported by POI data in Jinan City of China
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30140-x
– volume: 28
  start-page: 41191
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b29
  article-title: Detecting urban landscape factors controlling seasonal land surface temperature: from the perspective of urban function zones
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13695-y
– volume: 72
  start-page: 134
  year: 2018
  ident: 10.1016/j.jag.2024.104163_b45
  article-title: Integrating landscape metrics and socioeconomic features for urban functional region classification
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2018.06.005
– volume: 10
  start-page: 307
  year: 2021
  ident: 10.1016/j.jag.2024.104163_b31
  article-title: Spatial statistical models: An overview under the Bayesian approach
  publication-title: Axioms
  doi: 10.3390/axioms10040307
– volume: 15
  start-page: 5102
  year: 2022
  ident: 10.1016/j.jag.2024.104163_b48
  article-title: Urban vitality and its influencing factors: Comparative analysis based on taxi trajectory data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3183176
– volume: 34
  start-page: 1210
  year: 2020
  ident: 10.1016/j.jag.2024.104163_b14
  article-title: Extracting activity patterns from taxi trajectory data: A two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2019.1641715
– ident: 10.1016/j.jag.2024.104163_b30
  doi: 10.1145/3152178.3152190
– volume: 54
  start-page: 241
  year: 2016
  ident: 10.1016/j.jag.2024.104163_b47
  article-title: The trends, promises and challenges of urbanisation in the world
  publication-title: Habitat Int.
  doi: 10.1016/j.habitatint.2015.11.018
– volume: 15
  start-page: 1
  year: 2016
  ident: 10.1016/j.jag.2024.104163_b39
  article-title: Recreational activities in urban parks: Spatial interactions among users
  publication-title: J. Outdoor Recreat. Tour.
  doi: 10.1016/j.jort.2016.06.001
– volume: 16
  start-page: 865
  year: 2014
  ident: 10.1016/j.jag.2024.104163_b32
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 26
  start-page: 2691
  year: 2022
  ident: 10.1016/j.jag.2024.104163_b23
  article-title: A hierarchical spatial unit partitioning approach for fine-grained urban functional region identification
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12979
SSID ssj0017768
Score 2.3842053
Snippet Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104163
SubjectTerms Hierarchical zoning of regions
Spatial interaction graph convolutional network (SI-GCN)
Spatial interactions imputation
Travel behaviours analysis
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QLnowihLxlR48mTRst93XEQ0ENXJREm-bttsSiAGDGP--M7tdhIMXj9tMu5vO7DwyM98QclMIblInLDNOaSY5d0wXLoWYB8yhVkFoOfYOP4_j0UQ-vkVvDXJf98JgWaXX_ZVOL7W1X-n52-x9zGa9F4g8slSKsgoS_ZA90gpFFoNot_oPT6PxJpmQJFVHHNAz3FAnN8syr7maQpQYSkx28ljsmKcSxX_LSm1ZnuEROfQuI-1XX3VMGnbRJgdbQIJt0hn89qsBqf9hP0_Isk_X30v2rsCzpiU4NcM6cy9vQLqoysAp-K70E6urYQ0hJFZVwwOd4dCHknsUO1Eojs4ukw_AW4pG0Z-DAx5AgE_JZDh4vR8xP2OBGRGla-aUjKMiUFkWWqMgeIGAT8gklaawMtBSc2tjqQV3mkepDkNwxhHELomkzSz4Ch3SXCwX9ozQLHQJ15Gwoctk6gLFrYlkARpEGa5i1SW39dXmHxWURl7XmM1z4EOOfMgrPnTJHV7-hhBRsMuF5WqaezHIjQZ1AwGbchl8I053gfDMamV5UCRGwSGyZl2-I1Rw1Ozvd5__b9sF2cenqlHxkjTXqy97BR7LWl97ifwBUuLr0w
  priority: 102
  providerName: Elsevier
Title A two-layer graph-convolutional network for spatial interaction imputation from hierarchical functional regions
URI https://dx.doi.org/10.1016/j.jag.2024.104163
https://doaj.org/article/cb787996af964b7eb6626ebae10d7ca3
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SL3oQrRbro-TgSQhudrOvYy0t9VVELPS2JNlEWmQr7Yp_35nNrtaDePG0EEKyzMzufMPMfEPIRR5wndjAMG2lYoJzy1RuE4h5wB0q6fmGY-_wwyQaT8XtLJxtjPrCmjBHD-wEd6UVmBSAcmnTSCic4AEQ3ChpuJfHWlY8n-DzmmCqzh_EsWuCC6OUJSLwm3xmVdm1kC8QGPoC85s8Cn54pIq4f8MxbTib0T7Zq1Ei7bu3OyBbpmiT3Q3uwDbpDL9b1GBr_Y2uD8myT8uPJXuVAKZpxUfNsLS8NjHYWrjKbwpwla6xoBrWkDVi5Xoc6BznPFQKo9h8QnFadpVvAHVS9IP1OTjTAWz2iExHw-fBmNVjFZgOwqRkVooozD2Zpr7REuIViPECESdC50Z4SihuDIg64FbxMFG-D_gbeeviUJjUADzokFaxLMwxoalvY67CwPg2FYn1JDc6FDn8NKTmMpJdctmINntz7BlZU1a2yEAPGeohc3rokmsU_tdGJL6uFsAcstocsr_MoUtEo7qsxhAOG8BR89_vPvmPu0_JDh7pOhXPSKtcvZtzgCyl6pHt_uDp_hGfN3fjSa-y1k9w8u7X
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ine5MAJKVrTpq_jQKDx2gWQuEVJmqBNaENjiL-P3aYwDly4pk5axa4fsv0Z4LRKhC184rj12nAphOem8gXGPGgOjY5iJ6h3-H6Q9Z_kzXP6vAAXbS8MlVUG3d_o9Fpbh5VuuM3u23DYfcDIoyxkUldBkh-yCEuETpV2YKl3fdsffCcT8rzpiEN6Thva5GZd5jXSLxglxpKSnSJLfpmnGsV_zkrNWZ6rdVgLLiPrNV-1AQtuvAmrc0CCm7Bz-dOvhqThh33fgkmPzT4n_FWjZ81qcGpOdeZB3pB03JSBM_Rd2TtVV-MaQUhMm4YHNqShDzX3GHWiMBqdXScfkLeMjGI4hwY8oABvw9PV5eNFn4cZC9wmaTHjXsssrSJdlrGzGoMXDPgSmRfSVk5GRhrhXCZNIrwRaWHiGJ1xArHLU-lKh77CDnTGk7HbBVbGPhcmTVzsS1n4SAtnU1mhBtFW6EzvwVl7teqtgdJQbY3ZSCEfFPFBNXzYg3O6_G9CQsGuFybTFxXEQFmD6gYDNu1L_Eaa7oLhmTPaiajKrcZDZMs69Uuo8Kjh3-_e_9-2E1juP97fqbvrwe0BrNCTpmnxEDqz6Yc7Qu9lZo6DdH4BduruuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-layer+graph-convolutional+network+for+spatial+interaction+imputation+from+hierarchical+functional+regions&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Zeyu+Xiao&rft.au=Shuhui+Gong&rft.au=Qirui+Wang&rft.au=Heyan+Di&rft.date=2024-11-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=134&rft.spage=104163&rft_id=info:doi/10.1016%2Fj.jag.2024.104163&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cb787996af964b7eb6626ebae10d7ca3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon