Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications
Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NP...
Saved in:
Published in | Acta biomaterialia Vol. 148; pp. 22 - 43 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications.
For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed.
Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field.
[Display omitted] |
---|---|
AbstractList | Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications. For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field.Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications. For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field. Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications. For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field. Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications. For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed. Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field. [Display omitted] |
Author | Li, Wei Jiang, Li Gu, Mengqin Li, Xiyu |
Author_xml | – sequence: 1 givenname: Mengqin orcidid: 0000-0002-6298-7547 surname: Gu fullname: Gu, Mengqin organization: State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China – sequence: 2 givenname: Wei surname: Li fullname: Li, Wei organization: State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China – sequence: 3 givenname: Li surname: Jiang fullname: Jiang, Li email: echojiang999@sina.com organization: State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China – sequence: 4 givenname: Xiyu surname: Li fullname: Li, Xiyu email: lixiyu@scu.edu.cn organization: State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35675891$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1rGzEUFCWl-Wj_QQk65tDdSvKuPnIIhJC0BUOhtGehld7GMmtpI8khvvWnV67THHpoT2_gzQzDzCk6CjEAQu8paSmh_OO6NbYMPraMMNYS3hLCX6ETKoVsRM_lUcWiY40gnB6j05zXhCwkZfINOl70XPRS0RP08xtYCAXPKd4nyBnHESeTAINJZYVdnMHh1c6l-LQzsym-AA4mxLm-vZ0gX-LlduMD5GpjYe8zQ31B_oDzLpQVZJ-xCQ7XqBtw3poJm3meKig-hvwWvR7NlOHd8z1DP-5uv998bpZfP325uV42dtHL0ox8AO6cVdJx1VEYpCJ8YMJxxzrjFGGD7QUXIMygGBuVGSS3Qo7OKVWFizN0cfCtCR-2kIve-Jp5mkyAuM2acdHV2gSVlXr-TN0ONbKek9-YtNN_WquE7kCwKeacYHyhUKL34-i1Poyj9-NownUdp8ou_5JZX363UJLx0__EVwcx1JIePSSdrd9X7nwCW7SL_t8GvwDk8bEN |
CitedBy_id | crossref_primary_10_1016_j_jlumin_2022_119619 crossref_primary_10_1021_acs_jpcc_4c00959 crossref_primary_10_1039_D3TB00542A crossref_primary_10_1002_adma_202307756 crossref_primary_10_1039_D3MA00302G crossref_primary_10_1039_D4RA03003F crossref_primary_10_1021_acsabm_3c00223 crossref_primary_10_1016_j_jcis_2024_01_029 crossref_primary_10_3390_molecules27185916 crossref_primary_10_15407_hftp16_01_115 crossref_primary_10_1021_acsabm_4c00154 crossref_primary_10_1016_j_jclepro_2023_138919 crossref_primary_10_1016_j_ceramint_2025_01_095 crossref_primary_10_1016_j_mtbio_2024_101276 crossref_primary_10_18481_2077_7566_2024_20_3_5_13 crossref_primary_10_1016_j_ceramint_2024_07_349 crossref_primary_10_1039_D4BM00972J crossref_primary_10_3389_fchem_2023_1296036 crossref_primary_10_1016_j_optmat_2024_116569 crossref_primary_10_1002_adom_202401210 crossref_primary_10_1016_j_ceramint_2024_01_372 crossref_primary_10_1016_j_psep_2024_08_035 crossref_primary_10_1016_j_jallcom_2023_172353 crossref_primary_10_1016_j_optmat_2024_116609 crossref_primary_10_1016_j_colsurfb_2023_113601 crossref_primary_10_1016_j_jcis_2023_09_186 crossref_primary_10_1039_D3DT03756H crossref_primary_10_1039_D4TB00551A crossref_primary_10_3390_biomimetics9060309 crossref_primary_10_3390_ijms241713157 crossref_primary_10_1016_j_optmat_2023_114458 crossref_primary_10_1021_acsami_5c01548 crossref_primary_10_1007_s10904_025_03660_4 crossref_primary_10_3390_mi15081040 crossref_primary_10_1007_s00339_024_08055_9 crossref_primary_10_1016_j_jmbbm_2024_106717 crossref_primary_10_1016_j_ceramint_2024_07_235 crossref_primary_10_1016_j_jiec_2023_12_046 crossref_primary_10_1007_s12598_023_02535_2 crossref_primary_10_1016_j_jmbbm_2023_105722 crossref_primary_10_1039_D2CS00513A crossref_primary_10_1557_s43578_024_01350_4 crossref_primary_10_1016_j_matlet_2023_134455 crossref_primary_10_1016_j_molstruc_2024_138049 crossref_primary_10_1016_j_heliyon_2023_e16787 crossref_primary_10_1021_acsomega_4c06314 crossref_primary_10_1016_j_commatsci_2023_112153 crossref_primary_10_1016_j_ceramint_2023_12_119 crossref_primary_10_1016_j_ceramint_2024_11_153 crossref_primary_10_1186_s12951_024_02642_x crossref_primary_10_1016_j_ceramint_2024_01_423 crossref_primary_10_1002_jbm_b_35324 crossref_primary_10_1038_s41467_023_42080_1 crossref_primary_10_1021_acsanm_2c04358 crossref_primary_10_15251_DJNB_2024_191_243 crossref_primary_10_1039_D4DT02664K crossref_primary_10_1016_j_cis_2023_103013 crossref_primary_10_1016_j_cej_2025_161698 crossref_primary_10_26896_1028_6861_2024_90_10_15_23 crossref_primary_10_1039_D4RA04987J crossref_primary_10_1166_jbn_2022_3433 crossref_primary_10_1016_j_ceramint_2025_02_309 crossref_primary_10_3390_nano14161338 crossref_primary_10_1021_acs_nanolett_3c05086 crossref_primary_10_3390_ceramics6030110 crossref_primary_10_3390_nano15030224 crossref_primary_10_1038_s41598_024_84959_z crossref_primary_10_1016_j_matlet_2024_136951 crossref_primary_10_1016_j_sna_2024_115828 crossref_primary_10_1134_S106287382471047X crossref_primary_10_1016_j_ceramint_2024_12_245 crossref_primary_10_1016_j_eurpolymj_2024_113307 crossref_primary_10_1016_j_talanta_2023_124715 crossref_primary_10_1039_D3TB01987J crossref_primary_10_1186_s12951_024_02442_3 crossref_primary_10_1016_j_mtcomm_2024_108926 crossref_primary_10_1039_D3CE00635B crossref_primary_10_1016_j_ceramint_2025_02_136 crossref_primary_10_1089_ten_teb_2023_0280 crossref_primary_10_1007_s10854_024_12715_0 crossref_primary_10_3390_nano13020255 crossref_primary_10_1016_j_colsurfb_2024_113975 |
Cites_doi | 10.1039/c3ce26973f 10.1021/bc034125f 10.1021/ac2000303 10.1021/jp206843w 10.1038/s41598-018-29539-8 10.3390/biom11091388 10.1016/j.ceramint.2018.06.090 10.1021/acsami.6b01814 10.1021/acsami.6b05514 10.1007/s10971-018-4910-9 10.1016/j.biomaterials.2013.12.064 10.1016/S0009-2541(98)00169-7 10.1039/C8TB03244K 10.1016/S0168-3659(03)00295-5 10.1021/cr400425h 10.1039/C8DT00258D 10.1039/C8TB00658J 10.1016/j.ceramint.2020.08.099 10.1002/jbm.a.37069 10.1016/j.actbio.2021.07.016 10.1016/j.biomaterials.2013.05.077 10.1016/j.talanta.2016.12.048 10.1016/j.msec.2016.09.016 10.1063/1.5113667 10.1002/anie.201508838 10.1016/j.dental.2019.11.010 10.1039/D0DT02152K 10.1016/j.jallcom.2018.03.355 10.1016/j.jcis.2021.05.017 10.1016/j.matlet.2016.01.002 10.1039/C6NR05983J 10.1016/j.jtice.2017.12.006 10.1016/j.ica.2021.120599 10.1016/j.addr.2015.11.011 10.1126/sciadv.aay6484 10.1007/s10439-005-9002-7 10.1016/j.cis.2020.102142 10.1016/j.jhazmat.2019.05.003 10.1039/C9NR03802G 10.1016/j.jcis.2020.07.083 10.1002/biot.201400404 10.1016/j.ccr.2021.214309 10.1016/j.msec.2017.08.032 10.1111/cpr.13105 10.1002/adma.201300081 10.1039/C4TB02085E 10.1007/s10895-021-02814-0 10.1039/D0NR08205H 10.1021/nn101937h 10.5802/crchim.58 10.1039/C8CS00494C 10.1016/j.nano.2011.10.013 10.1016/j.mseb.2010.08.006 10.1038/nm.2284 10.1016/j.ceramint.2013.10.070 10.1016/j.msec.2021.112095 10.1007/s00604-015-1504-x 10.1039/C8TB02041H 10.1016/j.ceramint.2015.08.144 10.1016/j.jmat.2016.11.004 10.1038/nchem.2287 10.1039/D0SC04727A 10.1111/j.1742-4658.2011.08071.x 10.1021/acs.chemrev.6b00073 10.1002/smll.201100001 10.1016/j.biomaterials.2007.07.029 10.1038/s41427-018-0065-y 10.1016/j.materresbull.2017.09.043 10.1021/cr400477t 10.1016/j.saa.2011.06.052 10.1021/nn406018q 10.1021/acs.inorgchem.8b02285 10.1007/s11051-020-05105-0 10.1016/j.jlumin.2019.116757 10.1088/0957-4484/26/14/145602 10.1039/C9TB02787D 10.1039/D1TB01640G 10.3390/nano11081911 10.1021/la304534f 10.1021/acs.cgd.7b00258 10.1039/C7NR06693G 10.1016/j.jlumin.2017.01.005 10.1016/j.cej.2015.04.026 10.1021/jacs.6b12322 10.1016/j.ceramint.2021.07.100 10.1021/acsanm.8b02036 10.2174/157341311798220763 10.1039/D0CS00461H 10.1016/j.jre.2020.01.021 10.1016/j.jlumin.2017.08.033 10.1002/advs.201901358 10.1155/2015/705390 10.1002/aic.14210 10.1002/aoc.3250 10.1016/j.msec.2014.12.033 10.1016/j.ceramint.2021.09.004 10.1039/C0JM02264K 10.1016/j.msec.2016.08.002 10.1002/smll.200901158 10.1039/D0QI00232A 10.1016/j.ijleo.2020.165564 10.1007/s00604-018-2801-y 10.1038/s41565-020-0643-3 10.1016/j.ccr.2019.03.003 10.1039/C6CE00320F 10.1007/978-1-4939-6646-2_2 10.3390/nano11092442 10.1007/s12247-020-09472-y 10.1039/C8SC03806F 10.1016/j.actbio.2013.05.033 10.1016/j.det.2016.05.009 10.1039/C4RA01055H 10.1021/jz201664h 10.1016/j.actbio.2011.03.019 10.1021/cr400478f 10.1016/j.phrs.2010.03.005 10.1016/j.msec.2016.12.091 10.1016/j.cis.2017.05.006 10.1021/acsnano.7b07120 10.1021/acsanm.9b01933 10.1016/j.bios.2016.09.070 10.1016/j.bios.2013.09.013 10.1016/j.msec.2019.110097 10.1016/j.actbio.2013.04.012 10.1016/S0169-409X(99)00062-9 10.1016/j.msec.2019.02.046 10.1021/acs.langmuir.9b02824 10.1038/nbt.2468 10.1016/j.jallcom.2016.08.005 10.1039/C4NR04473H 10.1007/s10971-021-05673-0 10.1038/s41467-019-10112-4 10.1007/s00604-016-1970-9 10.1016/j.jhep.2015.05.027 10.1039/C4CS00188E 10.1002/anie.201803083 10.3762/bjnano.5.161 10.1016/j.ccr.2017.06.009 10.1038/s41598-019-52885-0 10.1021/ja309812z 10.1016/j.colcom.2019.01.001 10.3390/nano11020464 10.1093/eurheartj/ehr494 10.1007/s11837-017-2427-2 10.2174/138161280506230110111312 10.1016/j.ccr.2018.05.012 10.1021/acs.biomac.5b00108 10.1021/cr4001594 10.1208/aapsj0902015 10.1016/j.biomaterials.2009.11.113 10.1021/acsami.7b07172 10.1002/wnan.1198 10.1016/j.matlet.2014.03.151 10.1016/j.compositesb.2021.109084 10.1039/C9NR08708G 10.1038/srep04446 10.1016/j.cis.2017.04.007 10.1016/j.dental.2021.01.019 10.1016/j.addr.2014.07.009 10.1039/D1TB01136G 10.1016/j.jre.2019.02.001 10.1016/j.nano.2015.04.004 10.3390/molecules22050753 10.1007/s10895-005-2823-9 10.1007/s11666-021-01154-6 10.1002/smll.201901617 10.1007/s00604-014-1421-4 10.1021/acsami.7b06835 10.1002/jbm.b.34023 10.1007/s10853-017-1201-8 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Ltd. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.actbio.2022.06.006 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 43 |
ExternalDocumentID | 35675891 10_1016_j_actbio_2022_06_006 S1742706122003427 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c358t-f6be6ddc98d6941eb8906b27d6d24ad902bc5767e7ab922f9ab86c78fdd996dd3 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Fri Jul 11 01:35:08 EDT 2025 Wed Feb 19 02:26:05 EST 2025 Tue Jul 01 01:17:39 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Fri Feb 23 02:40:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydroxyapatite nanoparticles Biomedical applications Rare earth ions Imaging |
Language | English |
License | Copyright © 2022. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-f6be6ddc98d6941eb8906b27d6d24ad902bc5767e7ab922f9ab86c78fdd996dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6298-7547 |
PMID | 35675891 |
PQID | 2674756718 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2674756718 pubmed_primary_35675891 crossref_primary_10_1016_j_actbio_2022_06_006 crossref_citationtrail_10_1016_j_actbio_2022_06_006 elsevier_sciencedirect_doi_10_1016_j_actbio_2022_06_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xu, Chi, Han, He, Tian, Xu, Li, Wang (bib0164) 2020; 49 Phatai, Futalan, Kamonwannasit, Khemthong (bib0093) 2019; 89 Reynard, Lecuyer, Grandjean (bib0013) 1999; 155 Liu, Wang, Yao, Yang, Yu, Feng, Li (bib0033) 2014; 40 Li, Zeng, Teng, Chen (bib0038) 2014; 125 Neumeier, Hails, Davis, Mann, Epple (bib0069) 2011; 21 Shojai, Khorasani, Khoshdargi, Jamshidi (bib0077) 2013; 9 Perera, Han, Lu, Wang, Dai, Li (bib0078) 2015; 2015 Sundarabharathi, Parangusan, Ponnamma, Al-Maadeed, Chinnaswamy (bib0029) 2018; 106 Nevarez Rascon, Hurtado Macias, Esparza Ponce, Nevarez Rascon, Gonzalez Hernandez, Yacaman (bib0012) 2021; 37 Liu, Kelnar, Liu, Chen, Calhoun-Davis, Li, Patrawala, Yan, Jeter, Honorio, Wiggins, Bader, Fagin, Brown, Tang (bib0136) 2011; 17 Cai, Shen, Zhan, Lin, Dai, Ren, Shi, Liu, Gao, Yang (bib0148) 2017; 139 Li, Xu, Liu, Li, Quan, Al Kheraif, Lin (bib0155) 2018; 47 Das, Johnson, Cramen, Blasiak, Latta, Tomanek, van Veggel (bib0166) 2012; 3 Lee, Choi, Hyeon (bib0167) 2013; 25 Foster, Watson, Kaplinsky, Kamaly (bib0140) 2017; 1530 Kataoka, Samitsu, Okuda, Kawagoe, Tagaya (bib0025) 2019; 3 Pham, Van, Tam, Ha (bib0124) 2016; 167 Krishnapriya, Deepti, Chakrapani, Asha, Jayaraj (bib0023) 2021; 31 Li, Wu, Li, Zou, Man, Zou, Li (bib0044) 2021; 6 Szyszka, Targonska, Lewinska, Watras, Wiglusz (bib0086) 2021; 11 Lesniak, Salvati, Santos-Martinez, Radomski, Dawson, Aberg (bib0152) 2013; 135 Stanca, Matthaus, Neugebauer, Nietzsche, Fritzsche, Dellith, Heintzmann, Weber, Deckert, Krafft, Popp (bib0112) 2015; 11 Pan, Wan, Bian, Sun, Zhang, Jin, Huang, Gong (bib0128) 2013; 59 Li, Li, Zhao, Cai, Li, Yu, Yang (bib0080) 2020; 36 Zhou, Huang, Chen, Liu, Huang, Li (bib0071) 2014; 52 Saul, Annapragada, Natarajan, Bellamkonda (bib0133) 2003; 92 Agalya, Saravanan, Kumar, Cholan, Karunakaran, Minh (bib0028) 2021; 225 Song, Jia, Niu, Zheng, Zhao, Sun, Zhang, Wang, Zhang, Zhang (bib0101) 2019; 11 Heffern, Matosziuk, Meade (bib0162) 2014; 114 Pang, Lim, Ong, Chong (bib0092) 2016; 42 Qiao, Zou, Yuan, Zhang, Han, Wang, Bu, Tang, Huang (bib0175) 2018; 44 Ibrahim, Labaki, Giraudon, Lamonier (bib0004) 2020; 383 Homann, Krukewitt, Frenzel, Grauel, Wurth, Resch-Genger, Haase (bib0070) 2018; 57 Ashokan, Menon, Nair, Koyakutty (bib0127) 2010; 31 Sun, Chen, Wu, Zhao, Sun (bib0065) 2013; 15 Zhu, Zhang, Liu, Zhang (bib0068) 2019; 6 Xie, He, Li, Perera, Gan, Han, Wang, Li, Dai (bib0097) 2016; 8 Zhang, Zhou, Yang, Peng, Xiao, Kong, Cai, Zhu (bib0083) 2021; 54 Li, Mei, Liu, Liu, Liao, Kumar (bib0091) 2017; 17 He, Xie, Xing, Ni, Han, Dai (bib0107) 2017; 192 Mondal, Nguyen, Park, Choi, Vo, Shin, Kang, Oh (bib0026) 2020; 46 Marion, Li, Waters (bib0014) 2020; 279 Panda, Biswas, Paul (bib0087) 2021; 47 Demir, Derince, Dayioglu, Koroglu, Karacaoglu, Uz, Ayas (bib0062) 2021; 47 Han, Jia, Lian, Sun, Wu, Sun, Qiao, Dai (bib0010) 2021; 6 Luo, Xie, Xiong, Yang, Zuo, Wang, Zhu, Wan (bib0095) 2018; 6 Zhou, Li, Xiao, Li, Zhang, Fu, Lin (bib0096) 2020; 8 Lopes, Chen, Kamei (bib0131) 2017; 73 Jimenez-Flores, Suarez-Quezada, Rojas-Trigos, Lartundo-Rojas, Suarez, Mantilla (bib0034) 2017; 52 Ignjatovic, Mancic, Vukovic, Stojanovic, Nikolic, Skapin, Jovanovic, Veselinovic, Uskokovic, Lazic, Markovic, Lazarevic, Uskokovic (bib0079) 2019; 9 Maldiney, Richard, Seguin, Wattier, Bessodes, Scherman (bib0098) 2011; 5 Chandran, Am (bib0102) 2021; 109 Sanchez Lafarga, Pacheco Moises, Gurinov, Ortiz, Carbajal Arizaga (bib0163) 2015; 48 Li, Zou, Li, Chen (bib0021) 2018; 8 Nazarenus, Zhang, Soliman, del Pino, Pelaz, Carregal-Romero, Rejman, Rothen-Rutishauser, Clift, Zellner, Nienhaus, Delehanty, Medintz, Parak (bib0146) 2014; 5 Hong, Liu, Bai, Xia, Gao, Zhang, Wang (bib0081) 2019; 105 Yang, Liu, Ren, Liu, Zhou, Li (bib0103) 2021; 30 Zhou, Li, Wang, Wu, Wu, Hou (bib0114) 2014; 6 Marques, Oliveira, Chang, Paula-Neto, Menezes (bib0159) 2015; 63 Du, Chen, Liu, Xing, Song (bib0011) 2021; 215 Huang, Chen, Xu (bib0154) 2017; 165 Pyykko (bib0160) 2015; 7 Xing, Zhang, Wu, Han, Wickramaratne, Dai, Wang (bib0027) 2019; 29 Sobierajska, Pozniak, Tikhomirov, Miller, Mrowczynska, Piecuch, Rewak-Soroczynska, Dorotkiewicz-Jach, Drulis-Kawa, Wiglusz (bib0064) 2021; 11 Choi, Gibbs, Lee, Kim, Ashitate, Liu, Hyun, Park, Xie, Bae, Henary, Frangioni (bib0119) 2013; 31 Smith, Gambhir (bib0017) 2017; 117 Chan, Liu (bib0042) 2017; 9 Cai, Wei, Song, Tang, Han, Dong (bib0116) 2019; 48 Misri, Meier, Yung, Kozlowski, Hafeli (bib0169) 2012; 8 Li, Zou, Wei, Li (bib0018) 2021; 222 Lizama, Ibáñez, Yazigi, Espallargas, Queiroz Maia, Gasparotto, De Santana, Cañón-Mancisidor (bib0059) 2020; 7 Liu, Zhang, Liu, Li, Xu, Li, Whittaker (bib0165) 2018; 749 Ma, Zhang, Liu, Qiu, Zhao, Wang, Li, Sang, Jiang, Liu (bib0113) 2017; 9 Dong, Sun, Yan (bib0051) 2015; 44 Seeliger, Sendeski, Rihal, Persson (bib0168) 2012; 33 Li, Zou, Li, Chen (bib0039) 2018; 57 Li, Thompson, Dong, Khor (bib0052) 2016; 69 Borkowska, Siek, Kolygina, Sobolev, Lach, Kumar, Cho, Kandere-Grzybowska, Grzybowski (bib0149) 2020; 15 Ghosh, Roy, Kundu, Datta, Basu (bib0089) 2011; 176 Zheng, Li, Wu, Luo, Zhou, Li, Chen, Rouzi, Tian, Zhou, Zeng, Li, Cheng, Wei, Deng, Zhou, Hong (bib0121) 2020; 12 Syamchand, Priya, Sony (bib0129) 2015; 182 Li, Zou, Chen, Li (bib0016) 2019; 5 Matsumoto, Sunada, Nagai, Isobe, Matsushita, Ishiguro, Nakajima (bib0084) 2019; 378 Zhou, Liu, Feng, Sun, Li (bib0041) 2015; 115 Rinkel, Raj, Dühnen, Haase (bib0074) 2016; 55 Zeng, Li, Sun, Wu, Chen (bib0036) 2017; 22 Paduraru, Oprea, Musuc, Vasile, Iordache, Andronescu (bib0032) 2021; 11 Zhang, Zhang, Yao, Huang, Wang (bib0105) 2021; 528 Syamchand, Sony (bib0057) 2016; 183 Ding, Lu, Fan, Zhang (bib0117) 2020; 38 Qi, He, Huang, Shahbazian-Yassar, Xiao, Lu, Shokuhfar (bib0076) 2017; 69 Wang, Zhong, Li, Liu, Cheng (bib0144) 2021; 50 Rees, Wills, Brown, Barnes, Summers (bib0142) 2019; 10 Taha, Ajlouni, Al Momani, Al-Ghzawi (bib0178) 2011; 81 Wieszczycka, Staszak, Woźniak-Budych, Jurga (bib0173) 2019; 388 Chen, Qiu, Prasad, Chen (bib0118) 2014; 114 Yin, Li, Bai, Ma, Liu (bib0037) 2017; 3 Gai, Li, Yang, Lin (bib0040) 2014; 114 Wagner, Eisenmann, Nestor-Kalinoski, Bhaduri (bib0085) 2013; 9 Sudimack, Lee (bib0134) 2000; 41 Dosio, Arpicco, Stella, Fattal (bib0135) 2016; 97 Logu, Raja Kamatchi, Rajmohan, Manohar, Gurusamy, Deivanayagam (bib0179) 2015; 29 Durugkar, Tamboli, Dhoble, Dhoble (bib0030) 2018; 97 Wang, Thanou (bib0126) 2010; 62 Yin, Yu, Ke, Yang, Zhu, Gao, Guo, Zhang (bib0174) 2019; 7 Walkey, Olsen, Song, Liu, Guo, Olsen, Cohen, Emili, Chan (bib0150) 2014; 8 dos Apostolos, Cipreste, de Sousa, de Sousa (bib0100) 2020; 22 Bellocq, Pun, Jensen, Davis (bib0108) 2003; 14 Misra, Heldin, Hascall, Karamanos, Skandalis, Markwald, Ghatak (bib0137) 2011; 278 Wang, Jeong, Kim, Kang, Kang, Han, Lee, Oh, Lee (bib0024) 2021; 581 Zhang, He, Ding, Qu, Chen, Sun, Zhang, Lan, Cheng (bib0120) 2021; 9 Syamchand, Sony (bib0022) 2015; 182 Liu, Sun, Cao, Yang, Wu, Ju, Li (bib0170) 2014; 35 Zhang, Zhu, Zhang, Wu, Liu, Zhang (bib0048) 2021; 600 Zhu, Xu, Li, Cui, Liu, Song (bib0075) 2015; 26 Yang, Liu, Masse, Zhang, Li, Coradin (bib0104) 2015; 275 Li, Shen, Li, Yang, Shao (bib0035) 2018; 185 Yang, Zhu, Chen, Dong, Xiong (bib0055) 2017; 9 Escudero, Calvo, Rivera-Fernandez, de la Fuente, Ocana (bib0056) 2013; 29 Li, Zou, Chen, Li (bib0045) 2018; 6 Kaczmarek, Zabiszak, Nowak, Jastrzab (bib0177) 2018; 370 Xu, Shen, Jia, Zhang, Zhou, Wei (bib0031) 2017; 87 Li, Wei, Li, Shao, Yi, Zhang, Liu, Ma, Ge (bib0009) 2021; 22 Zhou, Lu (bib0161) 2013; 5 Generalova, Chichkov, Khaydukov (bib0050) 2017; 245 Daulbayev, Sultanov, Aldasheva, Abdybekova, Bakbolat, Shams, Chekiyeva, Mansurov (bib0008) 2021; 24 Rafique, Baek, Phan, Chang, Gul, Park (bib0073) 2019; 99 Ritz, Schoettler, Kotman, Baier, Musyanovych, Kuharev, Landfester, Schild, Jahn, Tenzer, Mailaender (bib0151) 2015; 16 Que, Grant-Kels, Rabinovitz, Oliviero, Scope (bib0158) 2016; 34 Zhao, Zhao, Liu, Chang, Chen, Zhao (bib0145) 2011; 7 Lee, Jeon, Jung, Chung, Ahn (bib0157) 2014; 76 Singh, Singh, Rai (bib0067) 2014; 4 Ashokan, Gowd, Somasundaram, Bhupathi, Peethambaran, Unni, Palaniswamy, Nair, Koyakutty (bib0153) 2013; 34 Gayathri, Kumar, Manrique, Santhosh, Sardar (bib0123) 2017; 185 Verma, Stellacci (bib0139) 2010; 6 Liu, Chen, Xi, Chen, Huang, Cheng, Shao, Wang, Bai, Zeng (bib0110) 2011; 115 Karthickraja, Kumar, Sardar, Karthi, Dannangoda, Martirosyan, Prasath, Gowri, Girija (bib0054) 2021; 125 Biedrzycka, Skwarek, Hanna (bib0002) 2021; 291 Liu, Shu, Xu, Liu, Hou, Xing, Lin (bib0094) 2019; 35 Ye, Tan, Wang, Yuan (bib0058) 2005; 15 Dibaba, Ge, Ren, Sun (bib0046) 2019; 37 Paduraru, Musuc, Oprea, Trusca, Iordache, Vasile, Andronescu (bib0082) 2021; 11 Karthi, Kumar, Kumar, Sardar, Santhosh, Girija (bib0125) 2016; 689 Forest, Pourchez (bib0138) 2017; 70 Thorek, Chen, Czupryna, Tsourkas (bib0143) 2006; 34 Guan, Tian, Tang, Ke, Zhang, Zhu, Guo (bib0001) 2015; 3 Zhou, Lee (bib0006) 2011; 7 Wei, Chen, Ma, Ji, Qiao, Zhou, Ma, Ling, Zhang, Tian, Tian, Zhou (bib0156) 2018; 28 Singh (bib0132) 1999; 5 Fihri, Len, Varma, Solhy (bib0003) 2017; 347 Würth, Grabolle, Pauli, Spieles, Resch-Genger (bib0053) 2011; 83 Milojkov, Silvestre, Vojislav, Janjic, Mutavdzic, Milanovic, Nieder (bib0106) 2020; 217 Li, Zhu, Man, Ao, Chen (bib0176) 2014; 4 Yang, Han, Wang, Duan (bib0020) 2019; 10 Borges, Martins, Caixeta, Pereira, Carlos, Ferreira, Gonçalves (bib0115) 2021; 102 Liu, Raina, Sebastian, Nagesh, Isaksson, Engellau, Lidgren, Tagil (bib0007) 2021; 131 Li, Chen (bib0043) 2016; 8 Du, Lei, Zhang, Gao, Yao, Li, Feng, Zhang (bib0072) 2020; 12 Zhou, Zhong, Wang, Hu, Zhong, Huang, Yu, Ding, Liu, Fu (bib0171) 2022; 452 Yang, Zhang, Zhang, Wang, Feng, Li (bib0122) 2021; 33 Patil, Sandberg, Heckert, Self, Seal (bib0147) 2007; 28 Pan, Liu, Hua, Wang, Wan, Gong (bib0130) 2015; 12 Torchilin (bib0141) 2007; 9 Kathawala, Khoo, Sudhaharan, Zhao, Say Chye Loo, Ahmed, Woei Ng (bib0109) 2015; 10 Wilhelm (bib0061) 2017; 11 Sobierajska, Pazik, Zawisza, Renaudin, Nedelec, Wiglusz (bib0066) 2016; 18 Saranya, Rani (bib0088) 2020; 16 Xu, Liu, Zhou, Sun, Ud Din, Khan, Li, Li, Ren, Carvajal, Zhang, Liu (bib0047) 2021; 13 Li, Zou, Man, Li (bib0015) 2019; 15 Lyu, Cheong, Ai, Zhang, Li, Yang, Lin, X Zhao (10.1016/j.actbio.2022.06.006_bib0145) 2011; 7 Escudero (10.1016/j.actbio.2022.06.006_bib0056) 2013; 29 Li (10.1016/j.actbio.2022.06.006_bib0045) 2018; 6 Nevarez Rascon (10.1016/j.actbio.2022.06.006_bib0012) 2021; 37 Ibrahim (10.1016/j.actbio.2022.06.006_bib0004) 2020; 383 Li (10.1016/j.actbio.2022.06.006_bib0021) 2018; 8 Wang (10.1016/j.actbio.2022.06.006_bib0024) 2021; 581 Liu (10.1016/j.actbio.2022.06.006_bib0094) 2019; 35 Wang (10.1016/j.actbio.2022.06.006_bib0144) 2021; 50 Daulbayev (10.1016/j.actbio.2022.06.006_bib0008) 2021; 24 Rafique (10.1016/j.actbio.2022.06.006_bib0073) 2019; 99 Pyykko (10.1016/j.actbio.2022.06.006_bib0160) 2015; 7 Thorek (10.1016/j.actbio.2022.06.006_bib0143) 2006; 34 Zhang (10.1016/j.actbio.2022.06.006_bib0120) 2021; 9 Li (10.1016/j.actbio.2022.06.006_bib0044) 2021; 6 Zhu (10.1016/j.actbio.2022.06.006_bib0075) 2015; 26 Smith (10.1016/j.actbio.2022.06.006_bib0017) 2017; 117 Chan (10.1016/j.actbio.2022.06.006_bib0042) 2017; 9 Zhou (10.1016/j.actbio.2022.06.006_bib0161) 2013; 5 Generalova (10.1016/j.actbio.2022.06.006_bib0050) 2017; 245 Guan (10.1016/j.actbio.2022.06.006_bib0001) 2015; 3 Xu (10.1016/j.actbio.2022.06.006_bib0164) 2020; 49 Zhu (10.1016/j.actbio.2022.06.006_bib0068) 2019; 6 Demir (10.1016/j.actbio.2022.06.006_bib0062) 2021; 47 Ghosh (10.1016/j.actbio.2022.06.006_bib0089) 2011; 176 Homann (10.1016/j.actbio.2022.06.006_bib0070) 2018; 57 Zeng (10.1016/j.actbio.2022.06.006_bib0036) 2017; 22 Lopes (10.1016/j.actbio.2022.06.006_bib0131) 2017; 73 Liu (10.1016/j.actbio.2022.06.006_bib0170) 2014; 35 Syamchand (10.1016/j.actbio.2022.06.006_bib0129) 2015; 182 Fihri (10.1016/j.actbio.2022.06.006_bib0003) 2017; 347 Sobierajska (10.1016/j.actbio.2022.06.006_bib0064) 2021; 11 Ma (10.1016/j.actbio.2022.06.006_bib0113) 2017; 9 Marion (10.1016/j.actbio.2022.06.006_bib0014) 2020; 279 Zhou (10.1016/j.actbio.2022.06.006_bib0071) 2014; 52 Liu (10.1016/j.actbio.2022.06.006_bib0007) 2021; 131 Luo (10.1016/j.actbio.2022.06.006_bib0095) 2018; 6 Sobierajska (10.1016/j.actbio.2022.06.006_bib0066) 2016; 18 dos Apostolos (10.1016/j.actbio.2022.06.006_bib0100) 2020; 22 Ashokan (10.1016/j.actbio.2022.06.006_bib0153) 2013; 34 Liu (10.1016/j.actbio.2022.06.006_bib0136) 2011; 17 Das (10.1016/j.actbio.2022.06.006_bib0166) 2012; 3 Wei (10.1016/j.actbio.2022.06.006_bib0156) 2018; 28 Matsumoto (10.1016/j.actbio.2022.06.006_bib0084) 2019; 378 Sanchez Lafarga (10.1016/j.actbio.2022.06.006_bib0163) 2015; 48 Song (10.1016/j.actbio.2022.06.006_bib0101) 2019; 11 Xu (10.1016/j.actbio.2022.06.006_bib0031) 2017; 87 Biedrzycka (10.1016/j.actbio.2022.06.006_bib0002) 2021; 291 Han (10.1016/j.actbio.2022.06.006_bib0010) 2021; 6 Agalya (10.1016/j.actbio.2022.06.006_bib0028) 2021; 225 Rinkel (10.1016/j.actbio.2022.06.006_bib0074) 2016; 55 Tesch (10.1016/j.actbio.2022.06.006_bib0090) 2017; 81 Kaczmarek (10.1016/j.actbio.2022.06.006_bib0177) 2018; 370 Pang (10.1016/j.actbio.2022.06.006_bib0092) 2016; 42 Liu (10.1016/j.actbio.2022.06.006_bib0110) 2011; 115 Yang (10.1016/j.actbio.2022.06.006_bib0122) 2021; 33 Sundarabharathi (10.1016/j.actbio.2022.06.006_bib0029) 2018; 106 Wu (10.1016/j.actbio.2022.06.006_bib0111) 2011; 7 Reynard (10.1016/j.actbio.2022.06.006_bib0013) 1999; 155 Li (10.1016/j.actbio.2022.06.006_bib0052) 2016; 69 Kathawala (10.1016/j.actbio.2022.06.006_bib0109) 2015; 10 Huang (10.1016/j.actbio.2022.06.006_bib0154) 2017; 165 Li (10.1016/j.actbio.2022.06.006_bib0015) 2019; 15 Huang (10.1016/j.actbio.2022.06.006_bib0099) 2018; 83 Li (10.1016/j.actbio.2022.06.006_bib0016) 2019; 5 Liu (10.1016/j.actbio.2022.06.006_bib0033) 2014; 40 Du (10.1016/j.actbio.2022.06.006_bib0011) 2021; 215 Nazarenus (10.1016/j.actbio.2022.06.006_bib0146) 2014; 5 Li (10.1016/j.actbio.2022.06.006_bib0176) 2014; 4 Ritz (10.1016/j.actbio.2022.06.006_bib0151) 2015; 16 Rees (10.1016/j.actbio.2022.06.006_bib0142) 2019; 10 Li (10.1016/j.actbio.2022.06.006_bib0155) 2018; 47 Seeliger (10.1016/j.actbio.2022.06.006_bib0168) 2012; 33 Szyszka (10.1016/j.actbio.2022.06.006_bib0086) 2021; 11 Yang (10.1016/j.actbio.2022.06.006_bib0055) 2017; 9 Logu (10.1016/j.actbio.2022.06.006_bib0179) 2015; 29 Sudimack (10.1016/j.actbio.2022.06.006_bib0134) 2000; 41 Dong (10.1016/j.actbio.2022.06.006_bib0051) 2015; 44 Saranya (10.1016/j.actbio.2022.06.006_bib0088) 2020; 16 Ignjatovic (10.1016/j.actbio.2022.06.006_bib0079) 2019; 9 Wagner (10.1016/j.actbio.2022.06.006_bib0085) 2013; 9 Perera (10.1016/j.actbio.2022.06.006_bib0078) 2015; 2015 Krishnapriya (10.1016/j.actbio.2022.06.006_bib0023) 2021; 31 Gayathri (10.1016/j.actbio.2022.06.006_bib0123) 2017; 185 Gu (10.1016/j.actbio.2022.06.006_bib0019) 2021; 9 Paduraru (10.1016/j.actbio.2022.06.006_bib0082) 2021; 11 Hong (10.1016/j.actbio.2022.06.006_bib0081) 2019; 105 Maldiney (10.1016/j.actbio.2022.06.006_bib0098) 2011; 5 Pan (10.1016/j.actbio.2022.06.006_bib0128) 2013; 59 Misri (10.1016/j.actbio.2022.06.006_bib0169) 2012; 8 Pham (10.1016/j.actbio.2022.06.006_bib0124) 2016; 167 Milojkov (10.1016/j.actbio.2022.06.006_bib0106) 2020; 217 Dosio (10.1016/j.actbio.2022.06.006_bib0135) 2016; 97 Paduraru (10.1016/j.actbio.2022.06.006_bib0032) 2021; 11 Cai (10.1016/j.actbio.2022.06.006_bib0148) 2017; 139 Karthickraja (10.1016/j.actbio.2022.06.006_bib0054) 2021; 125 Yin (10.1016/j.actbio.2022.06.006_bib0174) 2019; 7 Szczes (10.1016/j.actbio.2022.06.006_bib0005) 2017; 249 Zhou (10.1016/j.actbio.2022.06.006_bib0041) 2015; 115 Du (10.1016/j.actbio.2022.06.006_bib0072) 2020; 12 Würth (10.1016/j.actbio.2022.06.006_bib0053) 2011; 83 Chen (10.1016/j.actbio.2022.06.006_bib0118) 2014; 114 Shojai (10.1016/j.actbio.2022.06.006_bib0077) 2013; 9 Bellocq (10.1016/j.actbio.2022.06.006_bib0108) 2003; 14 Syamchand (10.1016/j.actbio.2022.06.006_bib0022) 2015; 182 Gai (10.1016/j.actbio.2022.06.006_bib0040) 2014; 114 Wang (10.1016/j.actbio.2022.06.006_bib0049) 2017; 9 Zhang (10.1016/j.actbio.2022.06.006_bib0083) 2021; 54 Marques (10.1016/j.actbio.2022.06.006_bib0159) 2015; 63 Zhou (10.1016/j.actbio.2022.06.006_bib0171) 2022; 452 Li (10.1016/j.actbio.2022.06.006_bib0009) 2021; 22 Xu (10.1016/j.actbio.2022.06.006_bib0047) 2021; 13 Sun (10.1016/j.actbio.2022.06.006_bib0065) 2013; 15 Saul (10.1016/j.actbio.2022.06.006_bib0133) 2003; 92 Singh (10.1016/j.actbio.2022.06.006_bib0067) 2014; 4 Lesniak (10.1016/j.actbio.2022.06.006_bib0152) 2013; 135 Verma (10.1016/j.actbio.2022.06.006_bib0139) 2010; 6 Lee (10.1016/j.actbio.2022.06.006_bib0167) 2013; 25 Chandran (10.1016/j.actbio.2022.06.006_bib0102) 2021; 109 Zhang (10.1016/j.actbio.2022.06.006_bib0048) 2021; 600 Lizama (10.1016/j.actbio.2022.06.006_bib0059) 2020; 7 Heffern (10.1016/j.actbio.2022.06.006_bib0162) 2014; 114 Li (10.1016/j.actbio.2022.06.006_bib0091) 2017; 17 Borges (10.1016/j.actbio.2022.06.006_bib0115) 2021; 102 Que (10.1016/j.actbio.2022.06.006_bib0158) 2016; 34 Zheng (10.1016/j.actbio.2022.06.006_bib0121) 2020; 12 Lyu (10.1016/j.actbio.2022.06.006_bib0063) 2018; 10 Walkey (10.1016/j.actbio.2022.06.006_bib0150) 2014; 8 Ding (10.1016/j.actbio.2022.06.006_bib0117) 2020; 38 Wilhelm (10.1016/j.actbio.2022.06.006_bib0061) 2017; 11 Choi (10.1016/j.actbio.2022.06.006_bib0119) 2013; 31 Panda (10.1016/j.actbio.2022.06.006_bib0087) 2021; 47 Forest (10.1016/j.actbio.2022.06.006_bib0138) 2017; 70 Xing (10.1016/j.actbio.2022.06.006_bib0027) 2019; 29 Yang (10.1016/j.actbio.2022.06.006_bib0104) 2015; 275 Lee (10.1016/j.actbio.2022.06.006_bib0157) 2014; 76 Taha (10.1016/j.actbio.2022.06.006_bib0178) 2011; 81 Singh (10.1016/j.actbio.2022.06.006_bib0132) 1999; 5 Cai (10.1016/j.actbio.2022.06.006_bib0116) 2019; 48 Syamchand (10.1016/j.actbio.2022.06.006_bib0057) 2016; 183 Xie (10.1016/j.actbio.2022.06.006_bib0097) 2016; 8 Stanca (10.1016/j.actbio.2022.06.006_bib0112) 2015; 11 Neumeier (10.1016/j.actbio.2022.06.006_bib0069) 2011; 21 Li (10.1016/j.actbio.2022.06.006_bib0080) 2020; 36 Qi (10.1016/j.actbio.2022.06.006_bib0076) 2017; 69 Yang (10.1016/j.actbio.2022.06.006_bib0103) 2021; 30 He (10.1016/j.actbio.2022.06.006_bib0107) 2017; 192 Yin (10.1016/j.actbio.2022.06.006_bib0037) 2017; 3 Li (10.1016/j.actbio.2022.06.006_bib0035) 2018; 185 Qiao (10.1016/j.actbio.2022.06.006_bib0175) 2018; 44 Foster (10.1016/j.actbio.2022.06.006_bib0140) 2017; 1530 Patil (10.1016/j.actbio.2022.06.006_bib0147) 2007; 28 Wieszczycka (10.1016/j.actbio.2022.06.006_bib0173) 2019; 388 Li (10.1016/j.actbio.2022.06.006_bib0043) 2016; 8 Dibaba (10.1016/j.actbio.2022.06.006_bib0046) 2019; 37 Zhang (10.1016/j.actbio.2022.06.006_bib0105) 2021; 528 Torchilin (10.1016/j.actbio.2022.06.006_bib0141) 2007; 9 Li (10.1016/j.actbio.2022.06.006_bib0039) 2018; 57 Jimenez-Flores (10.1016/j.actbio.2022.06.006_bib0034) 2017; 52 Li (10.1016/j.actbio.2022.06.006_bib0018) 2021; 222 Yang (10.1016/j.actbio.2022.06.006_bib0020) 2019; 10 Durugkar (10.1016/j.actbio.2022.06.006_bib0030) 2018; 97 Kataoka (10.1016/j.actbio.2022.06.006_bib0025) 2019; 3 Mondal (10.1016/j.actbio.2022.06.006_bib0026) 2020; 46 Misra (10.1016/j.actbio.2022.06.006_bib0137) 2011; 278 Liu (10.1016/j.actbio.2022.06.006_bib0172) 2019; 2 Ye (10.1016/j.actbio.2022.06.006_bib0058) 2005; 15 Zhou (10.1016/j.actbio.2022.06.006_bib0114) 2014; 6 Liu (10.1016/j.actbio.2022.06.006_bib0165) 2018; 749 Phatai (10.1016/j.actbio.2022.06.006_bib0093) 2019; 89 Ashokan (10.1016/j.actbio.2022.06.006_bib0127) 2010; 31 Li (10.1016/j.actbio.2022.06.006_bib0038) 2014; 125 Borkowska (10.1016/j.actbio.2022.06.006_bib0149) 2020; 15 Wang (10.1016/j.actbio.2022.06.006_bib0126) 2010; 62 Su (10.1016/j.actbio.2022.06.006_bib0060) 2019; 9 Zhou (10.1016/j.actbio.2022.06.006_bib0006) 2011; 7 Pan (10.1016/j.actbio.2022.06.006_bib0130) 2015; 12 Karthi (10.1016/j.actbio.2022.06.006_bib0125) 2016; 689 Zhou (10.1016/j.actbio.2022.06.006_bib0096) 2020; 8 |
References_xml | – volume: 31 start-page: 1927 year: 2021 end-page: 1936 ident: bib0023 article-title: Eggshell derived europium doped hydroxyapatite nanoparticles for cell imaging application publication-title: J. Fluoresc. – volume: 275 start-page: 152 year: 2015 end-page: 159 ident: bib0104 article-title: Hierarchically-organized, well-dispersed hydroxyapatite-coated magnetic carbon with combined organics and inorganics removal properties publication-title: Chem. Eng. J. – volume: 114 start-page: 5161 year: 2014 end-page: 5214 ident: bib0118 article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics publication-title: Chem. Rev. – volume: 8 start-page: 10212 year: 2016 end-page: 10219 ident: bib0097 article-title: Luminescence enhanced Eu publication-title: ACS Appl. Mater Int. – volume: 14 start-page: 1122 year: 2003 end-page: 1132 ident: bib0108 article-title: Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery publication-title: Bioconjugate Chem. – volume: 5 start-page: 1477 year: 2014 end-page: 1490 ident: bib0146 article-title: interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? publication-title: Beilstein J. Nanotech. – volume: 13 start-page: 9978 year: 2021 end-page: 9988 ident: bib0047 article-title: A new role of Yb publication-title: Nanoscale – volume: 388 start-page: 248 year: 2019 end-page: 267 ident: bib0173 article-title: Lanthanides and tissue engineering strategies for bone regeneration publication-title: Coord. Chem. Rev. – volume: 10 start-page: 2341 year: 2019 ident: bib0142 article-title: The origin of heterogeneous nanoparticle uptake by cells publication-title: Nat. Commun. – volume: 4 start-page: 27039 year: 2014 end-page: 27061 ident: bib0067 article-title: Role of Li publication-title: RSV Adv. – volume: 10 start-page: 172 year: 2019 end-page: 178 ident: bib0020 article-title: Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence publication-title: Chem. Sci. – volume: 33 start-page: 2007 year: 2012 end-page: 2015 ident: bib0168 article-title: Contrast-induced kidney injury: mechanisms, risk factors, and prevention publication-title: Eur. Heart J. – volume: 3 start-page: 241 year: 2019 end-page: 256 ident: bib0025 article-title: Highly luminescent hydroxyapatite nanoparticles hybridized with citric acid for their bifunctional cell-labeling and cytostatic suppression properties publication-title: ACS Appl. Nano Mater. – volume: 11 start-page: 1388 year: 2021 ident: bib0064 article-title: Multifunctionality of nanosized calcium apatite dual-doped with Li publication-title: Biomolecules – volume: 70 start-page: 889 year: 2017 end-page: 896 ident: bib0138 article-title: Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: a too simplistic explanation that does not take into account the nanoparticle protein corona publication-title: Mat. Sci. Eng. C Mater. – volume: 50 start-page: 8669 year: 2021 end-page: 8742 ident: bib0144 article-title: Inorganic nanomaterials with rapid clearance for biomedical applications publication-title: Chem. Soc. Rev. – volume: 279 year: 2020 ident: bib0014 article-title: A review of reagents applied to rare-earth mineral flotation publication-title: Adv. Colloid Interface Sci. – volume: 35 start-page: 15287 year: 2019 end-page: 15294 ident: bib0094 article-title: BMP-2-loaded HAP:Ln publication-title: Langmuir – volume: 25 start-page: 2641 year: 2013 end-page: 2660 ident: bib0167 article-title: Nano-sized CT contrast agents publication-title: Adv. Mater. – volume: 106 start-page: 2191 year: 2018 end-page: 2201 ident: bib0029 article-title: biocompatibility, bioactivity and photoluminescence properties of Eu publication-title: J. Biomed. Mater. Res. B – volume: 6 start-page: 2658 year: 2021 end-page: 2666 ident: bib0044 article-title: Pro-osteogenesis and publication-title: Bioact. Mater. – volume: 9 start-page: 26184 year: 2017 end-page: 26190 ident: bib0049 article-title: Multicolor tunable luminescence based on Tb/Eu doping through a facile hydrothermal route publication-title: ACS Appl. Mater. Int. – volume: 12 start-page: 1843 year: 2020 end-page: 1850 ident: bib0121 article-title: All-in-one mitochondria-targeted NIR-II fluorophores for cancer therapy and imaging publication-title: Chem. Sci. – volume: 1530 start-page: 13 year: 2017 end-page: 37 ident: bib0140 article-title: Improved targeting of cancers with nanotherapeutics publication-title: Meth. Mol. Biol. – volume: 125 year: 2021 ident: bib0054 article-title: Fabrication of Nd publication-title: Mat. Sci. Eng. C Mater. – volume: 83 start-page: 184 year: 2018 end-page: 191 ident: bib0099 article-title: Facile preparation of Eu publication-title: J. Taiwan Inst. Chem. E – volume: 22 start-page: 10942 year: 2021 ident: bib0009 article-title: Multifunctional SDF-1-loaded hydroxyapatite/polylactic acid membranes promote cell recruitment, immunomodulation, angiogenesis, and osteogenesis for biomimetic bone regeneration publication-title: Appl. Mater. Today – volume: 176 start-page: 14 year: 2011 end-page: 21 ident: bib0089 article-title: Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions publication-title: Mater. Sci. Eng. B Adv. – volume: 29 start-page: 1985 year: 2013 end-page: 1994 ident: bib0056 article-title: Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid) publication-title: Langmuir – volume: 15 start-page: 331 year: 2020 ident: bib0149 article-title: Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells publication-title: Nat. Nanotechnol. – volume: 49 start-page: 12327 year: 2020 end-page: 12337 ident: bib0164 article-title: Controllable synthesis of rare earth (Gd publication-title: Dalton Trans. – volume: 10 start-page: 171 year: 2015 end-page: 179 ident: bib0109 article-title: Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors publication-title: Biotechnol. J. – volume: 155 start-page: 233 year: 1999 end-page: 241 ident: bib0013 article-title: Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions publication-title: Chem. Geol. – volume: 16 start-page: 1311 year: 2015 end-page: 1321 ident: bib0151 article-title: Protein corona of nanoparticles: distinct proteins regulate the cellular uptake publication-title: Biomacromolecules – volume: 347 start-page: 48 year: 2017 end-page: 76 ident: bib0003 article-title: Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis publication-title: Coord. Chem. Rev. – volume: 57 start-page: 13739 year: 2018 end-page: 13748 ident: bib0039 article-title: Intracellular interaction of hydroxyapatite-based nanocrystals with uniform shape and traceable fluorescence publication-title: Inorg. Chem. – volume: 44 start-page: 1608 year: 2015 end-page: 1634 ident: bib0051 article-title: Energy transfer in lanthanide upconversion studies for extended optical applications publication-title: Chem. Soc. Rev. – volume: 370 start-page: 42 year: 2018 end-page: 54 ident: bib0177 article-title: Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity publication-title: Coordin. Chem. Rev. – volume: 3 start-page: 144 year: 2017 end-page: 149 ident: bib0037 article-title: Effect of calcinations temperature on the luminescence intensity and fluorescent lifetime of Tb publication-title: J. Materiomics – volume: 83 start-page: 3431 year: 2011 end-page: 3439 ident: bib0053 article-title: Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields publication-title: Anal. Chem. – volume: 114 start-page: 4496 year: 2014 end-page: 4539 ident: bib0162 article-title: Lanthanide probes for bioresponsive imaging publication-title: Chem. Rev. – volume: 15 start-page: 3442 year: 2013 end-page: 3447 ident: bib0065 article-title: Controlled synthesis and enhanced luminescence of europium-doped fluorine-substituted hydroxyapatite nanoparticles publication-title: CrystEngComm – volume: 5 start-page: 854 year: 2011 end-page: 862 ident: bib0098 article-title: Effect of core diameter, surface coating, and peg chain length on the biodistribution of persistent luminescence nanoparticles in mice publication-title: ACS Nano – volume: 581 start-page: 21 year: 2021 end-page: 30 ident: bib0024 article-title: Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for publication-title: J. Colloid Interface Sci. – volume: 48 start-page: 22 year: 2019 end-page: 37 ident: bib0116 article-title: Optical nano-agents in the second near-infrared window for biomedical applications publication-title: Chem. Soc. Rev. – volume: 47 start-page: 8538 year: 2018 end-page: 8556 ident: bib0155 article-title: Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF publication-title: Dalton Trans. – volume: 15 start-page: 499 year: 2005 end-page: 505 ident: bib0058 article-title: Preparation, characterization and application of fluorescent terbium complex-doped zirconia nanoparticles publication-title: J. Fluoresc. – volume: 9 start-page: 16305 year: 2019 ident: bib0079 article-title: Rare-earth (Gd publication-title: Sci. Rep. – volume: 97 start-page: 466 year: 2018 end-page: 472 ident: bib0030 article-title: Novel photoluminescence properties of Eu publication-title: Mater. Res. Bull. – volume: 31 start-page: 2606 year: 2010 end-page: 2616 ident: bib0127 article-title: A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent publication-title: Biomaterials – volume: 28 year: 2018 ident: bib0156 article-title: High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1194 year: 2019 ident: bib0172 article-title: Gadolinium-doped hydroxyapatite nanorods as T publication-title: ACS Appl. Nano Mater. – volume: 7 start-page: 2769 year: 2011 end-page: 2781 ident: bib0006 article-title: Nanoscale hydroxyapatite particles for bone tissue engineering publication-title: Acta Biomater. – volume: 9 start-page: e128 year: 2007 end-page: e147 ident: bib0141 article-title: Targeted pharmaceutical nanocarriers for cancer therapy and imaging publication-title: AAPS J. – volume: 55 start-page: 1164 year: 2016 end-page: 1167 ident: bib0074 article-title: Synthesis of 10 nm β- NaYF publication-title: Angew. Chem. – volume: 7 start-page: 3049 year: 2020 end-page: 3062 ident: bib0059 article-title: A systematic study of the optical properties of mononuclear hybrid organo–inorganic lanthanoid complexes publication-title: Inorg. Chem. Front. – volume: 11 start-page: 1831 year: 2015 end-page: 1839 ident: bib0112 article-title: Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane publication-title: Nanomedicine – volume: 749 start-page: 939 year: 2018 end-page: 947 ident: bib0165 article-title: Controllable synthesis of up-conversion nanoparticles UCNPs@MIL-PEG for pH-responsive drug delivery and potential up-conversion luminescence/magnetic resonance dual-mode imaging publication-title: J. Alloy. Compd. – volume: 6 start-page: 6047 year: 2018 end-page: 6056 ident: bib0045 article-title: A ternary doped single matrix material with dual functions of bone repair and multimodal tracking for applications in orthopedics and dentistry publication-title: J. Mater. Chem. B – volume: 9 start-page: 25455 year: 2017 end-page: 25464 ident: bib0055 article-title: Luminescent, fire-resistant, and water-proof ultralong hydroxyapatite nanowire-based paper for multimode anticounterfeiting applications publication-title: ACS Appl. Mater. Int. – volume: 5 start-page: 1 year: 2013 end-page: 18 ident: bib0161 article-title: Gadolinium-based contrast agents for magnetic resonance cancer imaging publication-title: WIRES Nanomed. Nanobiotechnol. – volume: 29 start-page: 90 year: 2015 end-page: 95 ident: bib0179 article-title: antimicrobial and antioxidant evaluation of rare earth metal schiff base complexes derived from threonine publication-title: Appl. Organomet. Chem. – volume: 117 start-page: 901 year: 2017 end-page: 986 ident: bib0017 article-title: Nanomaterials for publication-title: Chem. Rev. – volume: 41 start-page: 147 year: 2000 end-page: 162 ident: bib0134 article-title: Targeted drug delivery via the folate receptor publication-title: Adv. Drug Deliv. Rev. – volume: 34 start-page: 7143 year: 2013 end-page: 7157 ident: bib0153 article-title: Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared publication-title: Biomaterials – volume: 7 start-page: 3066 year: 2019 end-page: 3074 ident: bib0174 article-title: La-doped biomimetic scaffolds facilitate bone remodelling by synchronizing osteointegration and phagocytic activity of macrophages publication-title: J. Mater. Chem. B – volume: 378 year: 2019 ident: bib0084 article-title: Preparation of hydrophobic La publication-title: J. Hazard. Mater. – volume: 18 start-page: 3447 year: 2016 end-page: 3455 ident: bib0066 article-title: Effect of lithium substitution on the charge compensation, structural and luminescence properties of nanocrystalline Ca publication-title: CrystEngComm – volume: 31 start-page: 148 year: 2013 end-page: 153 ident: bib0119 article-title: Targeted zwitterionic near-infrared fluorophores for improved optical imaging publication-title: Nat. Biotechnol. – volume: 15 year: 2019 ident: bib0015 article-title: Synergistic effects of novel superparamagnetic/upconversion HA material and Ti/magnet implant on biological performance and long-term publication-title: Small – volume: 8 start-page: 11267 year: 2018 ident: bib0021 article-title: Investigation on anti-autofluorescence, osteogenesis and long-term tracking of HA-based upconversion material publication-title: Sci. Rep. – volume: 185 start-page: 180 year: 2017 end-page: 186 ident: bib0123 article-title: Optical characterization of infrared emitting Nd publication-title: J. Lumin. – volume: 62 start-page: 90 year: 2010 end-page: 99 ident: bib0126 article-title: Targeting nanoparticles to cancer publication-title: Pharmacol. Res. – volume: 182 start-page: 1567 year: 2015 end-page: 1589 ident: bib0022 article-title: Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging publication-title: Microchim. Acta – volume: 29 start-page: 17 year: 2019 end-page: 25 ident: bib0027 article-title: Ultrasound-assisted synthesis and characterization of heparin-coated Eu publication-title: Colloid Interface Sci. – volume: 4 start-page: 4446 year: 2014 ident: bib0176 article-title: Investigation on the structure and upconversion fluorescence of Yb publication-title: Sci. Rep. – volume: 9 start-page: 18153 year: 2017 end-page: 18168 ident: bib0042 article-title: Advanced sensing, imaging, and therapy nanoplatforms based on Nd publication-title: Nanoscale – volume: 52 start-page: 9990 year: 2017 end-page: 10000 ident: bib0034 article-title: Characterization of Tb-doped hydroxyapatite for biomedical applications: optical properties and energy band gap determination publication-title: J. Mater. Sci. – volume: 114 start-page: 2343 year: 2014 end-page: 2389 ident: bib0040 article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications publication-title: Chem. Rev. – volume: 47 start-page: 34657 year: 2021 end-page: 34666 ident: bib0062 article-title: Effects of doping content and crystallite size on luminescence properties of Eu publication-title: Ceram. Int. – volume: 249 start-page: 321 year: 2017 end-page: 330 ident: bib0005 article-title: Synthesis of hydroxyapatite for biomedical applications publication-title: Adv. Colloid Interface Sci. – volume: 11 start-page: 464 year: 2021 ident: bib0086 article-title: Quenching of the Eu publication-title: Nanomaterials (Basel) – volume: 8 start-page: 27458 year: 2016 end-page: 27464 ident: bib0043 article-title: Yb publication-title: ACS Appl. Mater. Int. – volume: 225 year: 2021 ident: bib0028 article-title: Surfactant-assisted microwave synthesis of luminescent/magnetic bifunctional hydroxyapatite nanorods for dual-model imaging publication-title: Optik – volume: 2015 start-page: 1 year: 2015 end-page: 6 ident: bib0078 article-title: Rare earth doped apatite nanomaterials for biological application publication-title: J. Nanomater. – volume: 36 start-page: e15 year: 2020 end-page: e26 ident: bib0080 article-title: Composite resin reinforced with fluorescent europium-doped hydroxyapatite nanowires for publication-title: Dent. Mater. – volume: 57 start-page: 8765 year: 2018 end-page: 8769 ident: bib0070 article-title: NaYF publication-title: Angew. Chem. – volume: 7 start-page: 1322 year: 2011 end-page: 1337 ident: bib0145 article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials publication-title: Small – volume: 5 start-page: eaay6484 year: 2019 ident: bib0016 article-title: changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite publication-title: Sci. Adv. – volume: 87 start-page: 991 year: 2017 end-page: 997 ident: bib0031 article-title: Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection publication-title: Biosens. Bioelectron. – volume: 183 start-page: 3209 year: 2016 end-page: 3219 ident: bib0057 article-title: Fluorescein-labeled fluoroapatite nanocrystals codoped with Yb(III) and Ho(III) for trimodal (downconversion, upconversion and magnetic resonance) imaging of cancer cells publication-title: Microchim. Acta – volume: 9 year: 2019 ident: bib0060 article-title: Hydrothermal synthesis and green up-conversion luminescence of Yb publication-title: AIP Adv. – volume: 92 start-page: 49 year: 2003 end-page: 67 ident: bib0133 article-title: Controlled targeting of liposomal doxorubicin via the folate receptor publication-title: J. Control. Release – volume: 69 start-page: 956 year: 2016 end-page: 966 ident: bib0052 article-title: Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering publication-title: Mat. Sci. Eng. C Mater. – volume: 182 start-page: 1213 year: 2015 end-page: 1221 ident: bib0129 article-title: Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging publication-title: Microchim. Acta – volume: 11 start-page: 1191 year: 2021 ident: bib0082 article-title: Synthesis and characterization of photoluminescent Ce(III) and Ce(Iv) substituted hydroxyapatite nanomaterials by co-precipitation method: cytotoxicity and biocompatibility evaluation publication-title: Nanomaterials – volume: 9 start-page: 9116 year: 2021 end-page: 9122 ident: bib0120 article-title: Synergistic strategy of rare-earth doped nanoparticles for NIR-II biomedical imaging publication-title: J. Mater. Chem. B – volume: 383 year: 2020 ident: bib0004 article-title: Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review publication-title: J. Hazard. Mater. – volume: 131 start-page: 555 year: 2021 end-page: 571 ident: bib0007 article-title: Sustained and controlled delivery of doxorubicin from an publication-title: Acta Biomater. – volume: 44 start-page: 16632 year: 2018 end-page: 16646 ident: bib0175 article-title: Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: Fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation publication-title: Ceram. Int. – volume: 125 start-page: 78 year: 2014 end-page: 81 ident: bib0038 article-title: Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals publication-title: Mater. Lett. – volume: 8 start-page: 1007 year: 2012 end-page: 1016 ident: bib0169 article-title: Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe publication-title: Nanomedicine – volume: 6 start-page: 12 year: 2010 end-page: 21 ident: bib0139 article-title: Effect of surface properties on nanoparticle-cell interactions publication-title: Small – volume: 47 start-page: 28122 year: 2021 end-page: 28144 ident: bib0087 article-title: A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering publication-title: Ceram. Int. – volume: 40 start-page: 2613 year: 2014 end-page: 2617 ident: bib0033 article-title: Synthesis and characterization of Tb publication-title: Ceram. Int. – volume: 7 start-page: 680 year: 2015 ident: bib0160 article-title: Magically magnetic gadolinium publication-title: Nat. Chem. – volume: 48 start-page: 541 year: 2015 end-page: 547 ident: bib0163 article-title: Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids publication-title: Mat. Sci. Eng. C Mater. – volume: 22 start-page: 753 year: 2017 ident: bib0036 article-title: Synthesis of europium-doped fluorapatite nanorods and their biomedical applications in drug delivery publication-title: Molecules – volume: 22 start-page: 368 year: 2020 ident: bib0100 article-title: Multifunctional hybrid nanosystems based on mesoporous silica and hydroxyapatite nanoparticles applied as potential nanocarriers for theranostic applications publication-title: J. Nanopart. Res. – volume: 167 start-page: 145 year: 2016 end-page: 147 ident: bib0124 article-title: A novel 1540nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method publication-title: Mater. Lett. – volume: 11 start-page: 2442 year: 2021 ident: bib0032 article-title: Influence of terbium ions and their concentration on the photoluminescence properties of hydroxyapatite for biomedical applications publication-title: Nanomaterials (Basel) – volume: 21 start-page: 1250 year: 2011 end-page: 1254 ident: bib0069 article-title: Synthesis of fluorescent core-shell hydroxyapatite nanoparticles publication-title: J. Mater. Chem. – volume: 89 start-page: 764 year: 2019 end-page: 775 ident: bib0093 article-title: Structural characterization and antibacterial activity of hydroxyapatite synthesized via sol-gel method using glutinous rice as a template publication-title: J. Sol Gel Sci. Technol. – volume: 102 start-page: 249 year: 2021 end-page: 263 ident: bib0115 article-title: Primary thermometers based on sol–gel upconverting Er publication-title: J. Sol Gel Sci. Technol. – volume: 278 start-page: 1429 year: 2011 end-page: 1443 ident: bib0137 article-title: Hyaluronan-CD44 interactions as potential targets for cancer therapy publication-title: FEBS J. – volume: 34 start-page: 23 year: 2006 end-page: 38 ident: bib0143 article-title: Superparamagnetic iron oxide nanoparticle probes for molecular imaging publication-title: Ann. Biomed. Eng. – volume: 6 year: 2019 ident: bib0068 article-title: Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications publication-title: Adv. Sci. – volume: 528 year: 2021 ident: bib0105 article-title: Facile synthesis of a neodymium doped metal organic frame modified antibacterial material and corrosion resistant coating publication-title: Inorg. Chim. Acta – volume: 30 start-page: 886 year: 2021 end-page: 897 ident: bib0103 article-title: Development of novel thermal sprayed hydroxyapatite-rare earth (HA-RE) coatings for potential antimicrobial applications in orthopedics publication-title: J. Therm. Spray Technol. – volume: 33 year: 2021 ident: bib0122 article-title: Beyond the visible: bioinspired infrared adaptive materials publication-title: Adv. Mater. – volume: 291 year: 2021 ident: bib0002 article-title: Hydroxyapatite with magnetic core: synthesis methods, properties, adsorption and medical applications publication-title: Adv. Colloid Interface Sci. – volume: 54 start-page: e13105 year: 2021 ident: bib0083 article-title: Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment publication-title: Cell Prolif. – volume: 5 start-page: 443 year: 1999 end-page: 451 ident: bib0132 article-title: Transferrin as a targeting ligand for liposomes and anticancer drugs publication-title: Curr. Pharm. Des. – volume: 3 start-page: 1655 year: 2015 end-page: 1666 ident: bib0001 article-title: Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility publication-title: J. Mater. Chem. B – volume: 52 start-page: 367 year: 2014 end-page: 373 ident: bib0071 article-title: A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design publication-title: Biosens. Bioelectron. – volume: 12 start-page: 3977 year: 2020 end-page: 3987 ident: bib0072 article-title: Decoration of upconversion nanocrystals with metal sulfide quantum dots by a universal publication-title: Nanoscale – volume: 109 start-page: 821 year: 2021 end-page: 828 ident: bib0102 article-title: Apatite matrix substituted with biologically essential rare earth elements as an artificial hard tissue substitute: systematic physicochemical and biological evaluation publication-title: J. Biomed. Mater. Res. A – volume: 76 start-page: 60 year: 2014 end-page: 78 ident: bib0157 article-title: Targeted multimodal imaging modalities publication-title: Adv. Drug Deliv. Rev. – volume: 3 start-page: 524 year: 2012 end-page: 529 ident: bib0166 article-title: NaDyF publication-title: J. Phys. Chem. Lett. – volume: 185 start-page: 271 year: 2018 ident: bib0035 article-title: Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells publication-title: Mikrochim. Acta – volume: 245 start-page: 1 year: 2017 end-page: 19 ident: bib0050 article-title: Multicomponent nanocrystals with anti-stokes luminescence as contrast agents for modern imaging techniques publication-title: Adv. Colloid Interface – volume: 139 start-page: 2876 year: 2017 end-page: 2879 ident: bib0148 article-title: Supramolecular “trojan horse” for nuclear delivery of dual anticancer drugs publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 3348 year: 2014 end-page: 3355 ident: bib0170 article-title: Long-term biodistribution publication-title: Biomaterials – volume: 8 start-page: 2107 year: 2020 end-page: 2114 ident: bib0096 article-title: Hyaluronan-directed fabrication of co-doped hydroxyapatite as a dual-modal probe for tumor-specific bioimaging publication-title: J. Mater. Chem. B – volume: 11 start-page: 15958 year: 2019 end-page: 15970 ident: bib0101 article-title: An oral drug delivery system with programmed drug release and imaging properties for orthotopic colon cancer therapy publication-title: Nanoscale – volume: 7 start-page: 926 year: 2011 end-page: 931 ident: bib0111 article-title: Facile synthesis of hollow mesoporous hydroxyapatite nanoparticles for intracellular bio-imaging publication-title: Curr. Nanosci. – volume: 69 start-page: 1354 year: 2017 end-page: 1360 ident: bib0076 article-title: Hydroxyapatite fibers: a review of synthesis methods publication-title: JOM – volume: 6 start-page: 14319 year: 2014 end-page: 14325 ident: bib0114 article-title: Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging publication-title: Nanoscale – volume: 115 start-page: 18538 year: 2011 end-page: 18544 ident: bib0110 article-title: Biocompatible fluorescent hydroxyapatite: Synthesis and live cell imaging applications publication-title: J. Phys. Chem. C – volume: 37 start-page: 791 year: 2019 end-page: 805 ident: bib0046 article-title: Recent progress of energy transfer and luminescence intensity boosting mechanism in Nd publication-title: J. Rare Earth – volume: 26 year: 2015 ident: bib0075 article-title: Plasmonic enhancement of the upconversion fluorescence in YVO publication-title: Nanotechnology – volume: 9 start-page: 2162 year: 2017 end-page: 2171 ident: bib0113 article-title: Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications publication-title: Nanoscale – volume: 10 start-page: 685 year: 2018 end-page: 702 ident: bib0063 article-title: Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect publication-title: NPG Asia Mater. – volume: 8 start-page: 2439 year: 2014 end-page: 2455 ident: bib0150 article-title: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles publication-title: ACS Nano – volume: 34 start-page: 469 year: 2016 ident: bib0158 article-title: Application of handheld confocal microscopy for skin cancer diagnosis: advantages and limitations compared with the wide-probe confocal publication-title: Dermatol. Clin. – volume: 222 year: 2021 ident: bib0018 article-title: The degradation regulation of 3D printed scaffolds for promotion of osteogenesis and publication-title: Compos Part B Eng – volume: 11 start-page: 10644 year: 2017 end-page: 10653 ident: bib0061 article-title: Perspectives for upconverting nanoparticles publication-title: ACS Nano – volume: 452 year: 2022 ident: bib0171 article-title: Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases publication-title: Coordin. Chem. Rev. – volume: 217 year: 2020 ident: bib0106 article-title: Fabrication and characterization of luminescent Pr publication-title: J. Lumin. – volume: 97 start-page: 204 year: 2016 end-page: 236 ident: bib0135 article-title: Hyaluronic acid for anticancer drug and nucleic acid delivery publication-title: Adv. Drug Deliv. Rev. – volume: 215 year: 2021 ident: bib0011 article-title: Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair publication-title: Compos. Part B Eng. – volume: 135 start-page: 1438 year: 2013 end-page: 1444 ident: bib0152 article-title: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency publication-title: J. Am. Chem. Soc. – volume: 600 start-page: 513 year: 2021 end-page: 529 ident: bib0048 article-title: Synergistic upconversion photodynamic and photothermal therapy under cold near-infrared excitation publication-title: J. Colloid Interface Sci. – volume: 192 start-page: 902 year: 2017 end-page: 909 ident: bib0107 article-title: Sol-gel synthesis of biocompatible Eu publication-title: J. Lumin. – volume: 17 start-page: 211 year: 2011 end-page: U105 ident: bib0136 article-title: The microrna MIR-34A inhibits prostate cancer stem cells and metastasis by directly repressing CD44 publication-title: Nat. Med. – volume: 105 year: 2019 ident: bib0081 article-title: Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment publication-title: Mater. Sci. Eng. C Mater. – volume: 81 start-page: 570 year: 2011 end-page: 577 ident: bib0178 article-title: Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate schiff base ligand publication-title: Spectrochim. Acta A – volume: 9 start-page: 7591 year: 2013 end-page: 7621 ident: bib0077 article-title: Synthesis methods for nanosized hydroxyapatite with diverse structures publication-title: Acta Biomater. – volume: 16 start-page: 493 year: 2020 end-page: 503 ident: bib0088 article-title: studies of Ce-doped hydroxyapatite synthesized by sol–gel method for biomedical applications publication-title: J. Pharm. Innov. – volume: 38 start-page: 451 year: 2020 end-page: 463 ident: bib0117 article-title: Recent progress in NIR-II emitting lanthanide-based nanoparticles and their biological applications publication-title: J. Rare Earth – volume: 12 start-page: 175 year: 2015 end-page: 183 ident: bib0130 article-title: Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln publication-title: Cancer Biol. Med. – volume: 28 start-page: 4600 year: 2007 end-page: 4607 ident: bib0147 article-title: Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential publication-title: Biomaterials – volume: 6 start-page: 2173 year: 2021 end-page: 2186 ident: bib0010 article-title: High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury publication-title: Bioact. Mater. – volume: 24 start-page: 1 year: 2021 end-page: 9 ident: bib0008 article-title: Nanofibrous biologically soluble scaffolds as an effective drug delivery system publication-title: C.R. Chim. – volume: 99 start-page: 1067 year: 2019 end-page: 1074 ident: bib0073 article-title: A facile hydrothermal synthesis of highly luminescent NaYF:Yb/Er upconversion nanoparticles and their biomonitoring capability publication-title: Mat. Sci. Eng. C Mater. – volume: 46 start-page: 29249 year: 2020 end-page: 29260 ident: bib0026 article-title: Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications publication-title: Ceram. Int. – volume: 37 start-page: e290 year: 2021 end-page: e299 ident: bib0012 article-title: Nano-structured hydroxyapatite and titanium dioxide enriching PENTA/UDMA adhesive as aesthetic coating for tooth enamel publication-title: Dent. Mater. – volume: 17 start-page: 2809 year: 2017 end-page: 2815 ident: bib0091 article-title: Growth mechanism of surfactant-free size-controlled luminescent hydroxyapatite nanocrystallites publication-title: Cryst. Growth Des. – volume: 42 start-page: 9 year: 2016 end-page: 34 ident: bib0092 article-title: Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications publication-title: Ceram. Int. – volume: 165 start-page: 161 year: 2017 end-page: 166 ident: bib0154 article-title: Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging publication-title: Talanta – volume: 9 start-page: 6006 year: 2021 end-page: 6016 ident: bib0019 article-title: A novel theranostic nanoplatform for imaging-guided chemo-photothermal therapy in oral squamous cell carcinoma publication-title: J. Mater. Chem. B – volume: 81 start-page: 422 year: 2017 end-page: 431 ident: bib0090 article-title: Luminomagnetic Eu publication-title: Mat. Sci. Eng. C Mater. – volume: 59 start-page: 4494 year: 2013 end-page: 4501 ident: bib0128 article-title: Fluorescent hydroxyapatite-loaded biodegradable polymer nanoparticles with folate decoration for targeted imaging publication-title: Aiche J. – volume: 6 start-page: 3515 year: 2018 end-page: 3521 ident: bib0095 article-title: Engineering photoluminescent and magnetic lamellar hydroxyapatite by facile one-step Se/Gd dual-doping publication-title: J. Mater. Chem. B – volume: 73 start-page: 373 year: 2017 end-page: 380 ident: bib0131 article-title: A transferrin variant as the targeting ligand for polymeric nanoparticles incorporated in 3-D PLGA porous scaffolds publication-title: Mat. Sci. Eng. C Mater. – volume: 689 start-page: 525 year: 2016 end-page: 532 ident: bib0125 article-title: Microwave assisted synthesis and characterizations of near infrared emitting Yb/Er doped fluorapatite nanoparticles publication-title: J. Alloy. Compd. – volume: 9 start-page: 8422 year: 2013 end-page: 8432 ident: bib0085 article-title: A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications publication-title: Acta Biomater. – volume: 63 start-page: 733 year: 2015 end-page: 742 ident: bib0159 article-title: Understanding liver immunology using intravital microscopy publication-title: J. Hepatol. – volume: 115 start-page: 395 year: 2015 end-page: 465 ident: bib0041 article-title: Upconversion luminescent materials: advances and applications publication-title: Chem. Rev. – volume: 15 start-page: 3442 issue: 17 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0065 article-title: Controlled synthesis and enhanced luminescence of europium-doped fluorine-substituted hydroxyapatite nanoparticles publication-title: CrystEngComm doi: 10.1039/c3ce26973f – volume: 14 start-page: 1122 issue: 6 year: 2003 ident: 10.1016/j.actbio.2022.06.006_bib0108 article-title: Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery publication-title: Bioconjugate Chem. doi: 10.1021/bc034125f – volume: 6 start-page: 2173 issue: 7 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0010 article-title: High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury publication-title: Bioact. Mater. – volume: 83 start-page: 3431 issue: 9 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0053 article-title: Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields publication-title: Anal. Chem. doi: 10.1021/ac2000303 – volume: 115 start-page: 18538 issue: 38 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0110 article-title: Biocompatible fluorescent hydroxyapatite: Synthesis and live cell imaging applications publication-title: J. Phys. Chem. C doi: 10.1021/jp206843w – volume: 8 start-page: 11267 issue: 1 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0021 article-title: Investigation on anti-autofluorescence, osteogenesis and long-term tracking of HA-based upconversion material publication-title: Sci. Rep. doi: 10.1038/s41598-018-29539-8 – volume: 11 start-page: 1388 issue: 9 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0064 article-title: Multifunctionality of nanosized calcium apatite dual-doped with Li+/Eu3+ ions related to cell culture studies and cytotoxicity evaluation in vitro publication-title: Biomolecules doi: 10.3390/biom11091388 – volume: 44 start-page: 16632 issue: 14 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0175 article-title: Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: Fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.06.090 – volume: 8 start-page: 10212 issue: 16 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0097 article-title: Luminescence enhanced Eu3+/Gd3+ co-doped hydroxyapatite nanocrystals as imaging agents in vitro and in vivo publication-title: ACS Appl. Mater Int. doi: 10.1021/acsami.6b01814 – volume: 8 start-page: 27458 issue: 41 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0043 article-title: Yb3+/Ho3+ co-doped apatite upconversion nanoparticles to distinguish implanted material from bone tissue publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.6b05514 – volume: 89 start-page: 764 issue: 3 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0093 article-title: Structural characterization and antibacterial activity of hydroxyapatite synthesized via sol-gel method using glutinous rice as a template publication-title: J. Sol Gel Sci. Technol. doi: 10.1007/s10971-018-4910-9 – volume: 35 start-page: 3348 issue: 10 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0170 article-title: Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.064 – volume: 155 start-page: 233 issue: 3-4 year: 1999 ident: 10.1016/j.actbio.2022.06.006_bib0013 article-title: Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions publication-title: Chem. Geol. doi: 10.1016/S0009-2541(98)00169-7 – volume: 7 start-page: 3066 issue: 19 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0174 article-title: La-doped biomimetic scaffolds facilitate bone remodelling by synchronizing osteointegration and phagocytic activity of macrophages publication-title: J. Mater. Chem. B doi: 10.1039/C8TB03244K – volume: 92 start-page: 49 issue: 1-2 year: 2003 ident: 10.1016/j.actbio.2022.06.006_bib0133 article-title: Controlled targeting of liposomal doxorubicin via the folate receptor in vitro publication-title: J. Control. Release doi: 10.1016/S0168-3659(03)00295-5 – volume: 114 start-page: 5161 issue: 10 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0118 article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics publication-title: Chem. Rev. doi: 10.1021/cr400425h – volume: 47 start-page: 8538 issue: 26 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0155 article-title: Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF4 nanoparticles publication-title: Dalton Trans. doi: 10.1039/C8DT00258D – volume: 6 start-page: 3515 issue: 21 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0095 article-title: Engineering photoluminescent and magnetic lamellar hydroxyapatite by facile one-step Se/Gd dual-doping publication-title: J. Mater. Chem. B doi: 10.1039/C8TB00658J – volume: 46 start-page: 29249 issue: 18 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0026 article-title: Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.099 – volume: 33 issue: 14 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0122 article-title: Beyond the visible: bioinspired infrared adaptive materials publication-title: Adv. Mater. – volume: 109 start-page: 821 issue: 6 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0102 article-title: Apatite matrix substituted with biologically essential rare earth elements as an artificial hard tissue substitute: systematic physicochemical and biological evaluation publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.37069 – volume: 131 start-page: 555 issue: 1 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0007 article-title: Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.07.016 – volume: 34 start-page: 7143 issue: 29 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0153 article-title: Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared in vivo imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.077 – volume: 165 start-page: 161 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0154 article-title: Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging publication-title: Talanta doi: 10.1016/j.talanta.2016.12.048 – volume: 70 start-page: 889 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0138 article-title: Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: a too simplistic explanation that does not take into account the nanoparticle protein corona publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2016.09.016 – volume: 9 issue: 12 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0060 article-title: Hydrothermal synthesis and green up-conversion luminescence of Yb3+ and Ho3+ co-doped SrGd2(WO4)2(MoO4)2 nanocrystal publication-title: AIP Adv. doi: 10.1063/1.5113667 – volume: 55 start-page: 1164 issue: 3 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0074 article-title: Synthesis of 10 nm β- NaYF4:Yb,Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores publication-title: Angew. Chem. doi: 10.1002/anie.201508838 – volume: 36 start-page: e15 issue: 1 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0080 article-title: Composite resin reinforced with fluorescent europium-doped hydroxyapatite nanowires for in-situ characterization publication-title: Dent. Mater. doi: 10.1016/j.dental.2019.11.010 – volume: 49 start-page: 12327 issue: 35 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0164 article-title: Controllable synthesis of rare earth (Gd3+,Tm3+) doped prussian blue for multimode imaging guided synergistic treatment publication-title: Dalton Trans. doi: 10.1039/D0DT02152K – volume: 749 start-page: 939 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0165 article-title: Controllable synthesis of up-conversion nanoparticles UCNPs@MIL-PEG for pH-responsive drug delivery and potential up-conversion luminescence/magnetic resonance dual-mode imaging publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.03.355 – volume: 600 start-page: 513 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0048 article-title: Synergistic upconversion photodynamic and photothermal therapy under cold near-infrared excitation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.05.017 – volume: 167 start-page: 145 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0124 article-title: A novel 1540nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.01.002 – volume: 9 start-page: 2162 issue: 6 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0113 article-title: Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications publication-title: Nanoscale doi: 10.1039/C6NR05983J – volume: 83 start-page: 184 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0099 article-title: Facile preparation of Eu3+ and F− co-doped luminescent hydroxyapatite polymer composites via the photo-RAFT polymerization publication-title: J. Taiwan Inst. Chem. E doi: 10.1016/j.jtice.2017.12.006 – volume: 528 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0105 article-title: Facile synthesis of a neodymium doped metal organic frame modified antibacterial material and corrosion resistant coating publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2021.120599 – volume: 97 start-page: 204 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0135 article-title: Hyaluronic acid for anticancer drug and nucleic acid delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.11.011 – volume: 5 start-page: eaay6484 issue: 11 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0016 article-title: In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite publication-title: Sci. Adv. doi: 10.1126/sciadv.aay6484 – volume: 34 start-page: 23 issue: 1 year: 2006 ident: 10.1016/j.actbio.2022.06.006_bib0143 article-title: Superparamagnetic iron oxide nanoparticle probes for molecular imaging publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-9002-7 – volume: 279 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0014 article-title: A review of reagents applied to rare-earth mineral flotation publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2020.102142 – volume: 378 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0084 article-title: Preparation of hydrophobic La2Mo2O9 ceramics with antibacterial and antiviral properties publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.05.003 – volume: 11 start-page: 15958 issue: 34 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0101 article-title: An oral drug delivery system with programmed drug release and imaging properties for orthotopic colon cancer therapy publication-title: Nanoscale doi: 10.1039/C9NR03802G – volume: 581 start-page: 21 issue: Pt A year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0024 article-title: Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for in vitro bioimaging publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.07.083 – volume: 10 start-page: 171 issue: 1 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0109 article-title: Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors publication-title: Biotechnol. J. doi: 10.1002/biot.201400404 – volume: 452 year: 2022 ident: 10.1016/j.actbio.2022.06.006_bib0171 article-title: Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2021.214309 – volume: 81 start-page: 422 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0090 article-title: Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2017.08.032 – volume: 54 start-page: e13105 issue: 9 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0083 article-title: Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment publication-title: Cell Prolif. doi: 10.1111/cpr.13105 – volume: 25 start-page: 2641 issue: 19 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0167 article-title: Nano-sized CT contrast agents publication-title: Adv. Mater. doi: 10.1002/adma.201300081 – volume: 3 start-page: 1655 issue: 8 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0001 article-title: Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility publication-title: J. Mater. Chem. B doi: 10.1039/C4TB02085E – volume: 31 start-page: 1927 issue: 6 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0023 article-title: Eggshell derived europium doped hydroxyapatite nanoparticles for cell imaging application publication-title: J. Fluoresc. doi: 10.1007/s10895-021-02814-0 – volume: 13 start-page: 9978 issue: 22 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0047 article-title: A new role of Yb3+-an energy reservoir for lanthanide upconversion luminescence publication-title: Nanoscale doi: 10.1039/D0NR08205H – volume: 5 start-page: 854 issue: 2 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0098 article-title: Effect of core diameter, surface coating, and peg chain length on the biodistribution of persistent luminescence nanoparticles in mice publication-title: ACS Nano doi: 10.1021/nn101937h – volume: 24 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0008 article-title: Nanofibrous biologically soluble scaffolds as an effective drug delivery system publication-title: C.R. Chim. doi: 10.5802/crchim.58 – volume: 48 start-page: 22 issue: 1 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0116 article-title: Optical nano-agents in the second near-infrared window for biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00494C – volume: 8 start-page: 1007 issue: 6 year: 2012 ident: 10.1016/j.actbio.2022.06.006_bib0169 article-title: Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe publication-title: Nanomedicine doi: 10.1016/j.nano.2011.10.013 – volume: 215 issue: 15 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0011 article-title: Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair publication-title: Compos. Part B Eng. – volume: 176 start-page: 14 issue: 1 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0089 article-title: Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions publication-title: Mater. Sci. Eng. B Adv. doi: 10.1016/j.mseb.2010.08.006 – volume: 17 start-page: 211 issue: 2 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0136 article-title: The microrna MIR-34A inhibits prostate cancer stem cells and metastasis by directly repressing CD44 publication-title: Nat. Med. doi: 10.1038/nm.2284 – volume: 40 start-page: 2613 issue: 2 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0033 article-title: Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.10.070 – volume: 125 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0054 article-title: Fabrication of Nd3+ and Yb3+ doped NIR emitting nano fluorescent probe: a candidate for bioimaging applications publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2021.112095 – volume: 182 start-page: 1567 issue: 9-10 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0022 article-title: Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging publication-title: Microchim. Acta doi: 10.1007/s00604-015-1504-x – volume: 6 start-page: 6047 issue: 38 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0045 article-title: A ternary doped single matrix material with dual functions of bone repair and multimodal tracking for applications in orthopedics and dentistry publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02041H – volume: 42 start-page: 9 issue: 1 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0092 article-title: Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.08.144 – volume: 3 start-page: 144 issue: 2 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0037 article-title: Effect of calcinations temperature on the luminescence intensity and fluorescent lifetime of Tb3+-doped hydroxyapatite (Tb-HA) nanocrystallines publication-title: J. Materiomics doi: 10.1016/j.jmat.2016.11.004 – volume: 7 start-page: 680 issue: 8 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0160 article-title: Magically magnetic gadolinium publication-title: Nat. Chem. doi: 10.1038/nchem.2287 – volume: 12 start-page: 1843 issue: 5 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0121 article-title: All-in-one mitochondria-targeted NIR-II fluorophores for cancer therapy and imaging publication-title: Chem. Sci. doi: 10.1039/D0SC04727A – volume: 278 start-page: 1429 issue: 9 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0137 article-title: Hyaluronan-CD44 interactions as potential targets for cancer therapy publication-title: FEBS J. doi: 10.1111/j.1742-4658.2011.08071.x – volume: 117 start-page: 901 issue: 3 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0017 article-title: Nanomaterials for in vivo imaging publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00073 – volume: 7 start-page: 1322 issue: 10 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0145 article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials publication-title: Small doi: 10.1002/smll.201100001 – volume: 28 start-page: 4600 issue: 31 year: 2007 ident: 10.1016/j.actbio.2022.06.006_bib0147 article-title: Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.029 – volume: 10 start-page: 685 issue: 8 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0063 article-title: Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0065-y – volume: 97 start-page: 466 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0030 article-title: Novel photoluminescence properties of Eu3+ doped chlorapatite phosphor synthesized via sol-gel method publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2017.09.043 – volume: 114 start-page: 4496 issue: 8 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0162 article-title: Lanthanide probes for bioresponsive imaging publication-title: Chem. Rev. doi: 10.1021/cr400477t – volume: 81 start-page: 570 issue: 1 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0178 article-title: Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate schiff base ligand publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2011.06.052 – volume: 8 start-page: 2439 issue: 3 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0150 article-title: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles publication-title: ACS Nano doi: 10.1021/nn406018q – volume: 57 start-page: 13739 issue: 21 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0039 article-title: Intracellular interaction of hydroxyapatite-based nanocrystals with uniform shape and traceable fluorescence publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02285 – volume: 22 start-page: 368 issue: 12 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0100 article-title: Multifunctional hybrid nanosystems based on mesoporous silica and hydroxyapatite nanoparticles applied as potential nanocarriers for theranostic applications publication-title: J. Nanopart. Res. doi: 10.1007/s11051-020-05105-0 – volume: 217 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0106 article-title: Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents publication-title: J. Lumin. doi: 10.1016/j.jlumin.2019.116757 – volume: 26 issue: 14 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0075 article-title: Plasmonic enhancement of the upconversion fluorescence in YVO4:Yb³⁺, Er³⁺ nanocrystals based on the porous Ag film publication-title: Nanotechnology doi: 10.1088/0957-4484/26/14/145602 – volume: 8 start-page: 2107 issue: 10 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0096 article-title: Hyaluronan-directed fabrication of co-doped hydroxyapatite as a dual-modal probe for tumor-specific bioimaging publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02787D – volume: 9 start-page: 9116 issue: 44 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0120 article-title: Synergistic strategy of rare-earth doped nanoparticles for NIR-II biomedical imaging publication-title: J. Mater. Chem. B doi: 10.1039/D1TB01640G – volume: 291 issue: 4 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0002 article-title: Hydroxyapatite with magnetic core: synthesis methods, properties, adsorption and medical applications publication-title: Adv. Colloid Interface Sci. – volume: 11 start-page: 1191 issue: 8 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0082 article-title: Synthesis and characterization of photoluminescent Ce(III) and Ce(Iv) substituted hydroxyapatite nanomaterials by co-precipitation method: cytotoxicity and biocompatibility evaluation publication-title: Nanomaterials doi: 10.3390/nano11081911 – volume: 29 start-page: 1985 issue: 6 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0056 article-title: Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid) publication-title: Langmuir doi: 10.1021/la304534f – volume: 17 start-page: 2809 issue: 5 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0091 article-title: Growth mechanism of surfactant-free size-controlled luminescent hydroxyapatite nanocrystallites publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b00258 – volume: 9 start-page: 18153 issue: 46 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0042 article-title: Advanced sensing, imaging, and therapy nanoplatforms based on Nd3+-doped nanoparticle composites exhibiting upconversion induced by 808 nm near-infrared light publication-title: Nanoscale doi: 10.1039/C7NR06693G – volume: 185 start-page: 180 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0123 article-title: Optical characterization of infrared emitting Nd3+ doped hydroxyapatite nanoparticles prepared by hydrothermal method publication-title: J. Lumin. doi: 10.1016/j.jlumin.2017.01.005 – volume: 275 start-page: 152 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0104 article-title: Hierarchically-organized, well-dispersed hydroxyapatite-coated magnetic carbon with combined organics and inorganics removal properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.04.026 – volume: 139 start-page: 2876 issue: 8 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0148 article-title: Supramolecular “trojan horse” for nuclear delivery of dual anticancer drugs publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12322 – volume: 47 start-page: 28122 issue: 20 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0087 article-title: A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.07.100 – volume: 2 start-page: 1194 issue: 3 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0172 article-title: Gadolinium-doped hydroxyapatite nanorods as T1 contrast agents and drug carriers for breast cancer therapy publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02036 – volume: 7 start-page: 926 issue: 6 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0111 article-title: Facile synthesis of hollow mesoporous hydroxyapatite nanoparticles for intracellular bio-imaging publication-title: Curr. Nanosci. doi: 10.2174/157341311798220763 – volume: 50 start-page: 8669 issue: 15 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0144 article-title: Inorganic nanomaterials with rapid clearance for biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00461H – volume: 38 start-page: 451 issue: 5 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0117 article-title: Recent progress in NIR-II emitting lanthanide-based nanoparticles and their biological applications publication-title: J. Rare Earth doi: 10.1016/j.jre.2020.01.021 – volume: 22 start-page: 10942 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0009 article-title: Multifunctional SDF-1-loaded hydroxyapatite/polylactic acid membranes promote cell recruitment, immunomodulation, angiogenesis, and osteogenesis for biomimetic bone regeneration publication-title: Appl. Mater. Today – volume: 192 start-page: 902 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0107 article-title: Sol-gel synthesis of biocompatible Eu3+/Gd3+ co-doped calcium phosphate nanocrystals for cell bioimaging publication-title: J. Lumin. doi: 10.1016/j.jlumin.2017.08.033 – volume: 6 issue: 22 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0068 article-title: Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications publication-title: Adv. Sci. doi: 10.1002/advs.201901358 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0078 article-title: Rare earth doped apatite nanomaterials for biological application publication-title: J. Nanomater. doi: 10.1155/2015/705390 – volume: 59 start-page: 4494 issue: 12 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0128 article-title: Fluorescent hydroxyapatite-loaded biodegradable polymer nanoparticles with folate decoration for targeted imaging publication-title: Aiche J. doi: 10.1002/aic.14210 – volume: 29 start-page: 90 issue: 2 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0179 article-title: In vitro antimicrobial and antioxidant evaluation of rare earth metal schiff base complexes derived from threonine publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.3250 – volume: 48 start-page: 541 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0163 article-title: Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2014.12.033 – volume: 47 start-page: 34657 issue: 24 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0062 article-title: Effects of doping content and crystallite size on luminescence properties of Eu3+doped fluorapatites obtained from natural waste publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.09.004 – volume: 21 start-page: 1250 issue: 4 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0069 article-title: Synthesis of fluorescent core-shell hydroxyapatite nanoparticles publication-title: J. Mater. Chem. doi: 10.1039/C0JM02264K – volume: 69 start-page: 956 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0052 article-title: Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2016.08.002 – volume: 6 start-page: 12 issue: 1 year: 2010 ident: 10.1016/j.actbio.2022.06.006_bib0139 article-title: Effect of surface properties on nanoparticle-cell interactions publication-title: Small doi: 10.1002/smll.200901158 – volume: 7 start-page: 3049 issue: 17 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0059 article-title: A systematic study of the optical properties of mononuclear hybrid organo–inorganic lanthanoid complexes publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00232A – volume: 225 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0028 article-title: Surfactant-assisted microwave synthesis of luminescent/magnetic bifunctional hydroxyapatite nanorods for dual-model imaging publication-title: Optik doi: 10.1016/j.ijleo.2020.165564 – volume: 185 start-page: 271 issue: 5 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0035 article-title: Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells publication-title: Mikrochim. Acta doi: 10.1007/s00604-018-2801-y – volume: 15 start-page: 331 issue: 4 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0149 article-title: Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0643-3 – volume: 388 start-page: 248 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0173 article-title: Lanthanides and tissue engineering strategies for bone regeneration publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.03.003 – volume: 18 start-page: 3447 issue: 19 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0066 article-title: Effect of lithium substitution on the charge compensation, structural and luminescence properties of nanocrystalline Ca10(PO4)6F2 activated with Eu3+ ions publication-title: CrystEngComm doi: 10.1039/C6CE00320F – volume: 1530 start-page: 13 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0140 article-title: Improved targeting of cancers with nanotherapeutics publication-title: Meth. Mol. Biol. doi: 10.1007/978-1-4939-6646-2_2 – volume: 11 start-page: 2442 issue: 9 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0032 article-title: Influence of terbium ions and their concentration on the photoluminescence properties of hydroxyapatite for biomedical applications publication-title: Nanomaterials (Basel) doi: 10.3390/nano11092442 – volume: 16 start-page: 493 issue: 3 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0088 article-title: In vitro studies of Ce-doped hydroxyapatite synthesized by sol–gel method for biomedical applications publication-title: J. Pharm. Innov. doi: 10.1007/s12247-020-09472-y – volume: 10 start-page: 172 issue: 1 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0020 article-title: Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence publication-title: Chem. Sci. doi: 10.1039/C8SC03806F – volume: 9 start-page: 8422 issue: 9 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0085 article-title: A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.05.033 – volume: 34 start-page: 469 issue: 4 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0158 article-title: Application of handheld confocal microscopy for skin cancer diagnosis: advantages and limitations compared with the wide-probe confocal publication-title: Dermatol. Clin. doi: 10.1016/j.det.2016.05.009 – volume: 4 start-page: 27039 issue: 51 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0067 article-title: Role of Li+ ion in the luminescence enhancement of lanthanide ions: favorable modifications in host matrices publication-title: RSV Adv. doi: 10.1039/C4RA01055H – volume: 3 start-page: 524 issue: 4 year: 2012 ident: 10.1016/j.actbio.2022.06.006_bib0166 article-title: NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201664h – volume: 7 start-page: 2769 issue: 7 year: 2011 ident: 10.1016/j.actbio.2022.06.006_bib0006 article-title: Nanoscale hydroxyapatite particles for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.03.019 – volume: 115 start-page: 395 issue: 1 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0041 article-title: Upconversion luminescent materials: advances and applications publication-title: Chem. Rev. doi: 10.1021/cr400478f – volume: 62 start-page: 90 issue: 2 year: 2010 ident: 10.1016/j.actbio.2022.06.006_bib0126 article-title: Targeting nanoparticles to cancer publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2010.03.005 – volume: 73 start-page: 373 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0131 article-title: A transferrin variant as the targeting ligand for polymeric nanoparticles incorporated in 3-D PLGA porous scaffolds publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2016.12.091 – volume: 245 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0050 article-title: Multicomponent nanocrystals with anti-stokes luminescence as contrast agents for modern imaging techniques publication-title: Adv. Colloid Interface doi: 10.1016/j.cis.2017.05.006 – volume: 11 start-page: 10644 issue: 11 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0061 article-title: Perspectives for upconverting nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.7b07120 – volume: 3 start-page: 241 issue: 1 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0025 article-title: Highly luminescent hydroxyapatite nanoparticles hybridized with citric acid for their bifunctional cell-labeling and cytostatic suppression properties publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01933 – volume: 87 start-page: 991 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0031 article-title: Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.09.070 – volume: 52 start-page: 367 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0071 article-title: A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.09.013 – volume: 105 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0081 article-title: Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment publication-title: Mater. Sci. Eng. C Mater. doi: 10.1016/j.msec.2019.110097 – volume: 9 start-page: 7591 issue: 8 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0077 article-title: Synthesis methods for nanosized hydroxyapatite with diverse structures publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.04.012 – volume: 41 start-page: 147 issue: 2 year: 2000 ident: 10.1016/j.actbio.2022.06.006_bib0134 article-title: Targeted drug delivery via the folate receptor publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(99)00062-9 – volume: 99 start-page: 1067 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0073 article-title: A facile hydrothermal synthesis of highly luminescent NaYF:Yb/Er upconversion nanoparticles and their biomonitoring capability publication-title: Mat. Sci. Eng. C Mater. doi: 10.1016/j.msec.2019.02.046 – volume: 35 start-page: 15287 issue: 47 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0094 article-title: BMP-2-loaded HAP:Ln3+ (Ln = Yb, Er, Gd) nanorods with dual-mode imaging for efficient MC3T3-E1 cell differentiation regulation publication-title: Langmuir doi: 10.1021/acs.langmuir.9b02824 – volume: 31 start-page: 148 issue: 2 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0119 article-title: Targeted zwitterionic near-infrared fluorophores for improved optical imaging publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2468 – volume: 689 start-page: 525 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0125 article-title: Microwave assisted synthesis and characterizations of near infrared emitting Yb/Er doped fluorapatite nanoparticles publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.08.005 – volume: 6 start-page: 14319 issue: 23 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0114 article-title: Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging publication-title: Nanoscale doi: 10.1039/C4NR04473H – volume: 102 start-page: 249 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0115 article-title: Primary thermometers based on sol–gel upconverting Er3+/Yb3+ co-doped yttrium tantalates with high upconversion quantum yield and emission color tunability publication-title: J. Sol Gel Sci. Technol. doi: 10.1007/s10971-021-05673-0 – volume: 10 start-page: 2341 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0142 article-title: The origin of heterogeneous nanoparticle uptake by cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-10112-4 – volume: 183 start-page: 3209 issue: 12 year: 2016 ident: 10.1016/j.actbio.2022.06.006_bib0057 article-title: Fluorescein-labeled fluoroapatite nanocrystals codoped with Yb(III) and Ho(III) for trimodal (downconversion, upconversion and magnetic resonance) imaging of cancer cells publication-title: Microchim. Acta doi: 10.1007/s00604-016-1970-9 – volume: 63 start-page: 733 issue: 3 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0159 article-title: Understanding liver immunology using intravital microscopy publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.05.027 – volume: 44 start-page: 1608 issue: 6 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0051 article-title: Energy transfer in lanthanide upconversion studies for extended optical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00188E – volume: 57 start-page: 8765 issue: 28 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0070 article-title: NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield publication-title: Angew. Chem. doi: 10.1002/anie.201803083 – volume: 12 start-page: 175 issue: 3 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0130 article-title: Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging publication-title: Cancer Biol. Med. – volume: 5 start-page: 1477 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0146 article-title: In vitro interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? publication-title: Beilstein J. Nanotech. doi: 10.3762/bjnano.5.161 – volume: 347 start-page: 48 issue: 15 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0003 article-title: Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.06.009 – volume: 9 start-page: 16305 issue: 1 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0079 article-title: Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging publication-title: Sci. Rep. doi: 10.1038/s41598-019-52885-0 – volume: 135 start-page: 1438 issue: 4 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0152 article-title: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309812z – volume: 29 start-page: 17 issue: 21 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0027 article-title: Ultrasound-assisted synthesis and characterization of heparin-coated Eu3+ doped hydroxyapatite luminescent nanoparticles publication-title: Colloid Interface Sci. doi: 10.1016/j.colcom.2019.01.001 – volume: 11 start-page: 464 issue: 2 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0086 article-title: Quenching of the Eu3+ luminescence by Cu2+ ions in the nanosized hydroxyapatite designed for future bio-detection publication-title: Nanomaterials (Basel) doi: 10.3390/nano11020464 – volume: 33 start-page: 2007 issue: 16 year: 2012 ident: 10.1016/j.actbio.2022.06.006_bib0168 article-title: Contrast-induced kidney injury: mechanisms, risk factors, and prevention publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehr494 – volume: 69 start-page: 1354 issue: 8 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0076 article-title: Hydroxyapatite fibers: a review of synthesis methods publication-title: JOM doi: 10.1007/s11837-017-2427-2 – volume: 5 start-page: 443 issue: 6 year: 1999 ident: 10.1016/j.actbio.2022.06.006_bib0132 article-title: Transferrin as a targeting ligand for liposomes and anticancer drugs publication-title: Curr. Pharm. Des. doi: 10.2174/138161280506230110111312 – volume: 370 start-page: 42 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0177 article-title: Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2018.05.012 – volume: 16 start-page: 1311 issue: 4 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0151 article-title: Protein corona of nanoparticles: distinct proteins regulate the cellular uptake publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00108 – volume: 114 start-page: 2343 issue: 4 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0040 article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications publication-title: Chem. Rev. doi: 10.1021/cr4001594 – volume: 28 issue: 2 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0156 article-title: High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy publication-title: Adv. Funct. Mater. – volume: 9 start-page: e128 issue: 2 year: 2007 ident: 10.1016/j.actbio.2022.06.006_bib0141 article-title: Targeted pharmaceutical nanocarriers for cancer therapy and imaging publication-title: AAPS J. doi: 10.1208/aapsj0902015 – volume: 31 start-page: 2606 issue: 9 year: 2010 ident: 10.1016/j.actbio.2022.06.006_bib0127 article-title: A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.113 – volume: 9 start-page: 26184 issue: 31 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0049 article-title: Multicolor tunable luminescence based on Tb/Eu doping through a facile hydrothermal route publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.7b07172 – volume: 5 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.actbio.2022.06.006_bib0161 article-title: Gadolinium-based contrast agents for magnetic resonance cancer imaging publication-title: WIRES Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1198 – volume: 125 start-page: 78 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0038 article-title: Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.03.151 – volume: 222 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0018 article-title: The degradation regulation of 3D printed scaffolds for promotion of osteogenesis and in vivo tracking publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2021.109084 – volume: 12 start-page: 3977 issue: 6 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0072 article-title: Decoration of upconversion nanocrystals with metal sulfide quantum dots by a universal in situ controlled growth strategy publication-title: Nanoscale doi: 10.1039/C9NR08708G – volume: 4 start-page: 4446 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0176 article-title: Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications publication-title: Sci. Rep. doi: 10.1038/srep04446 – volume: 249 start-page: 321 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0005 article-title: Synthesis of hydroxyapatite for biomedical applications publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2017.04.007 – volume: 37 start-page: e290 issue: 5 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0012 article-title: Nano-structured hydroxyapatite and titanium dioxide enriching PENTA/UDMA adhesive as aesthetic coating for tooth enamel publication-title: Dent. Mater. doi: 10.1016/j.dental.2021.01.019 – volume: 76 start-page: 60 year: 2014 ident: 10.1016/j.actbio.2022.06.006_bib0157 article-title: Targeted multimodal imaging modalities publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2014.07.009 – volume: 9 start-page: 6006 issue: 30 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0019 article-title: A novel theranostic nanoplatform for imaging-guided chemo-photothermal therapy in oral squamous cell carcinoma publication-title: J. Mater. Chem. B doi: 10.1039/D1TB01136G – volume: 37 start-page: 791 issue: 8 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0046 article-title: Recent progress of energy transfer and luminescence intensity boosting mechanism in Nd3+-sensitized upconversion nanoparticles publication-title: J. Rare Earth doi: 10.1016/j.jre.2019.02.001 – volume: 11 start-page: 1831 issue: 7 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0112 article-title: Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane publication-title: Nanomedicine doi: 10.1016/j.nano.2015.04.004 – volume: 22 start-page: 753 issue: 5 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0036 article-title: Synthesis of europium-doped fluorapatite nanorods and their biomedical applications in drug delivery publication-title: Molecules doi: 10.3390/molecules22050753 – volume: 15 start-page: 499 issue: 4 year: 2005 ident: 10.1016/j.actbio.2022.06.006_bib0058 article-title: Preparation, characterization and application of fluorescent terbium complex-doped zirconia nanoparticles publication-title: J. Fluoresc. doi: 10.1007/s10895-005-2823-9 – volume: 30 start-page: 886 issue: 4 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0103 article-title: Development of novel thermal sprayed hydroxyapatite-rare earth (HA-RE) coatings for potential antimicrobial applications in orthopedics publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-021-01154-6 – volume: 15 issue: 31 year: 2019 ident: 10.1016/j.actbio.2022.06.006_bib0015 article-title: Synergistic effects of novel superparamagnetic/upconversion HA material and Ti/magnet implant on biological performance and long-term in vivo tracking publication-title: Small doi: 10.1002/smll.201901617 – volume: 6 start-page: 2658 issue: 9 year: 2021 ident: 10.1016/j.actbio.2022.06.006_bib0044 article-title: Pro-osteogenesis and in vivo tracking investigation of a dental implantation system comprising novel mTi implant and HYH-Fe particles publication-title: Bioact. Mater. – volume: 383 issue: 5 year: 2020 ident: 10.1016/j.actbio.2022.06.006_bib0004 article-title: Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review publication-title: J. Hazard. Mater. – volume: 182 start-page: 1213 issue: 5-6 year: 2015 ident: 10.1016/j.actbio.2022.06.006_bib0129 article-title: Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging publication-title: Microchim. Acta doi: 10.1007/s00604-014-1421-4 – volume: 9 start-page: 25455 issue: 30 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0055 article-title: Luminescent, fire-resistant, and water-proof ultralong hydroxyapatite nanowire-based paper for multimode anticounterfeiting applications publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.7b06835 – volume: 106 start-page: 2191 issue: 6 year: 2018 ident: 10.1016/j.actbio.2022.06.006_bib0029 article-title: In-vitro biocompatibility, bioactivity and photoluminescence properties of Eu3+/Sr2+ dual-doped nano-hydroxyapatite for biomedical applications publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.34023 – volume: 52 start-page: 9990 issue: 17 year: 2017 ident: 10.1016/j.actbio.2022.06.006_bib0034 article-title: Characterization of Tb-doped hydroxyapatite for biomedical applications: optical properties and energy band gap determination publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1201-8 |
SSID | ssj0038128 |
Score | 2.62295 |
SecondaryResourceType | review_article |
Snippet | Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22 |
SubjectTerms | Biomedical applications Hydroxyapatite nanoparticles Imaging Rare earth ions |
Title | Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications |
URI | https://dx.doi.org/10.1016/j.actbio.2022.06.006 https://www.ncbi.nlm.nih.gov/pubmed/35675891 https://www.proquest.com/docview/2674756718 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXOihKqUf21JkJI5Nd9dx7IQbQkXbgri0SNws22OLrWh21WQPXBA_vTNOsqISCKnHRHZiecbzZuQ3M4wdehc9wixkGvQkk4iZGcIwBq6TaZQW1ciHVO3zQs0u5fer4mqDnQy5MESr7G1_Z9OTte7fjPvdHC_n8_EP9KWFJoQWqY4dZZRLqUnLv9ytaR4ISKm_Kg3OaPSQPpc4Xta3bk4pgEKkKp7U9-hxeHrK_UwwdPqKvez9R37cLXGHbYT6NXvxoKrgLrtHVxChhCfqFRoyvogcQ-LAUanbaw6LZQB-fQtEYLFEqG4Dr22N0XNPkjvi56vfRIf3tB30nSWxr0PzmTe3NXqMzbzhtgbe5e6TmPnDi_A37PL068-TWdY3Wsh8XpRtFpULCsBXJVBea3BlNVFOaFAgpIVqIpzHuEQHbV0lRKysK5XXZQTAcAkgf8s260Ud3jMeSxCFsEK5QsgCnZdQQiVjtNPSF7mSI5YP-2t8X4WcmmHcmIFu9st0UjEkFZNYd2rEsvWsZVeF45nxehCd-UebDALFMzMPBkkbPGh0e2LrsFg1RiiMvAqFWD5i7zoVWK8lLyjuqqYf_vu_H9k2PXXUwj222f5ZhU_o7rRuP-nzPts6_nY2u_gLko0CHw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69LDtUHTvdC8N2HFGEtmS7N2KokW6ZrmsBXoTJFFCU2xOMDuH3vbTR8p20QEbCuxqS7YgUvxI6CPJ2EfvokeYhUyDnmYFYmaGMIyB63QWC4tq5EOq9rlU84viy6W83GFHQy4M0Sp729_Z9GSt-yeTfjcnm9Vq8g19aaEJoUWqY6cfsF2qTiVHbPfw9Gy-HAwyYlJqsUrjM5owZNAlmpf1rVtRFqAQqZAntT76O0L9ywNNSHSyz_Z6F5Ifdqt8wnZC_ZQ9vlNY8Bn7hd4goglP7Cu0ZXwdOUbFgaNet1cc1psA_OoGiMNiiVPdBl7bGgPonif3mS-2P4gR72lH6DsbImCH5hNvbmp0GptVw20NvEvfJ0nzu3fhz9nFyfH50Tzrey1kPpdlm0XlggLwVQmU2hpcWU2VExoUiMJCNRXOY2iig7auEiJW1pXK6zICYMQEkL9go3pdh1eMxxKEFFYoJ0Uh0X8JJVRFjHZWepmrYszyYX-N7wuRUz-M72ZgnF2bTiqGpGIS8U6NWXY7a9MV4rhnvB5EZ_5QKINYcc_MD4OkDZ41ukCxdVhvGyMUBl9SIZyP2ctOBW7XkksKvarZwX__9z17OD__ujCL0-XZa_aI3nRMwzds1P7chrfo_bTuXa_dvwFcPgTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+of+Rare+Earth+Doped+Hydroxyapatite+Nanoparticles%3A+Luminescence+Properties%2C+Synthesis+and+Biomedical+Applications&rft.jtitle=Acta+biomaterialia&rft.au=Gu%2C+Mengqin&rft.au=Li%2C+Wei&rft.au=Jiang%2C+Li&rft.au=Li%2C+Xiyu&rft.date=2022-08-01&rft.eissn=1878-7568&rft_id=info:doi/10.1016%2Fj.actbio.2022.06.006&rft_id=info%3Apmid%2F35675891&rft.externalDocID=35675891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |