A two-layer graph-convolutional network for spatial interaction imputation from hierarchical functional regions
Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 134; p. 104163 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous studies often used simplified grid-based or TAZ approaches that ignore the complex interactions for spatial interaction imputation, leading to limitations in accuracy. In this paper, we proposed a two-layer spatial interaction imputation framework (SIF) for accurate multi-scale spatial interaction imputation. To our knowledge, this is the first time that we impute spatial interactions in multi-scale urban areas. In the first layer, it utilised a hierarchical spatial units division algorithm inspired by Shannon’s information entropy to hierarchically classify study area using point of interest (POI) data; In the second layer, it integrates the classified areas and travel flow data into a spatial interaction graph convolutional network (SI-GCN) for spatial interaction imputation. Two case studies were conducted in Beijing, China and New York City, USA, using over eight million taxi data and one million bike-sharing data. The results showed the superior performance of SIF compared to baseline models. The results also analysed the travel behaviours in both Cities, as well as the impact of social, economic and environmental factors on passengers’ spatial choices when travelling.
•A two-layer framework for accurately imputing spatial interaction.•Integrating POI data and taxi data for spatial interaction imputation.•Hierarchical improves the imputation accuracy over the regular grid method by about 9% in Beijing and NYC.•Revealing the travel patterns of different urban functional regions under different time periods.•Activity transitions are discovered spatially and temporally. |
---|---|
AbstractList | Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous studies often used simplified grid-based or TAZ approaches that ignore the complex interactions for spatial interaction imputation, leading to limitations in accuracy. In this paper, we proposed a two-layer spatial interaction imputation framework (SIF) for accurate multi-scale spatial interaction imputation. To our knowledge, this is the first time that we impute spatial interactions in multi-scale urban areas. In the first layer, it utilised a hierarchical spatial units division algorithm inspired by Shannon’s information entropy to hierarchically classify study area using point of interest (POI) data; In the second layer, it integrates the classified areas and travel flow data into a spatial interaction graph convolutional network (SI-GCN) for spatial interaction imputation. Two case studies were conducted in Beijing, China and New York City, USA, using over eight million taxi data and one million bike-sharing data. The results showed the superior performance of SIF compared to baseline models. The results also analysed the travel behaviours in both Cities, as well as the impact of social, economic and environmental factors on passengers’ spatial choices when travelling. Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data often exhibit non-uniformity, necessitating the imputation of spatial interaction relationships derived from the analysis of such data. Previous studies often used simplified grid-based or TAZ approaches that ignore the complex interactions for spatial interaction imputation, leading to limitations in accuracy. In this paper, we proposed a two-layer spatial interaction imputation framework (SIF) for accurate multi-scale spatial interaction imputation. To our knowledge, this is the first time that we impute spatial interactions in multi-scale urban areas. In the first layer, it utilised a hierarchical spatial units division algorithm inspired by Shannon’s information entropy to hierarchically classify study area using point of interest (POI) data; In the second layer, it integrates the classified areas and travel flow data into a spatial interaction graph convolutional network (SI-GCN) for spatial interaction imputation. Two case studies were conducted in Beijing, China and New York City, USA, using over eight million taxi data and one million bike-sharing data. The results showed the superior performance of SIF compared to baseline models. The results also analysed the travel behaviours in both Cities, as well as the impact of social, economic and environmental factors on passengers’ spatial choices when travelling. •A two-layer framework for accurately imputing spatial interaction.•Integrating POI data and taxi data for spatial interaction imputation.•Hierarchical improves the imputation accuracy over the regular grid method by about 9% in Beijing and NYC.•Revealing the travel patterns of different urban functional regions under different time periods.•Activity transitions are discovered spatially and temporally. |
ArticleNumber | 104163 |
Author | Xiao, Zeyu Gong, Shuhui Di, Heyan Wang, Qirui Jing, Changfeng |
Author_xml | – sequence: 1 givenname: Zeyu surname: Xiao fullname: Xiao, Zeyu – sequence: 2 givenname: Shuhui orcidid: 0000-0003-4073-8002 surname: Gong fullname: Gong, Shuhui email: shuhui.gong@cugb.edu.cn – sequence: 3 givenname: Qirui orcidid: 0009-0005-8670-343X surname: Wang fullname: Wang, Qirui – sequence: 4 givenname: Heyan surname: Di fullname: Di, Heyan – sequence: 5 givenname: Changfeng orcidid: 0000-0002-1270-5353 surname: Jing fullname: Jing, Changfeng |
BookMark | eNp9kMtuwyAQRVm0Up8f0J1_wClgzENdRVEfkSp1067RGI8TXMdE2EmVvy-Joy67YpiZewTnhlz0oUdCHhidMcrkYztrYTXjlIt0F0wWF-SaldLkWhT8itwMQ0spU0rqaxLm2fgT8g4OGLNVhO06d6Hfh243-tBDl_WY5vE7a0LMhi2MPvV8P2IEd9zI_Ga7G-FUNjFssrVPo-jW3qXFZte7MyfiKhXDHblsoBvw_nzekq-X58_FW_7-8bpczN9zV5R6zBsQsqwpGMPRgValFrQQSgtXo6CVqBiiFFXBmoqVuuJccaOVLFQp0CA3xS1ZTtw6QGu30W8gHmwAb0-NEFcW4uhdh9ZVSitjJDQmIRVWUnKJFSCjtXJQJBabWC6GYYjY_PEYtUfjtrXJuD0at5PxlHmaMpg-uU9O7OA89g5rH9GN6RX-n_Qv_sWPSQ |
Cites_doi | 10.1145/3292500.3330982 10.3390/urbansci2030065 10.1080/13658816.2023.2248502 10.3390/ijgi7040130 10.30932/1992-3252-2023-21-1-9 10.1007/978-1-4614-8857-6 10.3390/app132312727 10.1007/s12525-021-00475-2 10.3390/ijgi11020128 10.3390/su14137788 10.1111/j.1467-9671.2012.01344.x 10.5194/ica-abs-1-198-2019 10.1016/j.trpro.2021.01.058 10.3103/S1068798X21060137 10.1016/j.isprsjprs.2015.10.012 10.1007/s10707-019-00390-x 10.3390/ijgi12010013 10.1109/TITS.2020.3003310 10.3390/w14142211 10.3390/app11104557 10.1016/j.trc.2019.02.013 10.1109/TKDE.2020.3025580 10.1016/j.jtrangeo.2019.102565 10.14207/ejsd.2020.v9n3p51 10.3390/ijerph18010242 10.1038/s41598-023-30140-x 10.1007/s11356-021-13695-y 10.1016/j.compenvurbsys.2018.06.005 10.3390/axioms10040307 10.1109/JSTARS.2022.3183176 10.1080/13658816.2019.1641715 10.1145/3152178.3152190 10.1016/j.habitatint.2015.11.018 10.1016/j.jort.2016.06.001 10.1111/tgis.12979 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jag.2024.104163 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_cb787996af964b7eb6626ebae10d7ca3 10_1016_j_jag_2024_104163 S1569843224005193 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AAXKI AAXUO ABFYP ABJNI ABLST ABQEM ABQYD ABWVN ACLVX ACRLP ACRPL ACSBN ADBBV ADMUD ADNMO ADVLN AEIPS AFJKZ AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AATTM AAYWO AAYXX AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c358t-fa465d0a992eca87584034784cde40b4b1ee64b31fb158b227298763754e9e293 |
IEDL.DBID | DOA |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:30:13 EDT 2025 Tue Jul 01 02:15:27 EDT 2025 Sat Jan 25 15:58:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatial interaction graph convolutional network (SI-GCN) Hierarchical zoning of regions Spatial interactions imputation Travel behaviours analysis |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-fa465d0a992eca87584034784cde40b4b1ee64b31fb158b227298763754e9e293 |
ORCID | 0009-0005-8670-343X 0000-0002-1270-5353 0000-0003-4073-8002 |
OpenAccessLink | https://doaj.org/article/cb787996af964b7eb6626ebae10d7ca3 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cb787996af964b7eb6626ebae10d7ca3 crossref_primary_10_1016_j_jag_2024_104163 elsevier_sciencedirect_doi_10_1016_j_jag_2024_104163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Jing, Zhang, Xu, Wang, Zhuo, Liu (b23) 2022; 26 Schlichtkrull, Kipf, Bloem, Berg, Welling (b40) 2018 Dong, Qu, Qin, Yi, Liu, Zhang (b11) 2022; 11 Li, Dragicevic, Castro, Sester, Winter, Coltekin, Pettit, Jiang, Haworth, Stein (b28) 2016; 115 Guo, Qian, Wu, Liu (b20) 2021 Janiesch, Zschech, Heinrich (b22) 2021; 31 Guo, Zhu, Jin, Gao, Andris (b21) 2012; 16 Gong, Qin, Xu, Cao, Liu, Jing, Hao, Yang (b17) 2023; 118 Zheng, Wang, Shang, Zheng (b49) 2023; 13 Kuftinova, Ostroukh, Karelina, Matyukhina, Akhmetzhanova (b25) 2021; 41 Lin, E., Park, J.D., Züfle, A., 2017. Real-time bayesian micro-analysis for metro traffic prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. pp. 1–4. Amovic, Govedarica, Radulovic, Janković (b4) 2021; 11 Gong, Dong, Wang, Lei, Jia, Qin, Roadknight, Liu, Cao (b16) 2023; 122 Truong, Gkountouna, Pfoser, Züfle (b41) 2018; 2 Li, Xu, Yao (b29) 2021; 28 Fang, Pei, Song, Chen, Wang, Chen, Liu (b12) 2023; 37 Kuo, Wen (b26) 2019 Leng, Zeng, Xiong, Wan (b27) 2013 Zhang (b47) 2016; 54 Ding, Zhu, Lu (b10) 2015; 40 Lv, Duan, Kang, Li, Wang (b32) 2014; 16 Aljuaid, Sasi (b3) 2016 Zhang, Zhang, He, Xiao (b48) 2022; 15 Cai, Sha, He, Qing Yao (b7) 2023; 12 Monteiro, Pinho (b36) 2021; 15 Ding, Wang, Zhang, Sun (b9) 2011; 156 Ghorashi, Zia, Bewong, Jiang (b13) 2023 Louzada, Nascimento, Egbon (b31) 2021; 10 Ma, Y., Wang, S., Aggarwal, C.C., Tang, J., 2019. Graph convolutional networks with eigenpooling. In: In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 723–731. Xia, Lin, Ding, Dong, Sun, Hu (b44) 2021; 18 Martynenko, Saifutdinov (b35) 2023 Yao, Gao, Zhu, Manley, Wang, Liu (b46) 2020; 22 Wang, Cao, Philip (b42) 2020; 34 Wang, Gu, Dou, Qiao (b43) 2018; 7 Abbas, Ekowati, Suhariadi, Fenitra (b1) 2023 Gong, Sun, Zuo, Bian (b18) 2022 Carvalho, Ferreira, Dias (b8) 2021; 52 Ren, Lin, Jin, Duan, Gong, Liu (b38) 2020 Xing, Meng (b45) 2018; 72 Gong, Cartlidge, Bai, Yue, Li, Qiu (b15) 2021; 25 Gonzales-Inca, Calle, Croghan, Haghighi, Marttila, Silander, Alho (b19) 2022 Gong, Cartlidge, Bai, Yue, Li, Qiu (b14) 2020; 34 Kipf, Welling (b24) 2016 Profiroiu, Bodislav, Burlacu, Rădulescu (b37) 2020; 9 Santos, Mendes, Vasco (b39) 2016; 15 Aguiar, Manzato, da Silva (b2) 2020; 82 Bachir, Khodabandelou, Gauthier, yacoubi, Puchinger (b6) 2019 Arif, Ahsan, Devisch, Schoonjans (b5) 2022 Ma, Zhao (b34) 2022 Profiroiu (10.1016/j.jag.2024.104163_b37) 2020; 9 Wang (10.1016/j.jag.2024.104163_b43) 2018; 7 Kuo (10.1016/j.jag.2024.104163_b26) 2019 Dong (10.1016/j.jag.2024.104163_b11) 2022; 11 Li (10.1016/j.jag.2024.104163_b29) 2021; 28 Gonzales-Inca (10.1016/j.jag.2024.104163_b19) 2022 Leng (10.1016/j.jag.2024.104163_b27) 2013 Martynenko (10.1016/j.jag.2024.104163_b35) 2023 Gong (10.1016/j.jag.2024.104163_b14) 2020; 34 Xia (10.1016/j.jag.2024.104163_b44) 2021; 18 10.1016/j.jag.2024.104163_b30 Fang (10.1016/j.jag.2024.104163_b12) 2023; 37 10.1016/j.jag.2024.104163_b33 Arif (10.1016/j.jag.2024.104163_b5) 2022 Ding (10.1016/j.jag.2024.104163_b9) 2011; 156 Ma (10.1016/j.jag.2024.104163_b34) 2022 Ghorashi (10.1016/j.jag.2024.104163_b13) 2023 Amovic (10.1016/j.jag.2024.104163_b4) 2021; 11 Gong (10.1016/j.jag.2024.104163_b18) 2022 Zhang (10.1016/j.jag.2024.104163_b47) 2016; 54 Yao (10.1016/j.jag.2024.104163_b46) 2020; 22 Jing (10.1016/j.jag.2024.104163_b23) 2022; 26 Cai (10.1016/j.jag.2024.104163_b7) 2023; 12 Ren (10.1016/j.jag.2024.104163_b38) 2020 Bachir (10.1016/j.jag.2024.104163_b6) 2019 Gong (10.1016/j.jag.2024.104163_b15) 2021; 25 Abbas (10.1016/j.jag.2024.104163_b1) 2023 Schlichtkrull (10.1016/j.jag.2024.104163_b40) 2018 Monteiro (10.1016/j.jag.2024.104163_b36) 2021; 15 Santos (10.1016/j.jag.2024.104163_b39) 2016; 15 Zheng (10.1016/j.jag.2024.104163_b49) 2023; 13 Xing (10.1016/j.jag.2024.104163_b45) 2018; 72 Aljuaid (10.1016/j.jag.2024.104163_b3) 2016 Wang (10.1016/j.jag.2024.104163_b42) 2020; 34 Gong (10.1016/j.jag.2024.104163_b17) 2023; 118 Louzada (10.1016/j.jag.2024.104163_b31) 2021; 10 Guo (10.1016/j.jag.2024.104163_b21) 2012; 16 Janiesch (10.1016/j.jag.2024.104163_b22) 2021; 31 Lv (10.1016/j.jag.2024.104163_b32) 2014; 16 Gong (10.1016/j.jag.2024.104163_b16) 2023; 122 Carvalho (10.1016/j.jag.2024.104163_b8) 2021; 52 Guo (10.1016/j.jag.2024.104163_b20) 2021 Zhang (10.1016/j.jag.2024.104163_b48) 2022; 15 Kipf (10.1016/j.jag.2024.104163_b24) 2016 Kuftinova (10.1016/j.jag.2024.104163_b25) 2021; 41 Li (10.1016/j.jag.2024.104163_b28) 2016; 115 Aguiar (10.1016/j.jag.2024.104163_b2) 2020; 82 Ding (10.1016/j.jag.2024.104163_b10) 2015; 40 Truong (10.1016/j.jag.2024.104163_b41) 2018; 2 |
References_xml | – volume: 16 start-page: 865 year: 2014 end-page: 873 ident: b32 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 11 start-page: 128 year: 2022 ident: b11 article-title: A method to identify urban fringe area based on the industry density of POI publication-title: ISPRS Int. J. Geo-Inf. – volume: 118 year: 2023 ident: b17 article-title: Spatio-temporal parking occupancy forecasting integrating parking sensing records and street-level images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 51 year: 2020 ident: b37 article-title: Challenges of sustainable urban development in the context of population growth publication-title: Eur. J. Sustain. Dev. – volume: 13 start-page: 2913 year: 2023 ident: b49 article-title: Identification and prediction of mixed-use functional areas supported by POI data in Jinan City of China publication-title: Sci. Rep. – volume: 122 year: 2023 ident: b16 article-title: Agent-based modelling with geographically weighted calibration for intra-urban activities simulation using taxi GPS trajectories publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 52 start-page: 493 year: 2021 end-page: 500 ident: b8 article-title: Understanding mobility patterns and user activities from geo-tagged social networks data publication-title: Transp. Res. Procedia – reference: Lin, E., Park, J.D., Züfle, A., 2017. Real-time bayesian micro-analysis for metro traffic prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. pp. 1–4. – start-page: 653 year: 2023 end-page: 675 ident: b1 article-title: Health implications, leaders societies, and climate change: a global review publication-title: Ecol. Footpr. Clim. Change: Adapt. Appr. Sustain. – year: 2013 ident: b27 article-title: Probability tree based passenger flow prediction and its application to the Beijing subway system publication-title: Front. Comput. Sci. -Springer- – volume: 15 start-page: 1 year: 2016 end-page: 9 ident: b39 article-title: Recreational activities in urban parks: Spatial interactions among users publication-title: J. Outdoor Recreat. Tour. – year: 2019 ident: b26 article-title: Delineating urban functional regions by considering interaction cohesiveness and function diversity publication-title: Abstr. ICA – year: 2018 ident: b40 article-title: Modeling Relational Data with Graph Convolutional Networks – volume: 15 start-page: 491 year: 2021 end-page: 518 ident: b36 article-title: Comparing approaches in urban morphology publication-title: J. Urban.: Int. Res. Placemaking Urban Sustain. – year: 2019 ident: b6 article-title: Inferring dynamic origin–destination flows by transport mode using mobile phone data publication-title: Transp. Res. C – volume: 72 start-page: 134 year: 2018 end-page: 145 ident: b45 article-title: Integrating landscape metrics and socioeconomic features for urban functional region classification publication-title: Comput. Environ. Urban Syst. – year: 2022 ident: b5 article-title: Integrated approach to explore multidimensional urban morphology of informal settlements: The case studies of Lahore, Pakistan publication-title: Sustainability – volume: 2 start-page: 65 year: 2018 ident: b41 article-title: Towards a better understanding of public transportation traffic: A case study of the Washington, DC metro publication-title: Urban Sci. – year: 2021 ident: b20 article-title: A method for constructing geographical knowledge graph from multisource data publication-title: Sustainability – year: 2022 ident: b34 article-title: Traffic flow prediction and analysis in smart cities based on the WND-LSTM model publication-title: Comput. Intell. Neurosci. – start-page: 130 year: 2022 end-page: 136 ident: b18 article-title: Spatio-temporal travel volume prediction and spatial dependencies discovery using GRU, GCN and Bayesian probabilities publication-title: 2022 7th International Conference on Big Data Analytics – volume: 156 start-page: 979 year: 2011 end-page: 983 ident: b9 article-title: Forecasting traffic volume with space–time ARIMA model publication-title: Adv. Mater. Res. – volume: 115 start-page: 119 year: 2016 end-page: 133 ident: b28 article-title: Geospatial big data handling theory and methods: A review and research challenges publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2023 ident: b35 article-title: Adequacy of the gravity model of railway passenger flows publication-title: World Transp. Transp. – volume: 82 year: 2020 ident: b2 article-title: Combining travel and population data through a bivariate spatial analysis to define functional urban regions publication-title: J. Transp. Geogr. – volume: 41 start-page: 536 year: 2021 end-page: 538 ident: b25 article-title: Hybrid smart systems for big data analysis publication-title: Russ. Eng. Res. – volume: 34 start-page: 3681 year: 2020 end-page: 3700 ident: b42 article-title: Deep learning for spatio-temporal data mining: A survey publication-title: IEEE Trans. Knowl. Data Eng. – volume: 54 start-page: 241 year: 2016 end-page: 252 ident: b47 article-title: The trends, promises and challenges of urbanisation in the world publication-title: Habitat Int. – volume: 15 start-page: 5102 year: 2022 end-page: 5114 ident: b48 article-title: Urban vitality and its influencing factors: Comparative analysis based on taxi trajectory data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2022 ident: b19 article-title: Geospatial artificial intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: Review of current applications and trends publication-title: Water – year: 2023 ident: b13 article-title: An analytical review of industrial privacy frameworks and regulations for organisational data sharing publication-title: Appl. Sci. – volume: 16 start-page: 411 year: 2012 end-page: 429 ident: b21 article-title: Discovering spatial patterns in origin–destination mobility data publication-title: Trans. GIS – volume: 37 start-page: 2150 year: 2023 end-page: 2174 ident: b12 article-title: A kriging interpolation model for geographical flows publication-title: Int. J. Geogr. Inf. Sci. – volume: 28 start-page: 41191 year: 2021 end-page: 41206 ident: b29 article-title: Detecting urban landscape factors controlling seasonal land surface temperature: from the perspective of urban function zones publication-title: Environ. Sci. Pollut. Res. – volume: 26 start-page: 2691 year: 2022 end-page: 2715 ident: b23 article-title: A hierarchical spatial unit partitioning approach for fine-grained urban functional region identification publication-title: Trans. GIS – volume: 7 start-page: 130 year: 2018 ident: b43 article-title: Using spatial semantics and interactions to identify urban functional regions publication-title: ISPRS Int. J. Geo Inf. – volume: 22 start-page: 7474 year: 2020 end-page: 7484 ident: b46 article-title: Spatial origin–destination flow imputation using graph convolutional networks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 18 start-page: 242 year: 2021 ident: b44 article-title: Research on the coupling coordination relationships between urban function mixing degree and urbanization development level based on information entropy publication-title: Int. J. Environ. Res. Public Health – volume: 10 start-page: 307 year: 2021 ident: b31 article-title: Spatial statistical models: An overview under the Bayesian approach publication-title: Axioms – volume: 31 start-page: 685 year: 2021 end-page: 695 ident: b22 article-title: Machine learning and deep learning publication-title: Electron. Mark. – volume: 34 start-page: 1210 year: 2020 end-page: 1234 ident: b14 article-title: Extracting activity patterns from taxi trajectory data: A two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation publication-title: Int. J. Geogr. Inf. Sci. – volume: 11 start-page: 4557 year: 2021 ident: b4 article-title: Big data in smart city: Management challenges publication-title: Appl. Sci. – start-page: 1 year: 2020 end-page: 23 ident: b38 article-title: Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records publication-title: Transportation – volume: 25 start-page: 485 year: 2021 end-page: 512 ident: b15 article-title: Geographical and temporal huff model calibration using taxi trajectory data publication-title: GeoInformatica – volume: 40 start-page: 716 year: 2015 end-page: 720 ident: b10 article-title: An adaptive grid partition based perceptual hash algorithm for remote sensing image authentication publication-title: Geomat. Inf. Sci. Wuhan Univ. – year: 2016 ident: b24 article-title: Semi-supervised classification with graph convolutional networks – volume: 12 start-page: 13 year: 2023 ident: b7 article-title: Spatial-temporal data imputation model of traffic passenger flow based on grid division publication-title: ISPRS Int. J. Geo Inf. – reference: Ma, Y., Wang, S., Aggarwal, C.C., Tang, J., 2019. Graph convolutional networks with eigenpooling. In: In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 723–731. – start-page: 1 year: 2016 end-page: 5 ident: b3 article-title: Proper imputation techniques for missing values in data sets publication-title: 2016 International Conference on Data Science and Engineering – ident: 10.1016/j.jag.2024.104163_b33 doi: 10.1145/3292500.3330982 – volume: 2 start-page: 65 year: 2018 ident: 10.1016/j.jag.2024.104163_b41 article-title: Towards a better understanding of public transportation traffic: A case study of the Washington, DC metro publication-title: Urban Sci. doi: 10.3390/urbansci2030065 – volume: 37 start-page: 2150 year: 2023 ident: 10.1016/j.jag.2024.104163_b12 article-title: A kriging interpolation model for geographical flows publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2023.2248502 – volume: 7 start-page: 130 year: 2018 ident: 10.1016/j.jag.2024.104163_b43 article-title: Using spatial semantics and interactions to identify urban functional regions publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi7040130 – start-page: 1 year: 2020 ident: 10.1016/j.jag.2024.104163_b38 article-title: Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records publication-title: Transportation – year: 2023 ident: 10.1016/j.jag.2024.104163_b35 article-title: Adequacy of the gravity model of railway passenger flows publication-title: World Transp. Transp. doi: 10.30932/1992-3252-2023-21-1-9 – year: 2013 ident: 10.1016/j.jag.2024.104163_b27 article-title: Probability tree based passenger flow prediction and its application to the Beijing subway system publication-title: Front. Comput. Sci. -Springer- doi: 10.1007/978-1-4614-8857-6 – year: 2023 ident: 10.1016/j.jag.2024.104163_b13 article-title: An analytical review of industrial privacy frameworks and regulations for organisational data sharing publication-title: Appl. Sci. doi: 10.3390/app132312727 – volume: 31 start-page: 685 year: 2021 ident: 10.1016/j.jag.2024.104163_b22 article-title: Machine learning and deep learning publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 – volume: 11 start-page: 128 year: 2022 ident: 10.1016/j.jag.2024.104163_b11 article-title: A method to identify urban fringe area based on the industry density of POI publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi11020128 – year: 2022 ident: 10.1016/j.jag.2024.104163_b5 article-title: Integrated approach to explore multidimensional urban morphology of informal settlements: The case studies of Lahore, Pakistan publication-title: Sustainability doi: 10.3390/su14137788 – year: 2021 ident: 10.1016/j.jag.2024.104163_b20 article-title: A method for constructing geographical knowledge graph from multisource data publication-title: Sustainability – volume: 16 start-page: 411 year: 2012 ident: 10.1016/j.jag.2024.104163_b21 article-title: Discovering spatial patterns in origin–destination mobility data publication-title: Trans. GIS doi: 10.1111/j.1467-9671.2012.01344.x – year: 2019 ident: 10.1016/j.jag.2024.104163_b26 article-title: Delineating urban functional regions by considering interaction cohesiveness and function diversity publication-title: Abstr. ICA doi: 10.5194/ica-abs-1-198-2019 – volume: 52 start-page: 493 year: 2021 ident: 10.1016/j.jag.2024.104163_b8 article-title: Understanding mobility patterns and user activities from geo-tagged social networks data publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2021.01.058 – volume: 41 start-page: 536 year: 2021 ident: 10.1016/j.jag.2024.104163_b25 article-title: Hybrid smart systems for big data analysis publication-title: Russ. Eng. Res. doi: 10.3103/S1068798X21060137 – volume: 115 start-page: 119 year: 2016 ident: 10.1016/j.jag.2024.104163_b28 article-title: Geospatial big data handling theory and methods: A review and research challenges publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.10.012 – volume: 122 year: 2023 ident: 10.1016/j.jag.2024.104163_b16 article-title: Agent-based modelling with geographically weighted calibration for intra-urban activities simulation using taxi GPS trajectories publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 25 start-page: 485 year: 2021 ident: 10.1016/j.jag.2024.104163_b15 article-title: Geographical and temporal huff model calibration using taxi trajectory data publication-title: GeoInformatica doi: 10.1007/s10707-019-00390-x – start-page: 1 year: 2016 ident: 10.1016/j.jag.2024.104163_b3 article-title: Proper imputation techniques for missing values in data sets – volume: 156 start-page: 979 year: 2011 ident: 10.1016/j.jag.2024.104163_b9 article-title: Forecasting traffic volume with space–time ARIMA model publication-title: Adv. Mater. Res. – volume: 12 start-page: 13 year: 2023 ident: 10.1016/j.jag.2024.104163_b7 article-title: Spatial-temporal data imputation model of traffic passenger flow based on grid division publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi12010013 – year: 2018 ident: 10.1016/j.jag.2024.104163_b40 – year: 2016 ident: 10.1016/j.jag.2024.104163_b24 – volume: 22 start-page: 7474 year: 2020 ident: 10.1016/j.jag.2024.104163_b46 article-title: Spatial origin–destination flow imputation using graph convolutional networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3003310 – start-page: 653 year: 2023 ident: 10.1016/j.jag.2024.104163_b1 article-title: Health implications, leaders societies, and climate change: a global review publication-title: Ecol. Footpr. Clim. Change: Adapt. Appr. Sustain. – volume: 40 start-page: 716 year: 2015 ident: 10.1016/j.jag.2024.104163_b10 article-title: An adaptive grid partition based perceptual hash algorithm for remote sensing image authentication publication-title: Geomat. Inf. Sci. Wuhan Univ. – volume: 15 start-page: 491 year: 2021 ident: 10.1016/j.jag.2024.104163_b36 article-title: Comparing approaches in urban morphology publication-title: J. Urban.: Int. Res. Placemaking Urban Sustain. – year: 2022 ident: 10.1016/j.jag.2024.104163_b19 article-title: Geospatial artificial intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: Review of current applications and trends publication-title: Water doi: 10.3390/w14142211 – volume: 11 start-page: 4557 year: 2021 ident: 10.1016/j.jag.2024.104163_b4 article-title: Big data in smart city: Management challenges publication-title: Appl. Sci. doi: 10.3390/app11104557 – volume: 118 year: 2023 ident: 10.1016/j.jag.2024.104163_b17 article-title: Spatio-temporal parking occupancy forecasting integrating parking sensing records and street-level images publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2019 ident: 10.1016/j.jag.2024.104163_b6 article-title: Inferring dynamic origin–destination flows by transport mode using mobile phone data publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.02.013 – volume: 34 start-page: 3681 year: 2020 ident: 10.1016/j.jag.2024.104163_b42 article-title: Deep learning for spatio-temporal data mining: A survey publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.3025580 – volume: 82 year: 2020 ident: 10.1016/j.jag.2024.104163_b2 article-title: Combining travel and population data through a bivariate spatial analysis to define functional urban regions publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2019.102565 – year: 2022 ident: 10.1016/j.jag.2024.104163_b34 article-title: Traffic flow prediction and analysis in smart cities based on the WND-LSTM model publication-title: Comput. Intell. Neurosci. – volume: 9 start-page: 51 year: 2020 ident: 10.1016/j.jag.2024.104163_b37 article-title: Challenges of sustainable urban development in the context of population growth publication-title: Eur. J. Sustain. Dev. doi: 10.14207/ejsd.2020.v9n3p51 – volume: 18 start-page: 242 year: 2021 ident: 10.1016/j.jag.2024.104163_b44 article-title: Research on the coupling coordination relationships between urban function mixing degree and urbanization development level based on information entropy publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph18010242 – start-page: 130 year: 2022 ident: 10.1016/j.jag.2024.104163_b18 article-title: Spatio-temporal travel volume prediction and spatial dependencies discovery using GRU, GCN and Bayesian probabilities – volume: 13 start-page: 2913 year: 2023 ident: 10.1016/j.jag.2024.104163_b49 article-title: Identification and prediction of mixed-use functional areas supported by POI data in Jinan City of China publication-title: Sci. Rep. doi: 10.1038/s41598-023-30140-x – volume: 28 start-page: 41191 year: 2021 ident: 10.1016/j.jag.2024.104163_b29 article-title: Detecting urban landscape factors controlling seasonal land surface temperature: from the perspective of urban function zones publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-13695-y – volume: 72 start-page: 134 year: 2018 ident: 10.1016/j.jag.2024.104163_b45 article-title: Integrating landscape metrics and socioeconomic features for urban functional region classification publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2018.06.005 – volume: 10 start-page: 307 year: 2021 ident: 10.1016/j.jag.2024.104163_b31 article-title: Spatial statistical models: An overview under the Bayesian approach publication-title: Axioms doi: 10.3390/axioms10040307 – volume: 15 start-page: 5102 year: 2022 ident: 10.1016/j.jag.2024.104163_b48 article-title: Urban vitality and its influencing factors: Comparative analysis based on taxi trajectory data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3183176 – volume: 34 start-page: 1210 year: 2020 ident: 10.1016/j.jag.2024.104163_b14 article-title: Extracting activity patterns from taxi trajectory data: A two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2019.1641715 – ident: 10.1016/j.jag.2024.104163_b30 doi: 10.1145/3152178.3152190 – volume: 54 start-page: 241 year: 2016 ident: 10.1016/j.jag.2024.104163_b47 article-title: The trends, promises and challenges of urbanisation in the world publication-title: Habitat Int. doi: 10.1016/j.habitatint.2015.11.018 – volume: 15 start-page: 1 year: 2016 ident: 10.1016/j.jag.2024.104163_b39 article-title: Recreational activities in urban parks: Spatial interactions among users publication-title: J. Outdoor Recreat. Tour. doi: 10.1016/j.jort.2016.06.001 – volume: 16 start-page: 865 year: 2014 ident: 10.1016/j.jag.2024.104163_b32 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 26 start-page: 2691 year: 2022 ident: 10.1016/j.jag.2024.104163_b23 article-title: A hierarchical spatial unit partitioning approach for fine-grained urban functional region identification publication-title: Trans. GIS doi: 10.1111/tgis.12979 |
SSID | ssj0017768 |
Score | 2.3842053 |
Snippet | Understanding spatial interactions in urban environments has become critical in the context of spatio-temporal big data. However, Spatial–temporal big data... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 104163 |
SubjectTerms | Hierarchical zoning of regions Spatial interaction graph convolutional network (SI-GCN) Spatial interactions imputation Travel behaviours analysis |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QLnowihLxlR48mTRst93XEQ0ENXJREm-bttsSiAGDGP--M7tdhIMXj9tMu5vO7DwyM98QclMIblInLDNOaSY5d0wXLoWYB8yhVkFoOfYOP4_j0UQ-vkVvDXJf98JgWaXX_ZVOL7W1X-n52-x9zGa9F4g8slSKsgoS_ZA90gpFFoNot_oPT6PxJpmQJFVHHNAz3FAnN8syr7maQpQYSkx28ljsmKcSxX_LSm1ZnuEROfQuI-1XX3VMGnbRJgdbQIJt0hn89qsBqf9hP0_Isk_X30v2rsCzpiU4NcM6cy9vQLqoysAp-K70E6urYQ0hJFZVwwOd4dCHknsUO1Eojs4ukw_AW4pG0Z-DAx5AgE_JZDh4vR8xP2OBGRGla-aUjKMiUFkWWqMgeIGAT8gklaawMtBSc2tjqQV3mkepDkNwxhHELomkzSz4Ch3SXCwX9ozQLHQJ15Gwoctk6gLFrYlkARpEGa5i1SW39dXmHxWURl7XmM1z4EOOfMgrPnTJHV7-hhBRsMuF5WqaezHIjQZ1AwGbchl8I053gfDMamV5UCRGwSGyZl2-I1Rw1Ozvd5__b9sF2cenqlHxkjTXqy97BR7LWl97ifwBUuLr0w priority: 102 providerName: Elsevier |
Title | A two-layer graph-convolutional network for spatial interaction imputation from hierarchical functional regions |
URI | https://dx.doi.org/10.1016/j.jag.2024.104163 https://doaj.org/article/cb787996af964b7eb6626ebae10d7ca3 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SL3oQrRbro-TgSQhudrOvYy0t9VVELPS2JNlEWmQr7Yp_35nNrtaDePG0EEKyzMzufMPMfEPIRR5wndjAMG2lYoJzy1RuE4h5wB0q6fmGY-_wwyQaT8XtLJxtjPrCmjBHD-wEd6UVmBSAcmnTSCic4AEQ3ChpuJfHWlY8n-DzmmCqzh_EsWuCC6OUJSLwm3xmVdm1kC8QGPoC85s8Cn54pIq4f8MxbTib0T7Zq1Ei7bu3OyBbpmiT3Q3uwDbpDL9b1GBr_Y2uD8myT8uPJXuVAKZpxUfNsLS8NjHYWrjKbwpwla6xoBrWkDVi5Xoc6BznPFQKo9h8QnFadpVvAHVS9IP1OTjTAWz2iExHw-fBmNVjFZgOwqRkVooozD2Zpr7REuIViPECESdC50Z4SihuDIg64FbxMFG-D_gbeeviUJjUADzokFaxLMwxoalvY67CwPg2FYn1JDc6FDn8NKTmMpJdctmINntz7BlZU1a2yEAPGeohc3rokmsU_tdGJL6uFsAcstocsr_MoUtEo7qsxhAOG8BR89_vPvmPu0_JDh7pOhXPSKtcvZtzgCyl6pHt_uDp_hGfN3fjSa-y1k9w8u7X |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ine5MAJKVrTpq_jQKDx2gWQuEVJmqBNaENjiL-P3aYwDly4pk5axa4fsv0Z4LRKhC184rj12nAphOem8gXGPGgOjY5iJ6h3-H6Q9Z_kzXP6vAAXbS8MlVUG3d_o9Fpbh5VuuM3u23DYfcDIoyxkUldBkh-yCEuETpV2YKl3fdsffCcT8rzpiEN6Thva5GZd5jXSLxglxpKSnSJLfpmnGsV_zkrNWZ6rdVgLLiPrNV-1AQtuvAmrc0CCm7Bz-dOvhqThh33fgkmPzT4n_FWjZ81qcGpOdeZB3pB03JSBM_Rd2TtVV-MaQUhMm4YHNqShDzX3GHWiMBqdXScfkLeMjGI4hwY8oABvw9PV5eNFn4cZC9wmaTHjXsssrSJdlrGzGoMXDPgSmRfSVk5GRhrhXCZNIrwRaWHiGJ1xArHLU-lKh77CDnTGk7HbBVbGPhcmTVzsS1n4SAtnU1mhBtFW6EzvwVl7teqtgdJQbY3ZSCEfFPFBNXzYg3O6_G9CQsGuFybTFxXEQFmD6gYDNu1L_Eaa7oLhmTPaiajKrcZDZMs69Uuo8Kjh3-_e_9-2E1juP97fqbvrwe0BrNCTpmnxEDqz6Yc7Qu9lZo6DdH4BduruuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-layer+graph-convolutional+network+for+spatial+interaction+imputation+from+hierarchical+functional+regions&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Zeyu+Xiao&rft.au=Shuhui+Gong&rft.au=Qirui+Wang&rft.au=Heyan+Di&rft.date=2024-11-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=134&rft.spage=104163&rft_id=info:doi/10.1016%2Fj.jag.2024.104163&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cb787996af964b7eb6626ebae10d7ca3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |