Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler’s First Law of Geography for Very High Resolution Aerial Imagery Classification

Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for clas...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 9; no. 3; p. 285
Main Authors Lv, Zhiyong, Zhang, Penglin, Atli Benediktsson, Jón
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for classification. However, parameter determination for that feature extraction is usually time-consuming and depends excessively on experience. In this paper, an automatic spatial feature extraction approach based on image raster and segmental vector data cross-analysis is proposed for the classification of very high spatial resolution (VHSR) aerial imagery. First, multi-resolution segmentation is used to generate strongly homogeneous image objects and extract corresponding vectors. Then, to automatically explore the region of a ground target, two rules, which are derived from Tobler’s First Law of Geography (TFL) and a topological relationship of vector data, are integrated to constrain the extension of a region around a central object. Third, the shape and size of the extended region are described. A final classification map is achieved through a supervised classifier using shape, size, and spectral features. Experiments on three real aerial images of VHSR (0.1 to 0.32 m) are done to evaluate effectiveness and robustness of the proposed approach. Comparisons to state-of-the-art methods demonstrate the superiority of the proposed method in VHSR image classification.
AbstractList Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for classification. However, parameter determination for that feature extraction is usually time-consuming and depends excessively on experience. In this paper, an automatic spatial feature extraction approach based on image raster and segmental vector data cross-analysis is proposed for the classification of very high spatial resolution (VHSR) aerial imagery. First, multi-resolution segmentation is used to generate strongly homogeneous image objects and extract corresponding vectors. Then, to automatically explore the region of a ground target, two rules, which are derived from Tobler’s First Law of Geography (TFL) and a topological relationship of vector data, are integrated to constrain the extension of a region around a central object. Third, the shape and size of the extended region are described. A final classification map is achieved through a supervised classifier using shape, size, and spectral features. Experiments on three real aerial images of VHSR (0.1 to 0.32 m) are done to evaluate effectiveness and robustness of the proposed approach. Comparisons to state-of-the-art methods demonstrate the superiority of the proposed method in VHSR image classification.
Author Zhang, Penglin
Atli Benediktsson, Jón
Lv, Zhiyong
Author_xml – sequence: 1
  givenname: Zhiyong
  orcidid: 0000-0002-1821-538X
  surname: Lv
  fullname: Lv, Zhiyong
– sequence: 2
  givenname: Penglin
  surname: Zhang
  fullname: Zhang, Penglin
– sequence: 3
  givenname: Jón
  orcidid: 0000-0003-0621-9647
  surname: Atli Benediktsson
  fullname: Atli Benediktsson, Jón
BookMark eNptUU1vEzEQXaEiUUoP_ANLnJBY6rV3N_YxCk0bKVIkWriuZr3j1NFmvYydQm78DY78NX4JToIqhPDF8_Hmzei9l9nZ4AfMstcFfy-l5lcUNJdcqOpZdi74ROSl0OLsr_hFdhnChqcnZaF5eZ79nO6i30J0hq3aDZqYr8jhELF7x-7GlBP0-d2YANCzOULcEbLrb6lsovMD-0DuEQfW7tm9b3ukX99_BDZ3FCJbwlfmLbtBvyYYH_bMemKfkfbs1q0f2EcMvt8dSaZIB_rFFtaH9qyHEJx1Bg7dV9lzC33Ayz__RfZpfn0_u82Xq5vFbLrMjaxUzG3dKW3BWKFMN6krk-JCCmuUgbbqLFhTVq2acA28VZ1FpctaCgWorE7ayItsceLtPGyakdwWaN94cM2x4GndACWdemxqW6MuQVRprEQrlSxLVaui46KqCt0lrjcnrpH8lx2G2Gz8joZ0flMopfSkrnmZUG9PKEM-BEL7tLXgzcHQ5snQhL36B2tcPOqTrHD9fyZ-Ax2xp4U
CitedBy_id crossref_primary_10_1007_s12524_020_01235_z
crossref_primary_10_1080_01431161_2019_1577580
crossref_primary_10_1080_01431161_2019_1629717
crossref_primary_10_1109_JSTARS_2022_3181744
crossref_primary_10_1007_s12145_020_00498_x
crossref_primary_10_1109_ACCESS_2019_2916148
crossref_primary_10_1109_JSTARS_2020_3033944
crossref_primary_10_1016_j_jag_2018_03_002
crossref_primary_10_1080_01431161_2022_2145580
crossref_primary_10_1109_ACCESS_2020_2964760
crossref_primary_10_1109_LGRS_2020_3025099
crossref_primary_10_1016_j_jenvman_2021_113655
crossref_primary_10_1109_TGRS_2020_2996064
crossref_primary_10_1007_s12243_021_00884_6
crossref_primary_10_1080_19475705_2024_2354507
crossref_primary_10_1109_ACCESS_2020_3014975
Cites_doi 10.1109/TGRS.2014.2358934
10.1109/LGRS.2013.2262132
10.1109/TGRS.2010.2048116
10.1080/01431161.2011.599348
10.1016/j.ijleo.2014.07.127
10.1016/0034-4257(91)90048-B
10.1109/LGRS.2013.2282469
10.1111/ecog.00566
10.1109/JSTARS.2014.2298876
10.1016/j.isprsjprs.2015.03.011
10.1109/JPROC.2012.2211551
10.1109/TIP.2016.2577886
10.1016/j.isprsjprs.2013.05.003
10.1080/2150704X.2015.1101502
10.1016/j.rse.2015.12.029
10.1016/j.isprsjprs.2003.10.002
10.1109/JSTARS.2014.2328618
10.1080/01431161003743173
10.1007/978-3-642-23430-9_72
10.1109/TGRS.2014.2360100
10.1016/j.isprsjprs.2013.09.014
10.1109/TGRS.2013.2275613
10.1109/ICASSP.2016.7471911
10.1109/TGRS.2012.2211882
10.1111/j.1538-4632.2007.00708.x
10.1109/TGRS.2003.814625
10.1109/TGRS.2012.2202912
10.3390/ijgi4042292
10.1109/TIP.2013.2278465
10.1109/TGRS.2015.2436335
10.2307/143141
10.1109/TGRS.2013.2241444
10.1109/TGRS.2004.842478
10.1111/j.1467-8306.2004.09402005.x
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs9030285
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_6f6e94a252934ef383448681d025519d
10_3390_rs9030285
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c358t-f6d89facf28cd765cfac132fc8cab5dfafc45b8709a0b8dfe8946328ae8f94293
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:29:19 EDT 2025
Fri Jul 25 11:51:13 EDT 2025
Tue Jul 01 03:57:21 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-f6d89facf28cd765cfac132fc8cab5dfafc45b8709a0b8dfe8946328ae8f94293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0621-9647
0000-0002-1821-538X
OpenAccessLink https://doaj.org/article/6f6e94a252934ef383448681d025519d
PQID 1888976604
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_6f6e94a252934ef383448681d025519d
proquest_journals_1888976604
crossref_primary_10_3390_rs9030285
crossref_citationtrail_10_3390_rs9030285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lv (ref_9) 2014; 7
Johnson (ref_26) 2015; 4
Ghamisi (ref_14) 2014; 7
Bhardwaj (ref_37) 2016; 175
Han (ref_10) 2012; 33
ref_35
Miller (ref_28) 2004; 94
Ghamisi (ref_20) 2015; 53
Huang (ref_8) 2013; 51
Zhang (ref_11) 2014; 11
Liu (ref_25) 2010; 1
Li (ref_31) 2007; 39
Baatz (ref_32) 2000; 58
Benediktsson (ref_17) 2005; 43
Ardila (ref_4) 2012; 15
Congalton (ref_36) 1991; 37
Benediktsson (ref_16) 2003; 41
Falco (ref_19) 2015; 53
Benz (ref_33) 2004; 58
Zhang (ref_24) 2013; 10
Moser (ref_13) 2013; 51
Arvor (ref_21) 2013; 82
Benediktsson (ref_18) 2010; 48
Zhao (ref_15) 2015; 53
Li (ref_6) 2016; 44
Du (ref_5) 2015; 105
Zhang (ref_1) 2013; 22
Moser (ref_12) 2013; 101
ref_29
Tao (ref_7) 2016; 37
Tobler (ref_27) 1970; 46
Kang (ref_34) 2014; 52
Blaschke (ref_22) 2014; 87
Rousset (ref_30) 2014; 37
Cheriyadat (ref_3) 2014; 52
Huang (ref_2) 2014; 125
Zhao (ref_23) 2016; 25
References_xml – volume: 53
  start-page: 2335
  year: 2015
  ident: ref_20
  article-title: A survey on spectral–spatial classification techniques based on attribute profiles
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2358934
– volume: 10
  start-page: 1572
  year: 2013
  ident: ref_24
  article-title: Object-based spatial feature for classification of very high resolution remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2262132
– volume: 48
  start-page: 3747
  year: 2010
  ident: ref_18
  article-title: Morphological attribute profiles for the analysis of very high resolution images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2048116
– volume: 33
  start-page: 1682
  year: 2012
  ident: ref_10
  article-title: A shape–size index extraction for classification of high resolution multispectral satellite images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.599348
– volume: 125
  start-page: 7239
  year: 2014
  ident: ref_2
  article-title: Order based feature description for high-resolution aerial image classification
  publication-title: Opt. Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2014.07.127
– volume: 37
  start-page: 35
  year: 1991
  ident: ref_36
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90048-B
– volume: 11
  start-page: 940
  year: 2014
  ident: ref_11
  article-title: Classification of very high spatial resolution imagery based on a new pixel shape feature set
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2282469
– volume: 37
  start-page: 781
  year: 2014
  ident: ref_30
  article-title: Testing environmental and genetic effects in the presence of spatial autocorrelation
  publication-title: Ecography
  doi: 10.1111/ecog.00566
– volume: 44
  start-page: 217
  year: 2016
  ident: ref_6
  article-title: Region-based urban road extraction from VHR satellite images using binary partition tree
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 2147
  year: 2014
  ident: ref_14
  article-title: Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2298876
– volume: 58
  start-page: 12
  year: 2000
  ident: ref_32
  article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
  publication-title: Angew. Geogr. Inf. XII
– volume: 105
  start-page: 107
  year: 2015
  ident: ref_5
  article-title: Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.03.011
– volume: 101
  start-page: 631
  year: 2013
  ident: ref_12
  article-title: Land-cover mapping by Markov modeling of spatial–contextual information in very-high-resolution remote sensing images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2211551
– volume: 25
  start-page: 4033
  year: 2016
  ident: ref_23
  article-title: High-resolution image classification integrating spectral-spatial-location cues by conditional random fields
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2577886
– volume: 82
  start-page: 125
  year: 2013
  ident: ref_21
  article-title: Advances in geographic object-based image analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.05.003
– volume: 37
  start-page: 1
  year: 2016
  ident: ref_7
  article-title: A study of a gaussian mixture model for urban land-cover mapping based on vhr remote sensing imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2015.1101502
– volume: 175
  start-page: 196
  year: 2016
  ident: ref_37
  article-title: UAVs as remote sensing platform in glaciology: Present applications and future prospects
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.029
– volume: 58
  start-page: 239
  year: 2004
  ident: ref_33
  article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2003.10.002
– volume: 7
  start-page: 4644
  year: 2014
  ident: ref_9
  article-title: Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2328618
– volume: 1
  start-page: 187
  year: 2010
  ident: ref_25
  article-title: Assessing object-based classification: Advantages and limitations
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431161003743173
– ident: ref_29
  doi: 10.1007/978-3-642-23430-9_72
– volume: 53
  start-page: 2440
  year: 2015
  ident: ref_15
  article-title: Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2360100
– volume: 87
  start-page: 180
  year: 2014
  ident: ref_22
  article-title: Geographic object-based image analysis—Towards a new paradigm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.09.014
– volume: 52
  start-page: 3742
  year: 2014
  ident: ref_34
  article-title: Feature extraction of hyperspectral images with image fusion and recursive filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2275613
– volume: 15
  start-page: 57
  year: 2012
  ident: ref_4
  article-title: Context-sensitive extraction of tree crown objects in urban areas using vhr satellite images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_35
  doi: 10.1109/ICASSP.2016.7471911
– volume: 51
  start-page: 2734
  year: 2013
  ident: ref_13
  article-title: Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2211882
– volume: 39
  start-page: 357
  year: 2007
  ident: ref_31
  article-title: Beyond moran’s I: Testing for spatial dependence based on the spatial autoregressive model
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.2007.00708.x
– volume: 41
  start-page: 1940
  year: 2003
  ident: ref_16
  article-title: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.814625
– volume: 51
  start-page: 257
  year: 2013
  ident: ref_8
  article-title: An svm ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2202912
– volume: 4
  start-page: 2292
  year: 2015
  ident: ref_26
  article-title: Image segmentation parameter optimization considering within-and between-segment heterogeneity at multiple scale levels: Test case for mapping residential areas using landsat imagery
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi4042292
– volume: 22
  start-page: 5071
  year: 2013
  ident: ref_1
  article-title: Discovering discriminative graphlets for aerial image categories recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2278465
– volume: 53
  start-page: 6223
  year: 2015
  ident: ref_19
  article-title: Spectral and spatial classification of hyperspectral images based on ica and reduced morphological attribute profiles
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2436335
– volume: 46
  start-page: 234
  year: 1970
  ident: ref_27
  article-title: A computer movie simulating urban growth in the detroit region
  publication-title: Econ. Geogr.
  doi: 10.2307/143141
– volume: 52
  start-page: 439
  year: 2014
  ident: ref_3
  article-title: Unsupervised feature learning for aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2241444
– volume: 43
  start-page: 480
  year: 2005
  ident: ref_17
  article-title: Classification of hyperspectral data from urban areas based on extended morphological profiles
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842478
– volume: 94
  start-page: 284
  year: 2004
  ident: ref_28
  article-title: Tobler’s first law and spatial analysis
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/j.1467-8306.2004.09402005.x
SSID ssj0000331904
Score 2.3161578
Snippet Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 285
SubjectTerms Classification
Data processing
Feature extraction
Geography
High resolution
Image classification
Image processing
Image resolution
Image segmentation
Object recognition
Spatial resolution
spatial-spectral feature
Spectra
Tobler’s First Law of Geography
very high spatial resolution image
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1Be4ALKl8iUNAIceDAqo53vVmfqhQSFQQtQi3qzdpPqFTi4jiC3PgbHPlr_BJm7I1BAnGLnJUsed7OvBmv32PsSURO7WXmuY9ecmkmghtSoB1HP44Bi2zuqFF8c6QOT-Wrs-IsDdyW6VjlJid2idrXjmbke2Ns1bB0qkzuX37m5BpFb1eThcZVto0pWGPztX0wO3r7bpiyZAIhlsleUkhgf7_XLEvEdU7eyX8Uok6v_6903NWY-Q67kcghTPto3mRXwuIWu5Z8yj-ub7Mf01VbdyKrcGxpgsKPSacYWeMzICd5GltwchlGVAGxu1UTYPa1bfrPF-BFQ8kN7BpOyEem-fnt-xLm58gA4bX5AnWE4WaAbBbeh2YNdBQEaMzfgxSmHWjh5SeSv1hDZ6tJB466GN9hp_PZyfNDnkwWuBOFbnlUXpfRuJhr5yeqcPgbO9TotDO28NFEJwuLu7o0mdU-Bl1KJXJtgo4lFjNxl20t6kW4xyDqPGTeFsYbLZ0RVggTokUOoSbWSjViTzdPvHJJgZyMMC4q7EQoONUQnBF7PCy97GU3_rXogMI2LCCl7O5C3Xyo0sarVFShlAZBVwoZoiBfEa2QpVMzNS79iO1ugl6l7busfoPt_v__fsCu51Tnu0Npu2yrbVbhIbKU1j5KUPwFdnLtIA
  priority: 102
  providerName: ProQuest
Title Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler’s First Law of Geography for Very High Resolution Aerial Imagery Classification
URI https://www.proquest.com/docview/1888976604
https://doaj.org/article/6f6e94a252934ef383448681d025519d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgOcAF8SkKSzVCHDgQbRo7rnPssi0L2g8Eu2hvkb9GIEGL0lTQG3-DI3-NX8KMk60qgcSFU6LIkSPPs-eN5bwnxFMkTh1UHrKAQWXKjmVmWYF2hGGEkZJs4blQPD7Rh-fq9UV5sWX1xWfCOnngbuD2NOpYKUsvVVJFlOwLYTSxLCbDoyrw6ks5b6uYSmuwJGjlqpMSklTX7zXLivBcsGfyVgJKOv1_LMMpt8xuiZs9KYRJ9zG3xZU4vyOu9_7kH9Z3xc_Jql0kcVU4dbxzkp2yPjGxxefADvK8XZGxuzChCZjVrZoI029t0_22AAcNL2rg1nDG_jHNr-8_ljD7SMwPjuxXWCBsOgNisfA-NmvgIyDA2_sdOGGSwAqvPrPsxRqSnSYfNEqxvSfOZ9OzF4dZb66QeVmaNkMdTIXWY2F8GOvS0z1VpuiNt64MaNGr0tFsrmzuTMBoKqVlYWw0WFESk_fFznwxjw8EoCliHlxpgzXKW-mktBEdcQc9dk7pgXh2OeK175XH2QDjU00VCAen3gRnIJ5smn7p5Db-1mifw7ZpwArZ6QHhpu5xU_8LNwOxexn0up-2y3pkjCF-pnP18H_08UjcKJgFpCNru2KnbVbxMXGY1g3FVTN7ORTXJgfHR-_ouj89efN2mED8G2mp9o0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXxFMECowQSByw6njXzvqAUKANCU3bS4p6M_ssSBAXx1Hxjb_BkT_Aj-KXMOMXSCBuvVnelS3tfDP7zT7mY-yxR05tRWgD660IhBrxQFEF2qG3Q-9wko0MJYoHh8n0WLw5iU822I_uLgwdq-xiYh2obW5ojXxniKkaTp1JKF6cfQ5INYp2VzsJjQYW-646x5Rt9Xy2i_Z9EkWTvcWradCqCgSGx7IMfGJl6pXxkTR2lMQGnzEl80YapWPrlTci1gjjVIVaWu9kKhIeSeWkTzF6c_zuJXZZcJ6SR8nJ635NJ-QI6FA0BYywPdwpVil6UURKzX9Me7U6wF_Bv57RJtfY1ZaKwrjBznW24ZY32Fariv6-usm-j9dlXpd0hSNN6zXBEVVFRo76DEi3nhZJAtI0RgwDccl14WDvS1k0lyVgt6BQCrqCBanWFD-_flvB5APyTZirc8g99D8D5M7w1hUV0METoE2FxiVgXLsIzD5RsY0KahFPOt5UI-oWO76Qwb_NNpf50t1h4GXkQqtjZZUURnHNuXJeI2NJRlqLZMCediOembbeOclufMww7yHjZL1xBuxR3_WsKfLxr04vyWx9B6rLXb_Ii9OsdfMs8YlLhUKIp1w4z0nFRCaYE1DqNkztgG13Rs_aYLHKfkP77v-bH7Kt6eJgns1nh_v32JWIGEZ9HG6bbZbF2t1HflTqBzUogb27aC_4BaBIK2M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVAIuiF8RKDBCIHHAiuNdO-sDQilJ1NCSVqhFvZn9pZUgLo6jkhuvwZHX4HF4Emb8E5BA3Hqz7JUteb6Z-WY9no-xJx45tRWhDay3IhBqwANFE2j73va9wyQbGSoU38ySnSPx-jg-3mA_2n9hqK2yjYlVoLa5oT3yXh9LNUydSSh6vmmLOBhNXp59DkhBir60tnIaNUR23eocy7fFi-kIbf00iibjw1c7QaMwEBgeyzLwiZWpV8ZH0thBEhs8xvLMG2mUjq1X3ohYI6RTFWppvZOpSHgklZM-xUjO8b6X2OYAq6Kwwza3x7ODt-sdnpAjvENRjzPiPA17xSJFn4pIt_mPJFhpBfyVCqr8NrnOrjXEFIY1km6wDTe_ya40Guknq1vs-3BZ5tWAV9jXtHsT7NOMZGSsz4FU7GnLJCCFY0Q0ELNcFg7GX8qi_nUCRgUFVtArOCQNm-Ln128LmJwi-4Q9dQ65h_XDAJk0vHPFCqgNBegTQ-0gMKwcBqafaPTGCipJT2p2qvB1mx1dyOu_wzrzfO7uMvAycqHVsbJKCqO45lw5r5G_JAOtRdJlz9o3nplm-jmJcHzMsAoi42Rr43TZ4_XSs3rkx78WbZPZ1gtoSnd1Ii8-ZI3TZ4lPXCoUAj7lwnlOmiYywQqBCrl-artsqzV61oSORfYb6Pf-f_kRu4wekO1NZ7v32dWI6EbVG7fFOmWxdA-QLJX6YYNKYO8v2hF-AfN2MPU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Object-Oriented%2C+Spectral-Spatial+Feature+Extraction+Driven+by+Tobler%E2%80%99s+First+Law+of+Geography+for+Very+High+Resolution+Aerial+Imagery+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lv%2C+Zhiyong&rft.au=Zhang%2C+Penglin&rft.au=Atli+Benediktsson%2C+J%C3%B3n&rft.date=2017-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=9&rft.issue=3&rft.spage=285&rft_id=info:doi/10.3390%2Frs9030285&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs9030285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon