An adaptive registration algorithm for zebrafish larval brain images
•Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive Demons.•Solution can handle varying degrees of freedom at different regions of a Zebrafish larva.•Has widespread applications in developmental neurology. Ze...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 216; p. 106658 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive Demons.•Solution can handle varying degrees of freedom at different regions of a Zebrafish larva.•Has widespread applications in developmental neurology.
Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities.
In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient.
Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method.
Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research. |
---|---|
AbstractList | Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities.
In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient.
Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method.
Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research. •Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive Demons.•Solution can handle varying degrees of freedom at different regions of a Zebrafish larva.•Has widespread applications in developmental neurology. Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities. In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient. Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method. Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research. Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities.BACKGROUND AND OBJECTIVEZebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities.In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient.METHODSIn this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient.Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method.RESULTSResults Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method.Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.CONCLUSIONSOur adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research. |
ArticleNumber | 106658 |
Author | Tiso, Natascia Deb, Shoureen Chowdhury, Ananda S. Grisan, Enrico |
Author_xml | – sequence: 1 givenname: Shoureen surname: Deb fullname: Deb, Shoureen organization: Department of Electronics and Telecommunication Engineering, Jadavpur Univeristy, Kolkata, India – sequence: 2 givenname: Natascia surname: Tiso fullname: Tiso, Natascia organization: Department of Biology, University of Padova, Italy – sequence: 3 givenname: Enrico surname: Grisan fullname: Grisan, Enrico organization: Department of Information Engineering, University of Padova, Italy – sequence: 4 givenname: Ananda S. surname: Chowdhury fullname: Chowdhury, Ananda S. email: as.chowdhury@jadavpuruniversity.in organization: Department of Electronics and Telecommunication Engineering, Jadavpur Univeristy, Kolkata, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35114462$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtPAyEYRYnR2Fb9Ay7MLN1MZRigYNyY-kxM3OiaMPDRUudRYdqk_nppqi5c6Ipwcw7h3hHab7sWEDot8LjABb9YjE2zrMYEE5ICzpnYQ8NCTEg-YZzto2GCZE44ngzQKMYFxpgwxg_RoGRFQSknQ3Rz3Wba6mXv15AFmPnYB937LqX1rAu-nzeZ60L2AVXQzsd5Vuuw1nWWrr7NfKNnEI_RgdN1hJOv8wi93t2-TB_yp-f7x-n1U25KJvrcUSyoYZVzGKCsmKiMqKQm0hhLpZzYSjIjLDBnyxTwkhlHqRaSUkyJtuUROt-9uwzd-wpirxofDdS1bqFbRUV4Koul4DKhZ1_oqmrAqmVIXw0b9d08AWQHmNDFGMD9IAVW23nVQm3nVdt51W7eJF3tJEgt1x6CisZDa8D6AKZXtvN_65e_dFP71htdv8HmP_kTNvKWPQ |
Cites_doi | 10.1109/ICPR.2002.1047997 10.1016/j.media.2007.06.004 10.1016/j.neuron.2019.04.034 10.1109/42.845174 10.1016/j.neubiorev.2014.03.003 10.1016/S1361-8415(98)80022-4 10.1016/S0004-3702(01)00058-3 10.1016/j.patrec.2018.06.028 10.1109/2945.556502 10.1038/nmeth.2076 10.1109/42.796284 10.1016/j.neuroimage.2017.07.008 10.1109/TMI.2010.2049497 10.1109/CVPR42600.2020.00499 10.1016/j.cagd.2019.04.014 10.1109/TBME.2018.2885436 10.1088/0031-9155/55/1/012 10.3389/fninf.2014.00044 10.1109/JBHI.2020.3019271 10.1109/TMI.2019.2897538 10.1016/j.cmpb.2020.105432 10.1016/j.neuroimage.2017.02.055 10.1016/j.neuroimage.2007.07.007 10.1109/TBME.2015.2503122 10.1109/TNNLS.2021.3053274 10.1016/j.patcog.2019.07.001 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmpb.2022.106658 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
ExternalDocumentID | 35114462 10_1016_j_cmpb_2022_106658 S0169260722000438 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c358t-f4084c5bff0ee3b58bc8b9a29ccd4997db95c8de5fd3d49635cf44a8944042ad3 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Fri Jul 11 01:16:58 EDT 2025 Wed Feb 19 02:26:06 EST 2025 Tue Jul 01 02:41:14 EDT 2025 Fri Feb 23 02:40:12 EST 2024 Tue Aug 26 16:33:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FFD-Demons synergism Zebrafish imaging Adaptive registration |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-f4084c5bff0ee3b58bc8b9a29ccd4997db95c8de5fd3d49635cf44a8944042ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35114462 |
PQID | 2626009869 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2626009869 pubmed_primary_35114462 crossref_primary_10_1016_j_cmpb_2022_106658 elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_106658 elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_106658 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 2022-Apr 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lotz (bib0031) 2015; 63 Yang, Kwitt, Styner, Niethammer (bib0020) 2017; 158 Zhang, Liao, Dalca, Turk, Luo, Grant, Golland (bib0015) 2017 Gu, Pan, Liang (bib0022) 2010; 55 Lee, Wolberg, Chwa, Shin (bib0009) 1996; 2 Wen, Liu, Lin, Wang, Hou, Huang, Pan, Du (bib0037) 2020; 192 Ghosal, Banerjee, Tiso, Grisan, Chowdhury (bib0002) 2017 Sokooti, Berendsen, Lelieveldt, Isgum, Staring, de Vos (bib0019) 2017 Thirion (bib0007) 1998; 2 Krebs, Mansi, Delingette, Zhang, Ghesu, Miao, Maier, Ayache, Liao, Kamen (bib0017) 2017 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib0006) 1999; 18 Tambalo, Mitter, Wilkinson (bib0034) 2020; 147 Styner, Brechbuehler, Szkely, Gerig (bib0005) 2000; 19 Zebiat (bib0003) 2013; 14 Kajihara, Funatomi, Makishima, Aoto, Kubo, Yamada, Mukaigawa (bib0026) 2019; 96 Yeo, Sabuncu, Vercauteren, Holt, Amunts, Zilles, Golland, Fischl (bib0014) 2010; 29 Kunst, Laurell, Mokayes, Kramer, Kubo, Fernandes, Frster, Dal Maschio, Baier (bib0033) 2019; 103 T. Wan, et al., RGB-d point cloud registration based on salient object detection, IEEE Trans. Neural Netw. Learn. Syst. doi Avants, Tustison, Stauffer, Song, Wu, Gee (bib0038) 2014 Dyke, Lai, Rosin, Tam (bib0025) 2019; 71 Ronneberger (bib0001) 2012; 9 D. Chetverikov, The trimmed iterative closest point algorithm, Object recognition supported by user interaction for service robots 3(3) (2002) 545–548. Cao, Yang, Zhang, Nie, Kim, Wang, Shen (bib0016) 2017 Rohe, Datar, Heimann, Sermesant, Pennec (bib0018) 2017 He, Yao (bib0027) 2001; 127 Jenett (bib0035) 2020 Blaser, Vira (bib0010) 2014; 42 Tang, Yap, Shen (bib0030) 2018; 66 . Cahill, Noble, Hawkes (bib0029) 2009 Aganj, Iglesias, Reuter, Sabuncu, Fischl (bib0023) 2017; 152 Wahba (bib0008) 1990 Avants, Epstein, Grossman, Gee (bib0011) 2008; 12 Fleishman (bib0036) 2019 Du, Xu, Zhang, Zhang, Gao, Chen (bib0041) 2020; 132 Bhalerao (bib0004) 2012 Schraudolph, Yu, Günter (bib0028) 2007 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0021) 2019; 38 P.-E. Sarlin,.D. Daniel, T. Malisiewicz, A.. Rabinovich, Superglue: learning feature matching with graph neural networks, 2020, 4937–4946. R. Moghadam, Y.P.P. Chen, Tracking neutrophil migration in zebrafish model using multi-channel feature learning, IEEE J. Biomed. Health Inform. doi D. Brunet, A study of the structural similarity image quality measure with applications to image processing, Doctoral Dissertation, University of Waterloo, Ontario, Canada (2012). Dalca, Bobu, Rost, Golland (bib0013) 2016 Ashburner (bib0012) 2007; 38 Du (10.1016/j.cmpb.2022.106658_sbref0041) 2020; 132 Wahba (10.1016/j.cmpb.2022.106658_bib0008) 1990 Schraudolph (10.1016/j.cmpb.2022.106658_bib0028) 2007 Gu (10.1016/j.cmpb.2022.106658_bib0022) 2010; 55 Thirion (10.1016/j.cmpb.2022.106658_bib0007) 1998; 2 He (10.1016/j.cmpb.2022.106658_bib0027) 2001; 127 Kunst (10.1016/j.cmpb.2022.106658_sbref0033) 2019; 103 Avants (10.1016/j.cmpb.2022.106658_sbref0038) 2014 10.1016/j.cmpb.2022.106658_bib0039 Lotz (10.1016/j.cmpb.2022.106658_bib0031) 2015; 63 Ghosal (10.1016/j.cmpb.2022.106658_bib0002) 2017 Wen (10.1016/j.cmpb.2022.106658_sbref0037) 2020; 192 10.1016/j.cmpb.2022.106658_bib0040 Yang (10.1016/j.cmpb.2022.106658_bib0020) 2017; 158 10.1016/j.cmpb.2022.106658_bib0042 Zebiat (10.1016/j.cmpb.2022.106658_sbref0003) 2013; 14 Yeo (10.1016/j.cmpb.2022.106658_bib0014) 2010; 29 Tambalo (10.1016/j.cmpb.2022.106658_sbref0034) 2020; 147 Ronneberger (10.1016/j.cmpb.2022.106658_bib0001) 2012; 9 10.1016/j.cmpb.2022.106658_bib0024 Zhang (10.1016/j.cmpb.2022.106658_bib0015) 2017 Cao (10.1016/j.cmpb.2022.106658_bib0016) 2017 Kajihara (10.1016/j.cmpb.2022.106658_bib0026) 2019; 96 Fleishman (10.1016/j.cmpb.2022.106658_bib0036) 2019 Balakrishnan (10.1016/j.cmpb.2022.106658_bib0021) 2019; 38 Dyke (10.1016/j.cmpb.2022.106658_bib0025) 2019; 71 Aganj (10.1016/j.cmpb.2022.106658_bib0023) 2017; 152 Styner (10.1016/j.cmpb.2022.106658_bib0005) 2000; 19 Bhalerao (10.1016/j.cmpb.2022.106658_bib0004) 2012 Sokooti (10.1016/j.cmpb.2022.106658_bib0019) 2017 Lee (10.1016/j.cmpb.2022.106658_bib0009) 1996; 2 Rueckert (10.1016/j.cmpb.2022.106658_bib0006) 1999; 18 Avants (10.1016/j.cmpb.2022.106658_bib0011) 2008; 12 Cahill (10.1016/j.cmpb.2022.106658_bib0029) 2009 Tang (10.1016/j.cmpb.2022.106658_bib0030) 2018; 66 Rohe (10.1016/j.cmpb.2022.106658_bib0018) 2017 Krebs (10.1016/j.cmpb.2022.106658_bib0017) 2017 10.1016/j.cmpb.2022.106658_bib0032 Dalca (10.1016/j.cmpb.2022.106658_bib0013) 2016 Jenett (10.1016/j.cmpb.2022.106658_sbref0035) 2020 Blaser (10.1016/j.cmpb.2022.106658_bib0010) 2014; 42 Ashburner (10.1016/j.cmpb.2022.106658_bib0012) 2007; 38 |
References_xml | – start-page: 436 year: 2007 end-page: 443 ident: bib0028 article-title: A stochastic Quasi-Newton method for online convex optimization publication-title: Proceedings of the AISTATS – start-page: 300 year: 2017 end-page: 308 ident: bib0016 article-title: Deformable image registration based on similarity-steered CNN regression publication-title: Proceedings of the MICCAI – start-page: 232 year: 2017 end-page: 239 ident: bib0019 article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks publication-title: Proceedings of the MICCAI – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: bib0021 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – start-page: Pp.213-217 year: 2019 ident: bib0036 article-title: Deformable registration of whole brain zebrafish microscopy using an implementation of the flash algorithm within ants publication-title: Proceedings of the IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) – reference: D. Brunet, A study of the structural similarity image quality measure with applications to image processing, Doctoral Dissertation, University of Waterloo, Ontario, Canada (2012). – volume: 147 year: 2020 ident: bib0034 article-title: A single cell transcriptome atlas of the developing zebrafish hindbrain publication-title: Development – volume: 152 start-page: 158 year: 2017 end-page: 170 ident: bib0023 article-title: Mid-space-independent deformable image registration publication-title: Neuroimage – volume: 63 start-page: 1812 year: 2015 end-page: 1819 ident: bib0031 article-title: Patch-based nonlinear image registration for gigapixel whole slide images publication-title: IEEE Trans. Biomed. Eng. – start-page: 344 year: 2017 end-page: 352 ident: bib0017 article-title: Robust non-rigid registration through agent-based action learning publication-title: Proceedings of the MICCAI – volume: 158 start-page: 378 year: 2017 end-page: 396 ident: bib0020 article-title: Quicksilver: fast predictive image registration-a deep learning approach publication-title: Neuroimage – volume: 9 start-page: 735 year: 2012 end-page: 742 ident: bib0001 article-title: Vibe-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains publication-title: Nat. Methods – volume: 71 start-page: 142 year: 2019 end-page: 156 ident: bib0025 article-title: Non-rigid registration under anisotropic deformations publication-title: Comput. Aided Geom. Des. – start-page: 321 year: 2017 end-page: 324 ident: bib0002 article-title: A novel non-rigid registration algorithm for zebrafish larval images publication-title: Proceedings of the EMBC – volume: 29 start-page: 1424 year: 2010 end-page: 1441 ident: bib0014 article-title: Learning task-optimal registration cost functions for localizing cytoarchitecture and function in the cerebral cortex publication-title: IEEE Trans. Med. Imaging – start-page: 563-580 year: 2020 ident: bib0035 article-title: Chapter 32 - registered, standardized, and interactive: a review of online resources for zebrafish neuroanatomy publication-title: Behavioral and Neural Genetics of Zebrafish – volume: 96 start-page: 106956 year: 2019 ident: bib0026 article-title: Non-rigid registration of serial section images by blending transforms for 3D reconstruction publication-title: Pattern Recognit. – volume: 103 start-page: 21 year: 2019 end-page: 38 ident: bib0033 article-title: Cellular-resolution atlas of the larval zebrafish brain publication-title: Neuron – reference: T. Wan, et al., RGB-d point cloud registration based on salient object detection, IEEE Trans. Neural Netw. Learn. Syst. doi: – start-page: 266 year: 2017 end-page: 274 ident: bib0018 article-title: Svf- Net: learning deformable image registration using shape matching publication-title: Proceedings of the MICCAI – volume: 19 start-page: 153 year: 2000 end-page: 165 ident: bib0005 article-title: Parametric estimate of intensity inhomogeneities applied to MRI publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 1 year: 2013 end-page: 9 ident: bib0003 article-title: An image analysis tool for registering zebrafish embryos and quantifying cancer metastasis publication-title: BMC Bioinform. – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib0011 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 42 start-page: 224 year: 2014 end-page: 231 ident: bib0010 article-title: Experiments on learning in zebrafish (Danio Rerio): a promising model of neurocognitive function publication-title: Neurosci. Biobehav. Rev. – reference: D. Chetverikov, The trimmed iterative closest point algorithm, Object recognition supported by user interaction for service robots 3(3) (2002) 545–548. – volume: 192 start-page: 105432 year: 2020 ident: bib0037 article-title: Multiswarm artificial bee colony algorithm based on spark cloud computing platform for medical image registration publication-title: Comput. Methods Programs Biomed. – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: bib0006 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging – year: 1990 ident: bib0008 article-title: Spline models for observational data publication-title: Soc. Ind. Appl. Math. – year: 2014 ident: bib0038 article-title: The insight toolkit image registration framework publication-title: Front. Neuroinform. – start-page: 559 year: 2017 end-page: 570 ident: bib0015 article-title: Frequency diffeomorphisms for efficient image registration publication-title: Proceedings of the IPMI – volume: 132 start-page: 91 year: 2020 end-page: 98 ident: bib0041 article-title: Robust rigid registration algorithm based on pointwise correspondence and correntropy publication-title: Pattern Recognit. Lett. – start-page: 60 year: 2016 end-page: 67 ident: bib0013 article-title: Patch-based discrete registration of clinical brain images publication-title: Proceedings of the Patch-MI – start-page: 434 year: 2012 end-page: 437 ident: bib0004 article-title: Local affine texture tracking for serial registration of zebrafish images publication-title: Proceedings of the ISBI – volume: 127 start-page: 57 year: 2001 end-page: 85 ident: bib0027 article-title: Drift analysis and average time complexity of evolutionary algorithms publication-title: Artif. Intel. – reference: . – volume: 2 start-page: 243 year: 1998 end-page: 260 ident: bib0007 article-title: Image matching as a diffusion process: an analogy with maxwells demons publication-title: Med. Image Anal. – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bib0012 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – volume: 55 start-page: 207 year: 2010 end-page: 219 ident: bib0022 article-title: Implementation and evaluation of various demons deformable image registration algorithms on a GPU publication-title: Phys. Med. Biol. – volume: 66 start-page: 2192 year: 2018 end-page: 2199 ident: bib0030 article-title: A new image similarity metric for improving deformation consistency in graph-based groupwise image registration publication-title: IEEE Trans. Biomed. Eng. – start-page: 574 year: 2009 end-page: 581 ident: bib0029 article-title: A demons algorithm for image registration with locally adaptive regularization publication-title: Proceedings of the MICCAI – reference: R. Moghadam, Y.P.P. Chen, Tracking neutrophil migration in zebrafish model using multi-channel feature learning, IEEE J. Biomed. Health Inform. doi: – reference: P.-E. Sarlin,.D. Daniel, T. Malisiewicz, A.. Rabinovich, Superglue: learning feature matching with graph neural networks, 2020, 4937–4946. – volume: 2 start-page: 337 year: 1996 end-page: 354 ident: bib0009 article-title: Image metamorphosis with scattered feature constraints publication-title: IEEE Trans. Vis. Comput. Graph. – start-page: 574 year: 2009 ident: 10.1016/j.cmpb.2022.106658_bib0029 article-title: A demons algorithm for image registration with locally adaptive regularization – start-page: 232 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0019 article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks – ident: 10.1016/j.cmpb.2022.106658_bib0039 doi: 10.1109/ICPR.2002.1047997 – volume: 147 issue: 6 year: 2020 ident: 10.1016/j.cmpb.2022.106658_sbref0034 article-title: A single cell transcriptome atlas of the developing zebrafish hindbrain publication-title: Development – volume: 12 start-page: 26 issue: 1 year: 2008 ident: 10.1016/j.cmpb.2022.106658_bib0011 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 103 start-page: 21 issue: 1 year: 2019 ident: 10.1016/j.cmpb.2022.106658_sbref0033 article-title: Cellular-resolution atlas of the larval zebrafish brain publication-title: Neuron doi: 10.1016/j.neuron.2019.04.034 – volume: 19 start-page: 153 issue: 3 year: 2000 ident: 10.1016/j.cmpb.2022.106658_bib0005 article-title: Parametric estimate of intensity inhomogeneities applied to MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.845174 – volume: 42 start-page: 224 year: 2014 ident: 10.1016/j.cmpb.2022.106658_bib0010 article-title: Experiments on learning in zebrafish (Danio Rerio): a promising model of neurocognitive function publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2014.03.003 – start-page: 436 year: 2007 ident: 10.1016/j.cmpb.2022.106658_bib0028 article-title: A stochastic Quasi-Newton method for online convex optimization – start-page: 559 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0015 article-title: Frequency diffeomorphisms for efficient image registration – volume: 2 start-page: 243 issue: 3 year: 1998 ident: 10.1016/j.cmpb.2022.106658_bib0007 article-title: Image matching as a diffusion process: an analogy with maxwells demons publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(98)80022-4 – volume: 127 start-page: 57 issue: 1 year: 2001 ident: 10.1016/j.cmpb.2022.106658_bib0027 article-title: Drift analysis and average time complexity of evolutionary algorithms publication-title: Artif. Intel. doi: 10.1016/S0004-3702(01)00058-3 – start-page: 434 year: 2012 ident: 10.1016/j.cmpb.2022.106658_bib0004 article-title: Local affine texture tracking for serial registration of zebrafish images – volume: 132 start-page: 91 year: 2020 ident: 10.1016/j.cmpb.2022.106658_sbref0041 article-title: Robust rigid registration algorithm based on pointwise correspondence and correntropy publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.06.028 – volume: 2 start-page: 337 year: 1996 ident: 10.1016/j.cmpb.2022.106658_bib0009 article-title: Image metamorphosis with scattered feature constraints publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/2945.556502 – start-page: 300 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0016 article-title: Deformable image registration based on similarity-steered CNN regression – volume: 14 start-page: 1 year: 2013 ident: 10.1016/j.cmpb.2022.106658_sbref0003 article-title: An image analysis tool for registering zebrafish embryos and quantifying cancer metastasis publication-title: BMC Bioinform. – volume: 9 start-page: 735 year: 2012 ident: 10.1016/j.cmpb.2022.106658_bib0001 article-title: Vibe-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains publication-title: Nat. Methods doi: 10.1038/nmeth.2076 – volume: 18 start-page: 712 issue: 8 year: 1999 ident: 10.1016/j.cmpb.2022.106658_bib0006 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – ident: 10.1016/j.cmpb.2022.106658_bib0024 – year: 1990 ident: 10.1016/j.cmpb.2022.106658_bib0008 article-title: Spline models for observational data publication-title: Soc. Ind. Appl. Math. – volume: 158 start-page: 378 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0020 article-title: Quicksilver: fast predictive image registration-a deep learning approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.008 – volume: 29 start-page: 1424 issue: 7 year: 2010 ident: 10.1016/j.cmpb.2022.106658_bib0014 article-title: Learning task-optimal registration cost functions for localizing cytoarchitecture and function in the cerebral cortex publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2049497 – start-page: 563-580 year: 2020 ident: 10.1016/j.cmpb.2022.106658_sbref0035 article-title: Chapter 32 - registered, standardized, and interactive: a review of online resources for zebrafish neuroanatomy – ident: 10.1016/j.cmpb.2022.106658_bib0042 doi: 10.1109/CVPR42600.2020.00499 – volume: 71 start-page: 142 year: 2019 ident: 10.1016/j.cmpb.2022.106658_bib0025 article-title: Non-rigid registration under anisotropic deformations publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2019.04.014 – volume: 66 start-page: 2192 issue: 8 year: 2018 ident: 10.1016/j.cmpb.2022.106658_bib0030 article-title: A new image similarity metric for improving deformation consistency in graph-based groupwise image registration publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2885436 – volume: 55 start-page: 207 issue: 1 year: 2010 ident: 10.1016/j.cmpb.2022.106658_bib0022 article-title: Implementation and evaluation of various demons deformable image registration algorithms on a GPU publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/1/012 – year: 2014 ident: 10.1016/j.cmpb.2022.106658_sbref0038 article-title: The insight toolkit image registration framework publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00044 – start-page: 344 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0017 article-title: Robust non-rigid registration through agent-based action learning – ident: 10.1016/j.cmpb.2022.106658_bib0032 doi: 10.1109/JBHI.2020.3019271 – volume: 38 start-page: 1788 issue: 8 year: 2019 ident: 10.1016/j.cmpb.2022.106658_bib0021 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – volume: 192 start-page: 105432 year: 2020 ident: 10.1016/j.cmpb.2022.106658_sbref0037 article-title: Multiswarm artificial bee colony algorithm based on spark cloud computing platform for medical image registration publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105432 – start-page: 321 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0002 article-title: A novel non-rigid registration algorithm for zebrafish larval images – start-page: 266 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0018 article-title: Svf- Net: learning deformable image registration using shape matching – volume: 152 start-page: 158 year: 2017 ident: 10.1016/j.cmpb.2022.106658_bib0023 article-title: Mid-space-independent deformable image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.055 – volume: 38 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.cmpb.2022.106658_bib0012 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 63 start-page: 1812 issue: 9 year: 2015 ident: 10.1016/j.cmpb.2022.106658_bib0031 article-title: Patch-based nonlinear image registration for gigapixel whole slide images publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2503122 – start-page: 60 year: 2016 ident: 10.1016/j.cmpb.2022.106658_bib0013 article-title: Patch-based discrete registration of clinical brain images – ident: 10.1016/j.cmpb.2022.106658_bib0040 doi: 10.1109/TNNLS.2021.3053274 – start-page: Pp.213-217 year: 2019 ident: 10.1016/j.cmpb.2022.106658_bib0036 article-title: Deformable registration of whole brain zebrafish microscopy using an implementation of the flash algorithm within ants – volume: 96 start-page: 106956 year: 2019 ident: 10.1016/j.cmpb.2022.106658_bib0026 article-title: Non-rigid registration of serial section images by blending transforms for 3D reconstruction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.07.001 |
SSID | ssj0002556 |
Score | 2.3192809 |
Snippet | •Addresses the problem of registration of Zebrafish larval brain images.•Proposes a synergism of attractive Free-Form-Deformation and diffusive... Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106658 |
SubjectTerms | Adaptive registration Algorithms Animals Brain - diagnostic imaging FFD-Demons synergism Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Larva Zebrafish Zebrafish imaging |
Title | An adaptive registration algorithm for zebrafish larval brain images |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722000438 https://dx.doi.org/10.1016/j.cmpb.2022.106658 https://www.ncbi.nlm.nih.gov/pubmed/35114462 https://www.proquest.com/docview/2626009869 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iIF7Et_VFBG-ytt1NdpNjqUpV9KKCt5BkE11pt8XWiwd_uzPNbkXwAR437LBhMvvlG-ZFyBHL2062bRK1XJZHjDEZae5NBFcbSHip02kV__VN2rtnlw_8YY5061oYTKussD9g-hStq5Vmpc3mqCiat9hHBNh4FschnoUV7CxDKz95_0zzwBZbob-3jPDtqnAm5HjZwciAjxjHsJCmOPb9-8vpJ_I5vYTOV8hyxR5pJ2xwlcy5co0sXlfx8XVy2impzvUIMYzizIW6Ky7V_cfhSzF5GlBgqfQNw8W-GD_RPs4G6lODkyJoMQB0GW-Q-_Ozu24vquYkRDbhYhJ51hLMcuN9y7nEcGGsMFLH0tocHJosN5JbkTvu8wQWgGJYz5gWEnsDxjpPNsl8OSzdNqHgLTIPpCI1vs10Ig043lYIi0zJZ23eIMe1gtQotMNQdZ7Ys0J1KlSnCupskKTWoaoLPQGaFKD1r1J8JvXFFP6UO6yPScE_goEPXbrh61jF6LW1pEhlg2yF85vtHgOp4BLHO__86i5ZwqeQzLNH5icvr24feMrEHEwN8YAsdC6uejcfaHflsg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB62CbR7KX03farQWzFJbMmRjmHbJdtscukGchOSLG28JE7I47K_vjORHSj0Ab3KDBZj-dM3zMw3AJ950feq77Kk5wdFwjlXiRHBJni1oUVQJj928U-m-WjGv8_F_Awuml4YKqussT9i-hGt65Vu7c3upiy7P0hHBNn4IE1jPusBtEmdSrSgPbwaj6YnQCaVrSjxrRIyqHtnYpmXW20sholpigt5TpPff38__Yl_Hu-hyyfwuCaQbBj3-BTOfPUMHk7qFPlz-DqsmCnMhmCM0diFRhiXmeXtelvuFyuGRJXdU8Y4lLsFW9J4oCWzNCyClSsEmN0LmF1-u7kYJfWohMRlQu6TwHuSO2FD6HmfWSGtk1aZVDlXYEwzKKwSThZehCLDBWQZLnBupCJ5wNQU2UtoVevKvwaGASMPyCtyG_rcZMpi7O2kdESWwqAvOvClcZDeREUM3ZSK3WlypyZ36ujODmSND3XT64nopBGw_2olTla_nIZ_2n1qPpPG34RyH6by68NOpxS49ZTMVQdexe932j3lUjEqTt_851s_wqPRzeRaX19Nx2_hnJ7E2p530NpvD_490pa9_VAfy59TWOhj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+registration+algorithm+for+zebrafish+larval+brain+images&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Deb%2C+Shoureen&rft.au=Tiso%2C+Natascia&rft.au=Grisan%2C+Enrico&rft.au=Chowdhury%2C+Ananda+S&rft.date=2022-04-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=216&rft.spage=106658&rft_id=info:doi/10.1016%2Fj.cmpb.2022.106658&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |