Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler’s First Law of Geography for Very High Resolution Aerial Imagery Classification
Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for clas...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 9; no. 3; p. 285 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for classification. However, parameter determination for that feature extraction is usually time-consuming and depends excessively on experience. In this paper, an automatic spatial feature extraction approach based on image raster and segmental vector data cross-analysis is proposed for the classification of very high spatial resolution (VHSR) aerial imagery. First, multi-resolution segmentation is used to generate strongly homogeneous image objects and extract corresponding vectors. Then, to automatically explore the region of a ground target, two rules, which are derived from Tobler’s First Law of Geography (TFL) and a topological relationship of vector data, are integrated to constrain the extension of a region around a central object. Third, the shape and size of the extended region are described. A final classification map is achieved through a supervised classifier using shape, size, and spectral features. Experiments on three real aerial images of VHSR (0.1 to 0.32 m) are done to evaluate effectiveness and robustness of the proposed approach. Comparisons to state-of-the-art methods demonstrate the superiority of the proposed method in VHSR image classification. |
---|---|
AbstractList | Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for classification. However, parameter determination for that feature extraction is usually time-consuming and depends excessively on experience. In this paper, an automatic spatial feature extraction approach based on image raster and segmental vector data cross-analysis is proposed for the classification of very high spatial resolution (VHSR) aerial imagery. First, multi-resolution segmentation is used to generate strongly homogeneous image objects and extract corresponding vectors. Then, to automatically explore the region of a ground target, two rules, which are derived from Tobler’s First Law of Geography (TFL) and a topological relationship of vector data, are integrated to constrain the extension of a region around a central object. Third, the shape and size of the extended region are described. A final classification map is achieved through a supervised classifier using shape, size, and spectral features. Experiments on three real aerial images of VHSR (0.1 to 0.32 m) are done to evaluate effectiveness and robustness of the proposed approach. Comparisons to state-of-the-art methods demonstrate the superiority of the proposed method in VHSR image classification. |
Author | Zhang, Penglin Atli Benediktsson, Jón Lv, Zhiyong |
Author_xml | – sequence: 1 givenname: Zhiyong orcidid: 0000-0002-1821-538X surname: Lv fullname: Lv, Zhiyong – sequence: 2 givenname: Penglin surname: Zhang fullname: Zhang, Penglin – sequence: 3 givenname: Jón orcidid: 0000-0003-0621-9647 surname: Atli Benediktsson fullname: Atli Benediktsson, Jón |
BookMark | eNptUU1vEzEQXaEiUUoP_ANLnJBY6rV3N_YxCk0bKVIkWriuZr3j1NFmvYydQm78DY78NX4JToIqhPDF8_Hmzei9l9nZ4AfMstcFfy-l5lcUNJdcqOpZdi74ROSl0OLsr_hFdhnChqcnZaF5eZ79nO6i30J0hq3aDZqYr8jhELF7x-7GlBP0-d2YANCzOULcEbLrb6lsovMD-0DuEQfW7tm9b3ukX99_BDZ3FCJbwlfmLbtBvyYYH_bMemKfkfbs1q0f2EcMvt8dSaZIB_rFFtaH9qyHEJx1Bg7dV9lzC33Ayz__RfZpfn0_u82Xq5vFbLrMjaxUzG3dKW3BWKFMN6krk-JCCmuUgbbqLFhTVq2acA28VZ1FpctaCgWorE7ayItsceLtPGyakdwWaN94cM2x4GndACWdemxqW6MuQVRprEQrlSxLVaui46KqCt0lrjcnrpH8lx2G2Gz8joZ0flMopfSkrnmZUG9PKEM-BEL7tLXgzcHQ5snQhL36B2tcPOqTrHD9fyZ-Ax2xp4U |
CitedBy_id | crossref_primary_10_1007_s12524_020_01235_z crossref_primary_10_1080_01431161_2019_1577580 crossref_primary_10_1080_01431161_2019_1629717 crossref_primary_10_1109_JSTARS_2022_3181744 crossref_primary_10_1007_s12145_020_00498_x crossref_primary_10_1109_ACCESS_2019_2916148 crossref_primary_10_1109_JSTARS_2020_3033944 crossref_primary_10_1016_j_jag_2018_03_002 crossref_primary_10_1080_01431161_2022_2145580 crossref_primary_10_1109_ACCESS_2020_2964760 crossref_primary_10_1109_LGRS_2020_3025099 crossref_primary_10_1016_j_jenvman_2021_113655 crossref_primary_10_1109_TGRS_2020_2996064 crossref_primary_10_1007_s12243_021_00884_6 crossref_primary_10_1080_19475705_2024_2354507 crossref_primary_10_1109_ACCESS_2020_3014975 |
Cites_doi | 10.1109/TGRS.2014.2358934 10.1109/LGRS.2013.2262132 10.1109/TGRS.2010.2048116 10.1080/01431161.2011.599348 10.1016/j.ijleo.2014.07.127 10.1016/0034-4257(91)90048-B 10.1109/LGRS.2013.2282469 10.1111/ecog.00566 10.1109/JSTARS.2014.2298876 10.1016/j.isprsjprs.2015.03.011 10.1109/JPROC.2012.2211551 10.1109/TIP.2016.2577886 10.1016/j.isprsjprs.2013.05.003 10.1080/2150704X.2015.1101502 10.1016/j.rse.2015.12.029 10.1016/j.isprsjprs.2003.10.002 10.1109/JSTARS.2014.2328618 10.1080/01431161003743173 10.1007/978-3-642-23430-9_72 10.1109/TGRS.2014.2360100 10.1016/j.isprsjprs.2013.09.014 10.1109/TGRS.2013.2275613 10.1109/ICASSP.2016.7471911 10.1109/TGRS.2012.2211882 10.1111/j.1538-4632.2007.00708.x 10.1109/TGRS.2003.814625 10.1109/TGRS.2012.2202912 10.3390/ijgi4042292 10.1109/TIP.2013.2278465 10.1109/TGRS.2015.2436335 10.2307/143141 10.1109/TGRS.2013.2241444 10.1109/TGRS.2004.842478 10.1111/j.1467-8306.2004.09402005.x |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs9030285 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_6f6e94a252934ef383448681d025519d 10_3390_rs9030285 |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c358t-f6d89facf28cd765cfac132fc8cab5dfafc45b8709a0b8dfe8946328ae8f94293 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Fri Jul 25 11:51:13 EDT 2025 Tue Jul 01 03:57:21 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-f6d89facf28cd765cfac132fc8cab5dfafc45b8709a0b8dfe8946328ae8f94293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0621-9647 0000-0002-1821-538X |
OpenAccessLink | https://doaj.org/article/6f6e94a252934ef383448681d025519d |
PQID | 1888976604 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f6e94a252934ef383448681d025519d proquest_journals_1888976604 crossref_primary_10_3390_rs9030285 crossref_citationtrail_10_3390_rs9030285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2017 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lv (ref_9) 2014; 7 Johnson (ref_26) 2015; 4 Ghamisi (ref_14) 2014; 7 Bhardwaj (ref_37) 2016; 175 Han (ref_10) 2012; 33 ref_35 Miller (ref_28) 2004; 94 Ghamisi (ref_20) 2015; 53 Huang (ref_8) 2013; 51 Zhang (ref_11) 2014; 11 Liu (ref_25) 2010; 1 Li (ref_31) 2007; 39 Baatz (ref_32) 2000; 58 Benediktsson (ref_17) 2005; 43 Ardila (ref_4) 2012; 15 Congalton (ref_36) 1991; 37 Benediktsson (ref_16) 2003; 41 Falco (ref_19) 2015; 53 Benz (ref_33) 2004; 58 Zhang (ref_24) 2013; 10 Moser (ref_13) 2013; 51 Arvor (ref_21) 2013; 82 Benediktsson (ref_18) 2010; 48 Zhao (ref_15) 2015; 53 Li (ref_6) 2016; 44 Du (ref_5) 2015; 105 Zhang (ref_1) 2013; 22 Moser (ref_12) 2013; 101 ref_29 Tao (ref_7) 2016; 37 Tobler (ref_27) 1970; 46 Kang (ref_34) 2014; 52 Blaschke (ref_22) 2014; 87 Rousset (ref_30) 2014; 37 Cheriyadat (ref_3) 2014; 52 Huang (ref_2) 2014; 125 Zhao (ref_23) 2016; 25 |
References_xml | – volume: 53 start-page: 2335 year: 2015 ident: ref_20 article-title: A survey on spectral–spatial classification techniques based on attribute profiles publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2358934 – volume: 10 start-page: 1572 year: 2013 ident: ref_24 article-title: Object-based spatial feature for classification of very high resolution remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2262132 – volume: 48 start-page: 3747 year: 2010 ident: ref_18 article-title: Morphological attribute profiles for the analysis of very high resolution images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2048116 – volume: 33 start-page: 1682 year: 2012 ident: ref_10 article-title: A shape–size index extraction for classification of high resolution multispectral satellite images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.599348 – volume: 125 start-page: 7239 year: 2014 ident: ref_2 article-title: Order based feature description for high-resolution aerial image classification publication-title: Opt. Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2014.07.127 – volume: 37 start-page: 35 year: 1991 ident: ref_36 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90048-B – volume: 11 start-page: 940 year: 2014 ident: ref_11 article-title: Classification of very high spatial resolution imagery based on a new pixel shape feature set publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2282469 – volume: 37 start-page: 781 year: 2014 ident: ref_30 article-title: Testing environmental and genetic effects in the presence of spatial autocorrelation publication-title: Ecography doi: 10.1111/ecog.00566 – volume: 44 start-page: 217 year: 2016 ident: ref_6 article-title: Region-based urban road extraction from VHR satellite images using binary partition tree publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 2147 year: 2014 ident: ref_14 article-title: Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2298876 – volume: 58 start-page: 12 year: 2000 ident: ref_32 article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation publication-title: Angew. Geogr. Inf. XII – volume: 105 start-page: 107 year: 2015 ident: ref_5 article-title: Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.03.011 – volume: 101 start-page: 631 year: 2013 ident: ref_12 article-title: Land-cover mapping by Markov modeling of spatial–contextual information in very-high-resolution remote sensing images publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2211551 – volume: 25 start-page: 4033 year: 2016 ident: ref_23 article-title: High-resolution image classification integrating spectral-spatial-location cues by conditional random fields publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2577886 – volume: 82 start-page: 125 year: 2013 ident: ref_21 article-title: Advances in geographic object-based image analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.05.003 – volume: 37 start-page: 1 year: 2016 ident: ref_7 article-title: A study of a gaussian mixture model for urban land-cover mapping based on vhr remote sensing imagery publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2015.1101502 – volume: 175 start-page: 196 year: 2016 ident: ref_37 article-title: UAVs as remote sensing platform in glaciology: Present applications and future prospects publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.029 – volume: 58 start-page: 239 year: 2004 ident: ref_33 article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2003.10.002 – volume: 7 start-page: 4644 year: 2014 ident: ref_9 article-title: Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2328618 – volume: 1 start-page: 187 year: 2010 ident: ref_25 article-title: Assessing object-based classification: Advantages and limitations publication-title: Remote Sens. Lett. doi: 10.1080/01431161003743173 – ident: ref_29 doi: 10.1007/978-3-642-23430-9_72 – volume: 53 start-page: 2440 year: 2015 ident: ref_15 article-title: Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2360100 – volume: 87 start-page: 180 year: 2014 ident: ref_22 article-title: Geographic object-based image analysis—Towards a new paradigm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.09.014 – volume: 52 start-page: 3742 year: 2014 ident: ref_34 article-title: Feature extraction of hyperspectral images with image fusion and recursive filtering publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2275613 – volume: 15 start-page: 57 year: 2012 ident: ref_4 article-title: Context-sensitive extraction of tree crown objects in urban areas using vhr satellite images publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_35 doi: 10.1109/ICASSP.2016.7471911 – volume: 51 start-page: 2734 year: 2013 ident: ref_13 article-title: Combining support vector machines and Markov random fields in an integrated framework for contextual image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2211882 – volume: 39 start-page: 357 year: 2007 ident: ref_31 article-title: Beyond moran’s I: Testing for spatial dependence based on the spatial autoregressive model publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.2007.00708.x – volume: 41 start-page: 1940 year: 2003 ident: ref_16 article-title: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.814625 – volume: 51 start-page: 257 year: 2013 ident: ref_8 article-title: An svm ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2202912 – volume: 4 start-page: 2292 year: 2015 ident: ref_26 article-title: Image segmentation parameter optimization considering within-and between-segment heterogeneity at multiple scale levels: Test case for mapping residential areas using landsat imagery publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi4042292 – volume: 22 start-page: 5071 year: 2013 ident: ref_1 article-title: Discovering discriminative graphlets for aerial image categories recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2278465 – volume: 53 start-page: 6223 year: 2015 ident: ref_19 article-title: Spectral and spatial classification of hyperspectral images based on ica and reduced morphological attribute profiles publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2436335 – volume: 46 start-page: 234 year: 1970 ident: ref_27 article-title: A computer movie simulating urban growth in the detroit region publication-title: Econ. Geogr. doi: 10.2307/143141 – volume: 52 start-page: 439 year: 2014 ident: ref_3 article-title: Unsupervised feature learning for aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2241444 – volume: 43 start-page: 480 year: 2005 ident: ref_17 article-title: Classification of hyperspectral data from urban areas based on extended morphological profiles publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.842478 – volume: 94 start-page: 284 year: 2004 ident: ref_28 article-title: Tobler’s first law and spatial analysis publication-title: Ann. Assoc. Am. Geogr. doi: 10.1111/j.1467-8306.2004.09402005.x |
SSID | ssj0000331904 |
Score | 2.3161578 |
Snippet | Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 285 |
SubjectTerms | Classification Data processing Feature extraction Geography High resolution Image classification Image processing Image resolution Image segmentation Object recognition Spatial resolution spatial-spectral feature Spectra Tobler’s First Law of Geography very high spatial resolution image |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1Be4ALKl8iUNAIceDAqo53vVmfqhQSFQQtQi3qzdpPqFTi4jiC3PgbHPlr_BJm7I1BAnGLnJUsed7OvBmv32PsSURO7WXmuY9ecmkmghtSoB1HP44Bi2zuqFF8c6QOT-Wrs-IsDdyW6VjlJid2idrXjmbke2Ns1bB0qkzuX37m5BpFb1eThcZVto0pWGPztX0wO3r7bpiyZAIhlsleUkhgf7_XLEvEdU7eyX8Uok6v_6903NWY-Q67kcghTPto3mRXwuIWu5Z8yj-ub7Mf01VbdyKrcGxpgsKPSacYWeMzICd5GltwchlGVAGxu1UTYPa1bfrPF-BFQ8kN7BpOyEem-fnt-xLm58gA4bX5AnWE4WaAbBbeh2YNdBQEaMzfgxSmHWjh5SeSv1hDZ6tJB466GN9hp_PZyfNDnkwWuBOFbnlUXpfRuJhr5yeqcPgbO9TotDO28NFEJwuLu7o0mdU-Bl1KJXJtgo4lFjNxl20t6kW4xyDqPGTeFsYbLZ0RVggTokUOoSbWSjViTzdPvHJJgZyMMC4q7EQoONUQnBF7PCy97GU3_rXogMI2LCCl7O5C3Xyo0sarVFShlAZBVwoZoiBfEa2QpVMzNS79iO1ugl6l7busfoPt_v__fsCu51Tnu0Npu2yrbVbhIbKU1j5KUPwFdnLtIA priority: 102 providerName: ProQuest |
Title | Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler’s First Law of Geography for Very High Resolution Aerial Imagery Classification |
URI | https://www.proquest.com/docview/1888976604 https://doaj.org/article/6f6e94a252934ef383448681d025519d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgOcAF8SkKSzVCHDgQbRo7rnPssi0L2g8Eu2hvkb9GIEGL0lTQG3-DI3-NX8KMk60qgcSFU6LIkSPPs-eN5bwnxFMkTh1UHrKAQWXKjmVmWYF2hGGEkZJs4blQPD7Rh-fq9UV5sWX1xWfCOnngbuD2NOpYKUsvVVJFlOwLYTSxLCbDoyrw6ks5b6uYSmuwJGjlqpMSklTX7zXLivBcsGfyVgJKOv1_LMMpt8xuiZs9KYRJ9zG3xZU4vyOu9_7kH9Z3xc_Jql0kcVU4dbxzkp2yPjGxxefADvK8XZGxuzChCZjVrZoI029t0_22AAcNL2rg1nDG_jHNr-8_ljD7SMwPjuxXWCBsOgNisfA-NmvgIyDA2_sdOGGSwAqvPrPsxRqSnSYfNEqxvSfOZ9OzF4dZb66QeVmaNkMdTIXWY2F8GOvS0z1VpuiNt64MaNGr0tFsrmzuTMBoKqVlYWw0WFESk_fFznwxjw8EoCliHlxpgzXKW-mktBEdcQc9dk7pgXh2OeK175XH2QDjU00VCAen3gRnIJ5smn7p5Db-1mifw7ZpwArZ6QHhpu5xU_8LNwOxexn0up-2y3pkjCF-pnP18H_08UjcKJgFpCNru2KnbVbxMXGY1g3FVTN7ORTXJgfHR-_ouj89efN2mED8G2mp9o0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXxFMECowQSByw6njXzvqAUKANCU3bS4p6M_ssSBAXx1Hxjb_BkT_Aj-KXMOMXSCBuvVnelS3tfDP7zT7mY-yxR05tRWgD660IhBrxQFEF2qG3Q-9wko0MJYoHh8n0WLw5iU822I_uLgwdq-xiYh2obW5ojXxniKkaTp1JKF6cfQ5INYp2VzsJjQYW-646x5Rt9Xy2i_Z9EkWTvcWradCqCgSGx7IMfGJl6pXxkTR2lMQGnzEl80YapWPrlTci1gjjVIVaWu9kKhIeSeWkTzF6c_zuJXZZcJ6SR8nJ635NJ-QI6FA0BYywPdwpVil6UURKzX9Me7U6wF_Bv57RJtfY1ZaKwrjBznW24ZY32Fariv6-usm-j9dlXpd0hSNN6zXBEVVFRo76DEi3nhZJAtI0RgwDccl14WDvS1k0lyVgt6BQCrqCBanWFD-_flvB5APyTZirc8g99D8D5M7w1hUV0METoE2FxiVgXLsIzD5RsY0KahFPOt5UI-oWO76Qwb_NNpf50t1h4GXkQqtjZZUURnHNuXJeI2NJRlqLZMCediOembbeOclufMww7yHjZL1xBuxR3_WsKfLxr04vyWx9B6rLXb_Ii9OsdfMs8YlLhUKIp1w4z0nFRCaYE1DqNkztgG13Rs_aYLHKfkP77v-bH7Kt6eJgns1nh_v32JWIGEZ9HG6bbZbF2t1HflTqBzUogb27aC_4BaBIK2M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVAIuiF8RKDBCIHHAiuNdO-sDQilJ1NCSVqhFvZn9pZUgLo6jkhuvwZHX4HF4Emb8E5BA3Hqz7JUteb6Z-WY9no-xJx45tRWhDay3IhBqwANFE2j73va9wyQbGSoU38ySnSPx-jg-3mA_2n9hqK2yjYlVoLa5oT3yXh9LNUydSSh6vmmLOBhNXp59DkhBir60tnIaNUR23eocy7fFi-kIbf00iibjw1c7QaMwEBgeyzLwiZWpV8ZH0thBEhs8xvLMG2mUjq1X3ohYI6RTFWppvZOpSHgklZM-xUjO8b6X2OYAq6Kwwza3x7ODt-sdnpAjvENRjzPiPA17xSJFn4pIt_mPJFhpBfyVCqr8NrnOrjXEFIY1km6wDTe_ya40Guknq1vs-3BZ5tWAV9jXtHsT7NOMZGSsz4FU7GnLJCCFY0Q0ELNcFg7GX8qi_nUCRgUFVtArOCQNm-Ln128LmJwi-4Q9dQ65h_XDAJk0vHPFCqgNBegTQ-0gMKwcBqafaPTGCipJT2p2qvB1mx1dyOu_wzrzfO7uMvAycqHVsbJKCqO45lw5r5G_JAOtRdJlz9o3nplm-jmJcHzMsAoi42Rr43TZ4_XSs3rkx78WbZPZ1gtoSnd1Ii8-ZI3TZ4lPXCoUAj7lwnlOmiYywQqBCrl-artsqzV61oSORfYb6Pf-f_kRu4wekO1NZ7v32dWI6EbVG7fFOmWxdA-QLJX6YYNKYO8v2hF-AfN2MPU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Object-Oriented%2C+Spectral-Spatial+Feature+Extraction+Driven+by+Tobler%E2%80%99s+First+Law+of+Geography+for+Very+High+Resolution+Aerial+Imagery+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lv%2C+Zhiyong&rft.au=Zhang%2C+Penglin&rft.au=Atli+Benediktsson%2C+J%C3%B3n&rft.date=2017-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=9&rft.issue=3&rft.spage=285&rft_id=info:doi/10.3390%2Frs9030285&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs9030285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |