An adaptive registration algorithm for zebrafish larval brain images

•Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive Demons.•Solution can handle varying degrees of freedom at different regions of a Zebrafish larva.•Has widespread applications in developmental neurology. Ze...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 216; p. 106658
Main Authors Deb, Shoureen, Tiso, Natascia, Grisan, Enrico, Chowdhury, Ananda S.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive Demons.•Solution can handle varying degrees of freedom at different regions of a Zebrafish larva.•Has widespread applications in developmental neurology. Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities. In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient. Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method. Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.
AbstractList Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities. In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient. Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method. Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.
•Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive Demons.•Solution can handle varying degrees of freedom at different regions of a Zebrafish larva.•Has widespread applications in developmental neurology. Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities. In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient. Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method. Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.
Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities.BACKGROUND AND OBJECTIVEZebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities.In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient.METHODSIn this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient.Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method.RESULTSResults Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method.Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.CONCLUSIONSOur adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.
ArticleNumber 106658
Author Tiso, Natascia
Deb, Shoureen
Chowdhury, Ananda S.
Grisan, Enrico
Author_xml – sequence: 1
  givenname: Shoureen
  surname: Deb
  fullname: Deb, Shoureen
  organization: Department of Electronics and Telecommunication Engineering, Jadavpur Univeristy, Kolkata, India
– sequence: 2
  givenname: Natascia
  surname: Tiso
  fullname: Tiso, Natascia
  organization: Department of Biology, University of Padova, Italy
– sequence: 3
  givenname: Enrico
  surname: Grisan
  fullname: Grisan, Enrico
  organization: Department of Information Engineering, University of Padova, Italy
– sequence: 4
  givenname: Ananda S.
  surname: Chowdhury
  fullname: Chowdhury, Ananda S.
  email: as.chowdhury@jadavpuruniversity.in
  organization: Department of Electronics and Telecommunication Engineering, Jadavpur Univeristy, Kolkata, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35114462$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtPAyEYRYnR2Fb9Ay7MLN1MZRigYNyY-kxM3OiaMPDRUudRYdqk_nppqi5c6Ipwcw7h3hHab7sWEDot8LjABb9YjE2zrMYEE5ICzpnYQ8NCTEg-YZzto2GCZE44ngzQKMYFxpgwxg_RoGRFQSknQ3Rz3Wba6mXv15AFmPnYB937LqX1rAu-nzeZ60L2AVXQzsd5Vuuw1nWWrr7NfKNnEI_RgdN1hJOv8wi93t2-TB_yp-f7x-n1U25KJvrcUSyoYZVzGKCsmKiMqKQm0hhLpZzYSjIjLDBnyxTwkhlHqRaSUkyJtuUROt-9uwzd-wpirxofDdS1bqFbRUV4Koul4DKhZ1_oqmrAqmVIXw0b9d08AWQHmNDFGMD9IAVW23nVQm3nVdt51W7eJF3tJEgt1x6CisZDa8D6AKZXtvN_65e_dFP71htdv8HmP_kTNvKWPQ
Cites_doi 10.1109/ICPR.2002.1047997
10.1016/j.media.2007.06.004
10.1016/j.neuron.2019.04.034
10.1109/42.845174
10.1016/j.neubiorev.2014.03.003
10.1016/S1361-8415(98)80022-4
10.1016/S0004-3702(01)00058-3
10.1016/j.patrec.2018.06.028
10.1109/2945.556502
10.1038/nmeth.2076
10.1109/42.796284
10.1016/j.neuroimage.2017.07.008
10.1109/TMI.2010.2049497
10.1109/CVPR42600.2020.00499
10.1016/j.cagd.2019.04.014
10.1109/TBME.2018.2885436
10.1088/0031-9155/55/1/012
10.3389/fninf.2014.00044
10.1109/JBHI.2020.3019271
10.1109/TMI.2019.2897538
10.1016/j.cmpb.2020.105432
10.1016/j.neuroimage.2017.02.055
10.1016/j.neuroimage.2007.07.007
10.1109/TBME.2015.2503122
10.1109/TNNLS.2021.3053274
10.1016/j.patcog.2019.07.001
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2022.106658
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 35114462
10_1016_j_cmpb_2022_106658
S0169260722000438
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c358t-f4084c5bff0ee3b58bc8b9a29ccd4997db95c8de5fd3d49635cf44a8944042ad3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Fri Jul 11 01:16:58 EDT 2025
Wed Feb 19 02:26:06 EST 2025
Tue Jul 01 02:41:14 EDT 2025
Fri Feb 23 02:40:12 EST 2024
Tue Aug 26 16:33:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords FFD-Demons synergism
Zebrafish imaging
Adaptive registration
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-f4084c5bff0ee3b58bc8b9a29ccd4997db95c8de5fd3d49635cf44a8944042ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35114462
PQID 2626009869
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2626009869
pubmed_primary_35114462
crossref_primary_10_1016_j_cmpb_2022_106658
elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_106658
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_106658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
2022-Apr
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lotz (bib0031) 2015; 63
Yang, Kwitt, Styner, Niethammer (bib0020) 2017; 158
Zhang, Liao, Dalca, Turk, Luo, Grant, Golland (bib0015) 2017
Gu, Pan, Liang (bib0022) 2010; 55
Lee, Wolberg, Chwa, Shin (bib0009) 1996; 2
Wen, Liu, Lin, Wang, Hou, Huang, Pan, Du (bib0037) 2020; 192
Ghosal, Banerjee, Tiso, Grisan, Chowdhury (bib0002) 2017
Sokooti, Berendsen, Lelieveldt, Isgum, Staring, de Vos (bib0019) 2017
Thirion (bib0007) 1998; 2
Krebs, Mansi, Delingette, Zhang, Ghesu, Miao, Maier, Ayache, Liao, Kamen (bib0017) 2017
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib0006) 1999; 18
Tambalo, Mitter, Wilkinson (bib0034) 2020; 147
Styner, Brechbuehler, Szkely, Gerig (bib0005) 2000; 19
Zebiat (bib0003) 2013; 14
Kajihara, Funatomi, Makishima, Aoto, Kubo, Yamada, Mukaigawa (bib0026) 2019; 96
Yeo, Sabuncu, Vercauteren, Holt, Amunts, Zilles, Golland, Fischl (bib0014) 2010; 29
Kunst, Laurell, Mokayes, Kramer, Kubo, Fernandes, Frster, Dal Maschio, Baier (bib0033) 2019; 103
T. Wan, et al., RGB-d point cloud registration based on salient object detection, IEEE Trans. Neural Netw. Learn. Syst. doi
Avants, Tustison, Stauffer, Song, Wu, Gee (bib0038) 2014
Dyke, Lai, Rosin, Tam (bib0025) 2019; 71
Ronneberger (bib0001) 2012; 9
D. Chetverikov, The trimmed iterative closest point algorithm, Object recognition supported by user interaction for service robots 3(3) (2002) 545–548.
Cao, Yang, Zhang, Nie, Kim, Wang, Shen (bib0016) 2017
Rohe, Datar, Heimann, Sermesant, Pennec (bib0018) 2017
He, Yao (bib0027) 2001; 127
Jenett (bib0035) 2020
Blaser, Vira (bib0010) 2014; 42
Tang, Yap, Shen (bib0030) 2018; 66
.
Cahill, Noble, Hawkes (bib0029) 2009
Aganj, Iglesias, Reuter, Sabuncu, Fischl (bib0023) 2017; 152
Wahba (bib0008) 1990
Avants, Epstein, Grossman, Gee (bib0011) 2008; 12
Fleishman (bib0036) 2019
Du, Xu, Zhang, Zhang, Gao, Chen (bib0041) 2020; 132
Bhalerao (bib0004) 2012
Schraudolph, Yu, Günter (bib0028) 2007
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0021) 2019; 38
P.-E. Sarlin,.D. Daniel, T. Malisiewicz, A.. Rabinovich, Superglue: learning feature matching with graph neural networks, 2020, 4937–4946.
R. Moghadam, Y.P.P. Chen, Tracking neutrophil migration in zebrafish model using multi-channel feature learning, IEEE J. Biomed. Health Inform. doi
D. Brunet, A study of the structural similarity image quality measure with applications to image processing, Doctoral Dissertation, University of Waterloo, Ontario, Canada (2012).
Dalca, Bobu, Rost, Golland (bib0013) 2016
Ashburner (bib0012) 2007; 38
Du (10.1016/j.cmpb.2022.106658_sbref0041) 2020; 132
Wahba (10.1016/j.cmpb.2022.106658_bib0008) 1990
Schraudolph (10.1016/j.cmpb.2022.106658_bib0028) 2007
Gu (10.1016/j.cmpb.2022.106658_bib0022) 2010; 55
Thirion (10.1016/j.cmpb.2022.106658_bib0007) 1998; 2
He (10.1016/j.cmpb.2022.106658_bib0027) 2001; 127
Kunst (10.1016/j.cmpb.2022.106658_sbref0033) 2019; 103
Avants (10.1016/j.cmpb.2022.106658_sbref0038) 2014
10.1016/j.cmpb.2022.106658_bib0039
Lotz (10.1016/j.cmpb.2022.106658_bib0031) 2015; 63
Ghosal (10.1016/j.cmpb.2022.106658_bib0002) 2017
Wen (10.1016/j.cmpb.2022.106658_sbref0037) 2020; 192
10.1016/j.cmpb.2022.106658_bib0040
Yang (10.1016/j.cmpb.2022.106658_bib0020) 2017; 158
10.1016/j.cmpb.2022.106658_bib0042
Zebiat (10.1016/j.cmpb.2022.106658_sbref0003) 2013; 14
Yeo (10.1016/j.cmpb.2022.106658_bib0014) 2010; 29
Tambalo (10.1016/j.cmpb.2022.106658_sbref0034) 2020; 147
Ronneberger (10.1016/j.cmpb.2022.106658_bib0001) 2012; 9
10.1016/j.cmpb.2022.106658_bib0024
Zhang (10.1016/j.cmpb.2022.106658_bib0015) 2017
Cao (10.1016/j.cmpb.2022.106658_bib0016) 2017
Kajihara (10.1016/j.cmpb.2022.106658_bib0026) 2019; 96
Fleishman (10.1016/j.cmpb.2022.106658_bib0036) 2019
Balakrishnan (10.1016/j.cmpb.2022.106658_bib0021) 2019; 38
Dyke (10.1016/j.cmpb.2022.106658_bib0025) 2019; 71
Aganj (10.1016/j.cmpb.2022.106658_bib0023) 2017; 152
Styner (10.1016/j.cmpb.2022.106658_bib0005) 2000; 19
Bhalerao (10.1016/j.cmpb.2022.106658_bib0004) 2012
Sokooti (10.1016/j.cmpb.2022.106658_bib0019) 2017
Lee (10.1016/j.cmpb.2022.106658_bib0009) 1996; 2
Rueckert (10.1016/j.cmpb.2022.106658_bib0006) 1999; 18
Avants (10.1016/j.cmpb.2022.106658_bib0011) 2008; 12
Cahill (10.1016/j.cmpb.2022.106658_bib0029) 2009
Tang (10.1016/j.cmpb.2022.106658_bib0030) 2018; 66
Rohe (10.1016/j.cmpb.2022.106658_bib0018) 2017
Krebs (10.1016/j.cmpb.2022.106658_bib0017) 2017
10.1016/j.cmpb.2022.106658_bib0032
Dalca (10.1016/j.cmpb.2022.106658_bib0013) 2016
Jenett (10.1016/j.cmpb.2022.106658_sbref0035) 2020
Blaser (10.1016/j.cmpb.2022.106658_bib0010) 2014; 42
Ashburner (10.1016/j.cmpb.2022.106658_bib0012) 2007; 38
References_xml – start-page: 436
  year: 2007
  end-page: 443
  ident: bib0028
  article-title: A stochastic Quasi-Newton method for online convex optimization
  publication-title: Proceedings of the AISTATS
– start-page: 300
  year: 2017
  end-page: 308
  ident: bib0016
  article-title: Deformable image registration based on similarity-steered CNN regression
  publication-title: Proceedings of the MICCAI
– start-page: 232
  year: 2017
  end-page: 239
  ident: bib0019
  article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks
  publication-title: Proceedings of the MICCAI
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  ident: bib0021
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: Pp.213-217
  year: 2019
  ident: bib0036
  article-title: Deformable registration of whole brain zebrafish microscopy using an implementation of the flash algorithm within ants
  publication-title: Proceedings of the IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– reference: D. Brunet, A study of the structural similarity image quality measure with applications to image processing, Doctoral Dissertation, University of Waterloo, Ontario, Canada (2012).
– volume: 147
  year: 2020
  ident: bib0034
  article-title: A single cell transcriptome atlas of the developing zebrafish hindbrain
  publication-title: Development
– volume: 152
  start-page: 158
  year: 2017
  end-page: 170
  ident: bib0023
  article-title: Mid-space-independent deformable image registration
  publication-title: Neuroimage
– volume: 63
  start-page: 1812
  year: 2015
  end-page: 1819
  ident: bib0031
  article-title: Patch-based nonlinear image registration for gigapixel whole slide images
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 344
  year: 2017
  end-page: 352
  ident: bib0017
  article-title: Robust non-rigid registration through agent-based action learning
  publication-title: Proceedings of the MICCAI
– volume: 158
  start-page: 378
  year: 2017
  end-page: 396
  ident: bib0020
  article-title: Quicksilver: fast predictive image registration-a deep learning approach
  publication-title: Neuroimage
– volume: 9
  start-page: 735
  year: 2012
  end-page: 742
  ident: bib0001
  article-title: Vibe-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains
  publication-title: Nat. Methods
– volume: 71
  start-page: 142
  year: 2019
  end-page: 156
  ident: bib0025
  article-title: Non-rigid registration under anisotropic deformations
  publication-title: Comput. Aided Geom. Des.
– start-page: 321
  year: 2017
  end-page: 324
  ident: bib0002
  article-title: A novel non-rigid registration algorithm for zebrafish larval images
  publication-title: Proceedings of the EMBC
– volume: 29
  start-page: 1424
  year: 2010
  end-page: 1441
  ident: bib0014
  article-title: Learning task-optimal registration cost functions for localizing cytoarchitecture and function in the cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
– start-page: 563-580
  year: 2020
  ident: bib0035
  article-title: Chapter 32 - registered, standardized, and interactive: a review of online resources for zebrafish neuroanatomy
  publication-title: Behavioral and Neural Genetics of Zebrafish
– volume: 96
  start-page: 106956
  year: 2019
  ident: bib0026
  article-title: Non-rigid registration of serial section images by blending transforms for 3D reconstruction
  publication-title: Pattern Recognit.
– volume: 103
  start-page: 21
  year: 2019
  end-page: 38
  ident: bib0033
  article-title: Cellular-resolution atlas of the larval zebrafish brain
  publication-title: Neuron
– reference: T. Wan, et al., RGB-d point cloud registration based on salient object detection, IEEE Trans. Neural Netw. Learn. Syst. doi:
– start-page: 266
  year: 2017
  end-page: 274
  ident: bib0018
  article-title: Svf- Net: learning deformable image registration using shape matching
  publication-title: Proceedings of the MICCAI
– volume: 19
  start-page: 153
  year: 2000
  end-page: 165
  ident: bib0005
  article-title: Parametric estimate of intensity inhomogeneities applied to MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0003
  article-title: An image analysis tool for registering zebrafish embryos and quantifying cancer metastasis
  publication-title: BMC Bioinform.
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib0011
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 42
  start-page: 224
  year: 2014
  end-page: 231
  ident: bib0010
  article-title: Experiments on learning in zebrafish (Danio Rerio): a promising model of neurocognitive function
  publication-title: Neurosci. Biobehav. Rev.
– reference: D. Chetverikov, The trimmed iterative closest point algorithm, Object recognition supported by user interaction for service robots 3(3) (2002) 545–548.
– volume: 192
  start-page: 105432
  year: 2020
  ident: bib0037
  article-title: Multiswarm artificial bee colony algorithm based on spark cloud computing platform for medical image registration
  publication-title: Comput. Methods Programs Biomed.
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bib0006
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
– year: 1990
  ident: bib0008
  article-title: Spline models for observational data
  publication-title: Soc. Ind. Appl. Math.
– year: 2014
  ident: bib0038
  article-title: The insight toolkit image registration framework
  publication-title: Front. Neuroinform.
– start-page: 559
  year: 2017
  end-page: 570
  ident: bib0015
  article-title: Frequency diffeomorphisms for efficient image registration
  publication-title: Proceedings of the IPMI
– volume: 132
  start-page: 91
  year: 2020
  end-page: 98
  ident: bib0041
  article-title: Robust rigid registration algorithm based on pointwise correspondence and correntropy
  publication-title: Pattern Recognit. Lett.
– start-page: 60
  year: 2016
  end-page: 67
  ident: bib0013
  article-title: Patch-based discrete registration of clinical brain images
  publication-title: Proceedings of the Patch-MI
– start-page: 434
  year: 2012
  end-page: 437
  ident: bib0004
  article-title: Local affine texture tracking for serial registration of zebrafish images
  publication-title: Proceedings of the ISBI
– volume: 127
  start-page: 57
  year: 2001
  end-page: 85
  ident: bib0027
  article-title: Drift analysis and average time complexity of evolutionary algorithms
  publication-title: Artif. Intel.
– reference: .
– volume: 2
  start-page: 243
  year: 1998
  end-page: 260
  ident: bib0007
  article-title: Image matching as a diffusion process: an analogy with maxwells demons
  publication-title: Med. Image Anal.
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib0012
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 55
  start-page: 207
  year: 2010
  end-page: 219
  ident: bib0022
  article-title: Implementation and evaluation of various demons deformable image registration algorithms on a GPU
  publication-title: Phys. Med. Biol.
– volume: 66
  start-page: 2192
  year: 2018
  end-page: 2199
  ident: bib0030
  article-title: A new image similarity metric for improving deformation consistency in graph-based groupwise image registration
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 574
  year: 2009
  end-page: 581
  ident: bib0029
  article-title: A demons algorithm for image registration with locally adaptive regularization
  publication-title: Proceedings of the MICCAI
– reference: R. Moghadam, Y.P.P. Chen, Tracking neutrophil migration in zebrafish model using multi-channel feature learning, IEEE J. Biomed. Health Inform. doi:
– reference: P.-E. Sarlin,.D. Daniel, T. Malisiewicz, A.. Rabinovich, Superglue: learning feature matching with graph neural networks, 2020, 4937–4946.
– volume: 2
  start-page: 337
  year: 1996
  end-page: 354
  ident: bib0009
  article-title: Image metamorphosis with scattered feature constraints
  publication-title: IEEE Trans. Vis. Comput. Graph.
– start-page: 574
  year: 2009
  ident: 10.1016/j.cmpb.2022.106658_bib0029
  article-title: A demons algorithm for image registration with locally adaptive regularization
– start-page: 232
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0019
  article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks
– ident: 10.1016/j.cmpb.2022.106658_bib0039
  doi: 10.1109/ICPR.2002.1047997
– volume: 147
  issue: 6
  year: 2020
  ident: 10.1016/j.cmpb.2022.106658_sbref0034
  article-title: A single cell transcriptome atlas of the developing zebrafish hindbrain
  publication-title: Development
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  ident: 10.1016/j.cmpb.2022.106658_bib0011
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 103
  start-page: 21
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2022.106658_sbref0033
  article-title: Cellular-resolution atlas of the larval zebrafish brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.04.034
– volume: 19
  start-page: 153
  issue: 3
  year: 2000
  ident: 10.1016/j.cmpb.2022.106658_bib0005
  article-title: Parametric estimate of intensity inhomogeneities applied to MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.845174
– volume: 42
  start-page: 224
  year: 2014
  ident: 10.1016/j.cmpb.2022.106658_bib0010
  article-title: Experiments on learning in zebrafish (Danio Rerio): a promising model of neurocognitive function
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.03.003
– start-page: 436
  year: 2007
  ident: 10.1016/j.cmpb.2022.106658_bib0028
  article-title: A stochastic Quasi-Newton method for online convex optimization
– start-page: 559
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0015
  article-title: Frequency diffeomorphisms for efficient image registration
– volume: 2
  start-page: 243
  issue: 3
  year: 1998
  ident: 10.1016/j.cmpb.2022.106658_bib0007
  article-title: Image matching as a diffusion process: an analogy with maxwells demons
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(98)80022-4
– volume: 127
  start-page: 57
  issue: 1
  year: 2001
  ident: 10.1016/j.cmpb.2022.106658_bib0027
  article-title: Drift analysis and average time complexity of evolutionary algorithms
  publication-title: Artif. Intel.
  doi: 10.1016/S0004-3702(01)00058-3
– start-page: 434
  year: 2012
  ident: 10.1016/j.cmpb.2022.106658_bib0004
  article-title: Local affine texture tracking for serial registration of zebrafish images
– volume: 132
  start-page: 91
  year: 2020
  ident: 10.1016/j.cmpb.2022.106658_sbref0041
  article-title: Robust rigid registration algorithm based on pointwise correspondence and correntropy
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.06.028
– volume: 2
  start-page: 337
  year: 1996
  ident: 10.1016/j.cmpb.2022.106658_bib0009
  article-title: Image metamorphosis with scattered feature constraints
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/2945.556502
– start-page: 300
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0016
  article-title: Deformable image registration based on similarity-steered CNN regression
– volume: 14
  start-page: 1
  year: 2013
  ident: 10.1016/j.cmpb.2022.106658_sbref0003
  article-title: An image analysis tool for registering zebrafish embryos and quantifying cancer metastasis
  publication-title: BMC Bioinform.
– volume: 9
  start-page: 735
  year: 2012
  ident: 10.1016/j.cmpb.2022.106658_bib0001
  article-title: Vibe-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2076
– volume: 18
  start-page: 712
  issue: 8
  year: 1999
  ident: 10.1016/j.cmpb.2022.106658_bib0006
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– ident: 10.1016/j.cmpb.2022.106658_bib0024
– year: 1990
  ident: 10.1016/j.cmpb.2022.106658_bib0008
  article-title: Spline models for observational data
  publication-title: Soc. Ind. Appl. Math.
– volume: 158
  start-page: 378
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0020
  article-title: Quicksilver: fast predictive image registration-a deep learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.008
– volume: 29
  start-page: 1424
  issue: 7
  year: 2010
  ident: 10.1016/j.cmpb.2022.106658_bib0014
  article-title: Learning task-optimal registration cost functions for localizing cytoarchitecture and function in the cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2049497
– start-page: 563-580
  year: 2020
  ident: 10.1016/j.cmpb.2022.106658_sbref0035
  article-title: Chapter 32 - registered, standardized, and interactive: a review of online resources for zebrafish neuroanatomy
– ident: 10.1016/j.cmpb.2022.106658_bib0042
  doi: 10.1109/CVPR42600.2020.00499
– volume: 71
  start-page: 142
  year: 2019
  ident: 10.1016/j.cmpb.2022.106658_bib0025
  article-title: Non-rigid registration under anisotropic deformations
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2019.04.014
– volume: 66
  start-page: 2192
  issue: 8
  year: 2018
  ident: 10.1016/j.cmpb.2022.106658_bib0030
  article-title: A new image similarity metric for improving deformation consistency in graph-based groupwise image registration
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2885436
– volume: 55
  start-page: 207
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2022.106658_bib0022
  article-title: Implementation and evaluation of various demons deformable image registration algorithms on a GPU
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/1/012
– year: 2014
  ident: 10.1016/j.cmpb.2022.106658_sbref0038
  article-title: The insight toolkit image registration framework
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00044
– start-page: 344
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0017
  article-title: Robust non-rigid registration through agent-based action learning
– ident: 10.1016/j.cmpb.2022.106658_bib0032
  doi: 10.1109/JBHI.2020.3019271
– volume: 38
  start-page: 1788
  issue: 8
  year: 2019
  ident: 10.1016/j.cmpb.2022.106658_bib0021
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897538
– volume: 192
  start-page: 105432
  year: 2020
  ident: 10.1016/j.cmpb.2022.106658_sbref0037
  article-title: Multiswarm artificial bee colony algorithm based on spark cloud computing platform for medical image registration
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105432
– start-page: 321
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0002
  article-title: A novel non-rigid registration algorithm for zebrafish larval images
– start-page: 266
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0018
  article-title: Svf- Net: learning deformable image registration using shape matching
– volume: 152
  start-page: 158
  year: 2017
  ident: 10.1016/j.cmpb.2022.106658_bib0023
  article-title: Mid-space-independent deformable image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.055
– volume: 38
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.cmpb.2022.106658_bib0012
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 63
  start-page: 1812
  issue: 9
  year: 2015
  ident: 10.1016/j.cmpb.2022.106658_bib0031
  article-title: Patch-based nonlinear image registration for gigapixel whole slide images
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2503122
– start-page: 60
  year: 2016
  ident: 10.1016/j.cmpb.2022.106658_bib0013
  article-title: Patch-based discrete registration of clinical brain images
– ident: 10.1016/j.cmpb.2022.106658_bib0040
  doi: 10.1109/TNNLS.2021.3053274
– start-page: Pp.213-217
  year: 2019
  ident: 10.1016/j.cmpb.2022.106658_bib0036
  article-title: Deformable registration of whole brain zebrafish microscopy using an implementation of the flash algorithm within ants
– volume: 96
  start-page: 106956
  year: 2019
  ident: 10.1016/j.cmpb.2022.106658_bib0026
  article-title: Non-rigid registration of serial section images by blending transforms for 3D reconstruction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.07.001
SSID ssj0002556
Score 2.3192809
Snippet •Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive...
Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106658
SubjectTerms Adaptive registration
Algorithms
Animals
Brain - diagnostic imaging
FFD-Demons synergism
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Larva
Zebrafish
Zebrafish imaging
Title An adaptive registration algorithm for zebrafish larval brain images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722000438
https://dx.doi.org/10.1016/j.cmpb.2022.106658
https://www.ncbi.nlm.nih.gov/pubmed/35114462
https://www.proquest.com/docview/2626009869
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iIF7Et_VFBG-ytt1NdpNjqUpV9KKCt5BkE11pt8XWiwd_uzPNbkXwAR437LBhMvvlG-ZFyBHL2062bRK1XJZHjDEZae5NBFcbSHip02kV__VN2rtnlw_8YY5061oYTKussD9g-hStq5Vmpc3mqCiat9hHBNh4FschnoUV7CxDKz95_0zzwBZbob-3jPDtqnAm5HjZwciAjxjHsJCmOPb9-8vpJ_I5vYTOV8hyxR5pJ2xwlcy5co0sXlfx8XVy2impzvUIMYzizIW6Ky7V_cfhSzF5GlBgqfQNw8W-GD_RPs4G6lODkyJoMQB0GW-Q-_Ozu24vquYkRDbhYhJ51hLMcuN9y7nEcGGsMFLH0tocHJosN5JbkTvu8wQWgGJYz5gWEnsDxjpPNsl8OSzdNqHgLTIPpCI1vs10Ig043lYIi0zJZ23eIMe1gtQotMNQdZ7Ys0J1KlSnCupskKTWoaoLPQGaFKD1r1J8JvXFFP6UO6yPScE_goEPXbrh61jF6LW1pEhlg2yF85vtHgOp4BLHO__86i5ZwqeQzLNH5icvr24feMrEHEwN8YAsdC6uejcfaHflsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB62CbR7KX03farQWzFJbMmRjmHbJdtscukGchOSLG28JE7I47K_vjORHSj0Ab3KDBZj-dM3zMw3AJ950feq77Kk5wdFwjlXiRHBJni1oUVQJj928U-m-WjGv8_F_Awuml4YKqussT9i-hGt65Vu7c3upiy7P0hHBNn4IE1jPusBtEmdSrSgPbwaj6YnQCaVrSjxrRIyqHtnYpmXW20sholpigt5TpPff38__Yl_Hu-hyyfwuCaQbBj3-BTOfPUMHk7qFPlz-DqsmCnMhmCM0diFRhiXmeXtelvuFyuGRJXdU8Y4lLsFW9J4oCWzNCyClSsEmN0LmF1-u7kYJfWohMRlQu6TwHuSO2FD6HmfWSGtk1aZVDlXYEwzKKwSThZehCLDBWQZLnBupCJ5wNQU2UtoVevKvwaGASMPyCtyG_rcZMpi7O2kdESWwqAvOvClcZDeREUM3ZSK3WlypyZ36ujODmSND3XT64nopBGw_2olTla_nIZ_2n1qPpPG34RyH6by68NOpxS49ZTMVQdexe932j3lUjEqTt_851s_wqPRzeRaX19Nx2_hnJ7E2p530NpvD_490pa9_VAfy59TWOhj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+registration+algorithm+for+zebrafish+larval+brain+images&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Deb%2C+Shoureen&rft.au=Tiso%2C+Natascia&rft.au=Grisan%2C+Enrico&rft.au=Chowdhury%2C+Ananda+S&rft.date=2022-04-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=216&rft.spage=106658&rft_id=info:doi/10.1016%2Fj.cmpb.2022.106658&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon